数列--历届高考真题试题
- 格式:docx
- 大小:717.62 KB
- 文档页数:20
近三年数列高考真题(带解析)1.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .2.设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 3.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.4.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.5.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列.6.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 7.已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.8.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-. (1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.9.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.10.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.参考答案:1.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n ∈N ,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n na a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+. [方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.2.(1)13n n a -=;(2)6m =.【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13n n a -=;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.3.(1)2-;(2)1(13)(2)9nn n S -+-=. 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论; (2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题. 4.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用. 5.证明见解析.【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n -=()n *∈N ∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况. 6.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n nn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法, 方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=, 则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.8.(1)证明见解析;(2)9.【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【详解】(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112d b a ==,所以原命题得证. (2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.9.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221n n S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<=. 则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10.(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【详解】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=, ∴()()112133n n n n n n a n a a S S --++=-=-, 整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。
1.设等差数列{a n }的前n 项和为S n ,已知S 11=55,则a 6=( )A.6B.5C.4D.3 2.已知数列{2a n +1}是等差数列,且a 1=1,a 3=−13,那么a 2023=( )A.20212023B.−20212023C.20192022D.−20192022 3.已知等比数列{a n }中,a 1=1,且a 4+a 5+a 8a 1+a 2+a 5=8,那么S 5的值是( )A.15B.31C.63D.644.已知等比数列{a n }的前n 项和为S n ,则下列说法一定正确的是( )A.若S 2022>0,则a 1>0B.若S 2021>0,则a 1>0C.若S 2022>0,则a 2>0D.若S 2021>0,则a 2>05.若数列{a n }满足(n −1)a n =(n +1)a n−1(n ⩾2),且a 1=2,则a 10=( )A.90B.100C.110D.1206.如图所示的图案是由一连串直角三角形拼接得到的,其中OA 1=A 1A 2=A 2A 3=⋯=A 7A 8=1,如果把图中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成一个数列{a n },那么此数列的通项公式为a n =( )A.√nB.nC.√n +1D.n +1 7.已知正项等比数列{a n }中,a 2=1,a 4=14,S n 表示数列{a n a n+1}的前n 项和,则S n 的取值范围是( )A.[2,83)B.(2,83]C.(2,83)D.[2,83] 8.已知数列{a n }的前n 项和为S n ,且满足a n =(S n −1)2S n .数列{b n }满足b n =(−1)n ·(2n +1)a n ,则数列{b n }的前100项和T 100=( )A.101100B.−101100C.−100101D.100101二、多选题 9.下列说法中错误的是( )A.若a ,b ,c 成等差数列,则a 2,b 2,c 2一定成等差数列B.若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 一定成等差数列C.若a ,b ,c 成等差数列,则a +2,b +2,c +2一定成等差数列D.若a,b,c成等差数列,则2a,2b,2c一定成等差数列10.设数列{a n}是等差数列,{a n}的前n项和是S n,公差为d,a1>0,且S6=S9,则下列结论正确的是( )A.d<0B.a8=0C.S5>S6D.S7或S8为S n的最大值11.已知数列{a n}的首项为4,且满足2(n+1)a n−na n+1=0(n∈N∗),则( )A.{a nn}为等差数列B.{a n}为递增数列C.{a n}的前n项和S n=(n−1)2n+1+4D.{a n2n+1}的前n项和T n=n2+n212.分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的,一个数学意义上的分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法得到一系列图形,如图1,在长度为1的线段AB上取两个点C,D,使得AC= DB=14AB,以CD为边在线段AB的上方做一个正方形,然后擦掉CD,就得到图形2;对图形2中的最上方的线段EF作同样的操作,得到图形3;依此类推,我们就得到以下的一系列图形.设图1,图2,图3,⋯,图n,各图中的线段长度和为a n,数列{a n}的前n项和为S n,则( )A.数列{a n}是等比数列B.S10=6657256C.a n<3恒成立D.存在正数m,使得S n<m恒成立三、填空题13.记S n为等比数列{a n}的前n项和,若a1=1,S3=34,则S4=.14.某住宅小区计划植树不少于100棵,若第一天种植2棵,以后每天种植树木的棵数是前一天的2倍,则至少需要的天数为.15.设数列{a n}的前n项和为S n,且a1=1,a n=S nn +2(n−1)(n∈N∗),则数列{1S n+3n}的前10项的和是16.已知数列{a n}的各项均为正数,其前n项的和S n满足a n⋅S n=9(n=1,2⋯).给出下列四个结论:①{a n}的第2项小于3;②{a n}为等比数列;③{a n}为递减数列;④{a n}中存在小于1100的项.其中所有正确结论的序号为.四、解答题(共3小题)17. 在等差数列{a n}中,a3=4,a9=10.(1)求数列{a n}的通项公式;(2)数列{b n}中,b2=1,b3=4.若c n=a n+b n,且数列{c n}是等比数列,求数列{c n}的前n项和S n.18.已知数列{a n},{b n}的前n项和分别为S n,T n,且a n>0,6S n=a n2+3a n.(1)求数列{a n}的通项公式;(2)记b n=2a n,若k>T n恒成立,求k的最小值.(2a n−1)(2a n+1−1)19.已知数列{a n}满足:a1=1,a n+a n+1=3n+λ(n∈N∗),λ∈R.(1)证明:数列{a2n}是等差数列;(2)是否存在λ使得数列{a n}为等差数列?若存在,求λ的值及数列{a n}的前n项和S n;否则,请说明理由.。
浙江省历年高考数列大题总汇(题目及答案)1已知二次函数y?f(x)的图像经过坐标原点,其导函数为f?(x)?6x?2。
数列项和为Sn,点(n,Sn)(n?N 求数列*?an?的前n)均在函数y?f(x)的图像上。
?an?的通项公式;m3*,Tn是数列?bn?的前n项和,求使得Tn?对所有n?N都成立的最小20anan?1设bn正整数m。
?2. 己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.求数列{an}的通项公式;设Tn为数列?小值. 3. 设数列?an?的前n项和为Sn,已知a1?1,a2?6,a3?11,且?1?*对?n?N恒成立,求实数?的最?的前n项和,若Tn≤?an?1¨?anan?1?(5n?8)Sn?1?(5n?2)Sn?An?B,n?1,2,3,?,其中A、B 为常数.(Ⅰ) 求A与B的值;(Ⅱ)证明数列?an?为等差数列;(Ⅲ) 证明不等式5amn?aman?1对任何正整数m、n都成立. 4. 已知数列?an?,?bn?满足a1?3,anbn?2,bn?1?an(bn?求证:数列{2),n?N*.1?an1}是等差数列,并求数列?bn?的通项公式;bn111,,成等差数列?若存在,试用p 表示q,r;若不crcqcp设数列?cn?满足cn?2an?5,对于任意给定的正整数p,是否存在正整数q,r(p?q?r),使得存在,说明理. 5. 已知函数f(x)?x?a?lnx (a?0). (1)若a?1,求f(x)的单调区间及f(x)的最小值;(2)若a?0,求f(x)的单调区间;ln22ln32lnn2(n?1)(2n?1)*?2???2与(3)试比较的大小(n?N且n?2),并证明22(n?1)23n你的结论.6已知f(x)?(x?1)2,g(x)?10(x?1),数列{an}满足(an?1?an)g(an)?f(an)?0,9(n?2)(an?1) 10a1?2,bn?求数列{an}的通项公式;(Ⅱ)求数列{bn}中最大项.7. 设k?R,函数f(x)?ex?(1?x?kx2)(x?0).若k?1,试求函数f(x)的导函数f?(x)的极小值;若对任意的t?0,存在s?0,使得当x?(0,s)时,都有取值范围. f(x)?tx2,求实数k的8. 已知等差数列{an}的公差不为零,且a3 =5, a1 , 成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2nbn=an且数列{bn}的前n项和Tn 试比较Tn与-1 3n?1的大小n?19. 已知函数f(x)?12x?(2a?2)x?(2a?1)lnx 2(I )求f(x)的单调区间;(II)对任意的a?[,],x1,x2?[1,2],恒有|f(x1)|?f(x2)??|数?的取值范围. 352211?|,求正实x1x2 1. 解:依题意可设f(x)?ax2?bx(a?0),则f`(x)?2ax?b f`(x)?6x?2 得a?3,b??2,所以f(x)?3x2?2x. 又点(n,Sn)(n?N*) 均在函数y?f(x)的图像上得Sn22?3n2?2n 当n?2时an?Sn?Sn?1?3n?2n???3(n?1)?2(n?1)???6n ?5 当n?1时a1所以an?S1?3?12?2?1?6?1?5 ?6n?5(n?N*)?33111??(?), anan?1(6n?5)?6(n?1)?5?26n?56n?1得bn 故,Tn?111?11111??(1?). =(1?)?(?)?????(?)??26n?12?77136n?56n?1 ?1m11m,即m?10 (1?)?(n?N*)成立的m必须且必须满足?22026n?120因此使得故满足最小的正整数m为10 ?4a1?6d?142. 设公差为d.已知得?....................................3分2?(a1?2d)?a1(a1?6d)解得d?1或d?0(舍去),所以a1?2,故an?n?1 (6)分?1111???,anan?1(n?1)(n?2)n?1n?211n1111?? (9)分?Tn?????…?n?1n?22(n?2)2334n≤?(n+ 2)对?n?N?恒成立?Tn≤?an?1对?n?N?恒成立,即2(n?2)n111?≤?又242(n?2)2(n??4)2(4?4)16n1∴?的最小值为……………………………………………………………12分163. 解:(Ⅰ)a1?1,a2?6,a3?11,得S1?1,S2?2,S3?18.把n?1,2分别代入(5n?8)Sn?1?(5n?2)Sn?An?B,得?解得,A??20,B??8.(Ⅱ)(Ⅰ)知,5n(Sn?1?Sn)?8Sn?1?2Sn??20n?8,即?A?B??28, 2A?B??48?5nan?1?8Sn?1?2Sn??20n?8,①又5(n?1)an?2?8Sn?2?2Sn?1??20(n?1)?8.②②-①得,5(n?1)an?2?5nan?1?8an?2?2an?1??20,即(5n?3)an?2?(5n?2)an?1??20.又(5n?2)an?3?(5n?7)an?2??20.③④④-③得,(5n?2)(an?3?2an?2?an?1)?0,∴an?3?2an?2?an?1?0,∴an?3?an?2?an?2?an?1???a3?a2?5,又a2?a1?5,因此,数列?an?是首项为1,公差为5的等差数列.(Ⅲ)(Ⅱ)知,an?5n?4,(n?N?).考虑5amn?5(5mn?4)?25mn?20.(aman?1)2?aman?2aman?1?aman?am?an?1?25mn?15(m?n)?9.∴5amn?(aman?1)2厖15(m?n)?2915?2?29?1?0.即5amn?(aman?1)2,∴5amn?aman?1.因此,5amn?aman?1. 4. 因为anbn?2,所以an?2,bn42anb2bn4则bn?1?anbn?, (2)分?2?n?2??21?anbn?2bn?21?bn所以111??,bn?1bn2又a1?3,所以b1?即?1?231,故??是首项为,公差为的等差数列,……4分322?bn?131n?22??(n?1)??,所以bn?.………………………6分bn222n?2知an?n?2,所以cn?2an?5?2n?1,①当p?1时,cp?c1?1,cq?2q?1,cr?2r?1,若12111?1?,,成等差数列,则,2q?12r?1crcqcp21?1,1??1,2q?12r?1因为p?q?r,所以q≥2,r≥3,所以不成立.………………………...9分②当p≥2时,若则111,,成等差数列,crcqcp2111214p?2q?1?????,所以,2q?12p?12r?12r?12q?12p?1(2p?1)(2q?1)( 2p?1)(2q?1)2pq?p?2q,所以r?,...........................12分4p?2q?14p?2q?1222即2r?1?欲满足题设条件,只需q?2p?1,此时r?4p?5p?2,..................14分因为p≥2,所以q?2p?1?p,r?q?4p?7p?3?4(p?1)?p?1?0,即r?q...............................15分综上所述,当p?1时,不存在q,r满足题设条件;当p≥2时,存在q?2p?1,r?4p?5p?2,满足题设条件. (16)分 5. (1) 当x?1时,f(x)?x?1?lnx ,f(x)?1?,,21?(x)在?1,???上是递增. x1?(x)在?0,1?上是递减. x故a?1时, f(x)的增区间为?1,???,减区间为?0,1?,f(x)min?f(1)?0. ………4分当0?x?1时,f(x)?x?1?lnx,f(x)??1?(2)○1若a?1, 当x?a时,f(x)?x?a?lnx,f(x)?1?是递增的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,, 1x?1??0,则f(x)在区间?a,???上xx1?0,则f(x)在区间?0,a?上是递x减的 (6)分2若0?a?1, ○当x?a时, f(x)?x?a?lnx, f(x)?1?,1x?1,?,x?1,f(x)?0 ; xxa?x?1,f,(x)?0. 则f(x)在?1,???上是递增的, f(x)在?a,1?上是递减的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,f(x)在区间?0,a?上是递减的,而f(x)在x?a处有意义;则1?0 x f?x?在区间1,???上是递增的,在区间?0,1?上是递减的 (8)分??a,???,递减区间是?0,a?; 当0?a?1,f(x)的递增区间是?1,???,递减区间是?0,1?综上: 当a?1时, f(x)的递增区间是………9分lnx1?1? (3)(1)可知,当a?1,x?1时,有x?1?lnx?0,即xxln22ln32lnn2?2???2 则有223n?1?111111?1????1??n?1?(????)…………12分22222223n23n ?n?1?(111????2?33?4n(n?1)111111?n?1?(???????)2334nn?111(n?1)(2n?1)?n?1?(?)=2n?12(n?1)ln22ln32lnn2(n?1)(2n?1)?2??? 2?故:.............15分2(n?1)223n 6. 题意:(an?1?an)?10(an?1)?(an?1)2?0 ?1)(1 0an?1?9an?1)?0.........3分经化简变形得:(an?an?1,?10an?1变形得:?9an?1?0 (5)分an?1?19? an?1109为公比的等比数列。
数列高考历年真题7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =A .64B .81C .128D .24319.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{a n }中,a 1=1, a n+1=2a n +2n . (Ⅰ)设12n n n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .(19)(I )由已知a n+1=2a n +2n 得b n+1=112222211+=+=+=-+n n nn nn n n b a a a又b 1=a 1=1,因此{b n }是首项为1,公差为1的等差数列(II )由(I )知112,2--⋅==n n n n a n a n即S n =1+2×21+3×22+…+n×2n -1两边乘以2得 2S n =2+2×22+…+n×2n两式相减得S n =-1-21-22-…-2n -1+n×2n=-(2n -1)+n×2n=(n -1)2n +115.等比数列{a n }的前n 项和S n ,已知123,2,3S S S 成等差数列,则{a n }的公比为 13。
22.(本小题满分12分)已知数列{a n }中a 1=2,a n +1=(12-)(a n +2),n =1,2,3…。
(Ⅰ)求{a n }的通项公式;22.解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +。
所以,数列{n a 是首项为21的等比数列,1)n n a =,即a n 的通项公式为1)1n n a ⎤=+⎦,n=1,2,3……。
(14)设等差数列{}n a 的前n 项和为n S 。
若972S =,则249a a a ++=______24_________. (17设等差数列{n a }的前n 项和为n s ,公比是正数的等比数列{n b }的前n 项和为n T , 已知1133331,3,17,12,},{}n n a b a b T S b ==+=-=求{a 的通项公式。
全国卷历年高考数列真题归类分析(含答案)全国卷历年高考数列真题归类分析(含答案)(10个小型和3个大型,分析型)一、等差、等比数列的基本运算(8小1大)1.(2022年第3卷第1卷)已知的算术序列?一前9项的总和是27,A10?8,那么100?(a) 100(b)99(c)98(d)97【解析】由已知,??9a1?36d?27,所以a1??1,d?1,a100?a1?99d??1?99?98,选c.A.9d?8.一2.(2021年1卷4)记sn为等差数列{an}的前n项和.若a4?a5?24,s6?48,则{an}的公差为a、一,【解析】:s6?b、二,c.4d、八,48a1a616a4a5a1a824,2.作差a8?a6?8?2d?d?4故而选c.,3.(2021年3卷9)等差数列?an?的首项为1,公差不为0.若a2,a3,a6成等比数列,则6.a1?a6??一前六项之和为()a.?24b、 ?。
?三c.3d、八,2?a2?a6,即【解析】∵?an?为等差数列,且a2,a3,a6成等比数列,设公差为d.则a3?a1?2d?2.a1?Da1?5d∵ A1?1.用上述公式代入D2?2d?0,以及∵ D0,然后是d??二6?56?5d?1?62???24,故选a.∴s6?6a1?224.(2021年2卷15)等差数列?an?的前项和为sn,则a3?3,s4?10,sk?1n1k?。
a12d3a11【解析】设等差数列的首项为a1,公差为d,所以?,解得?,4?3d?14a1?d?102所以an?n,sn?nn?1?n?121??1,那么,那么??22snn?n?1??nn?1?1??1??11?1??1?2n?1?.?21?......21??nn?1n?1?n?1k?1sk??2??23?5.(2022年第17卷第2卷)Sn是一个等差序列吗?一A1呢?1,s7?28.注BN??莱根其中呢?十、表示不超过x的最大整数,例如?0.9?? 0 lg99??1.(I)找到B1、B11、B101;(ⅱ)求数列?bn?的前1000项和.a4?a1?1,3∴一a1?(n?1)d?n。
word 格式文档历年高考?数列?真题汇编1、〔2021年新课标卷文〕11 等比数列{a .中,a 1=一,公比q =— .331 -a n(1) &为{a n }的前n 项和,证实: &〔II 〕设 b n =log 3a l +log 3a 2+|||+log 3a n ,求数列{b n }的通项公式.解:(i)由于 a n =1x (l)nJL = ±. Sn3 3 3n所以s n -上包2(1) b n = log 3 a 〔 log 3 a 2」…+log 3 a n - -(1 2 ................................. n)2、〔2021全国新课标卷理〕〔1〕求数列 QJ 的通项公式2 一3 一 221 解:〔I 〕设数列{a n }的公比为q,由a 3 =9a 2a 6得a 3 =9a 4所以q =一.有条件可知 9故 q =一 .31 1由2a 〔 +3a 2 =1得2a 〔 +3a z q =1 ,所以& =一 .故数列{a n }的通项式为a n=--.3 3n(n ) b n =log 1a l +log 1a l +...+log 1a L= -(12 ... n) _ n(n 1) 2专业整理所以{.}的通项公式为b nn(n 1) 一 2n(n 1) 2等比数列{a n }的各项均为正数,且22 a 13 a 2 =1,a 3 =9a ? a @.(2)设 b n = log 3 a 1 +log 3 a 2 ++ log 3 a n ,求数列1…?的前项和 bna>0,故工=b n2 n(n 1)3(11-:所以数列{1}的前n 项和为—-2n b n n i3、(20i0新课标卷理)设数列{为}满足a i =2,a n 1—a n =3_22n 」(2) 求数列{a n }的通项公式; (3) 令b n =na n ,求数列的前n 项和S n解(I)由,当 n>i 时,a n*=[(an+—a n )+a —a n 」)+i||+(a 2—a 1)] + a i十 |M +2)+2 =22(n *)」.2n 1而a 1 =2,所以数列{a n }的通项公式为a n=2」(n)由 b n =na n =n 22n 1知S n =1 2 +2 23 +3 25 +||| +n 22nJL①从而22 S n =1 23 +2 25 +3 27 +||| 十n 22n * ②①-②得 (1—22) 'S n = 2 + 23 +25 +川+22n 」—n,22n 书 即S n =1[(3n -1)22n 1 2]94、( 20I0年全国新课标卷文) 设等差数列{a n }满足a 3 =5 , a 〔0 = _9.(I)求{4}的通项公式; (n)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.解:(1)由 a m = a i +(n-1) d 及 a i =5, a i0=-9 得ai 2d =5 4 9d =-9a i =9解得{ d =一2数列{a n }的通项公式为 a n =11-2n .专业整理11—十— 十■ n b 2i i i i i「2((1一2)(5 一/ (5)))2n n i. .6 分(2) 由(1) 知 S n =na 1+-n(__— d=10n-n 2 2由于 S n =-(n-5) 2+25.所以n=5时,S n 取得最大值.5、(2021年全国卷)设等差数列{a n }的前N 项和为S n ,a 2 = 6, 6a l + a 2 = 30,求a n 和S n6、〔 2021辽宁卷〕等差数列{a n }满足32=0 , 36+38 =-10〔I 〕求数列{a n }的通项公式;a, d = 0,解:〔I 〕设等差数列{a n }的公差为d,由条件可得12a l 12d =-10,1a l = 1, 解得 , d = -1故数列{a n }的通项公式为a n = 2 — n.a a… ...(II )设数列{Y r }的刖n 项和为S n ,即S n =a 〔 +上+IH +2n 2an2n..... a综上,数列{Y 1}的前n 项和S n2n7、〔2021年陕西省〕专业整理所以,当 n >1 时,Sn _2 -a,an - a n 4 a n=1 -(1 1 -IH2 4 1 =1-(1 亍)-2n 」2n学〕2n〔II 〕求数列域a n2T的前n 项和.故 S i =1 ,{a n }是公差不为零的等差数列,31=1,且a i, 33, a 9成等比数列.〔I 〕求数列{d }的通项;〔n 〕求数列{2 an }的前n 项和S. 解 〔I 〕由题设知公.差dwo,, 一一 112d 由a i=1, 3i, 33 , 39成等比数列得 ------------1解得 d= 1, d= 0 (舍去),故{ 曰}的通项 a n= 1+ (n — 1) x 1 = n.〔n 〕由〔I 〕知2am =2n ,由等比数列前n 项和公式得2 3 n2〔1 - 2 〕n+1$=2+2 +2 +••• +2 = - --------- - =2 -2 1 -28、〔2021年全国卷〕设等差数列{ a n }的前n 项和为S n ,公比是正数的等比数列{ b n }的前n 项和为T n ,a 1 =1,b 产3,a 3 b 3=17,T 3-S 3 = 12,求{a n },{b n }的通项公式.解:设{a n }的公差为d , {b n }的公比为q由 a 3 +b 3 =17得 1 +2d +3q 2 =17 ① 由T 3 -S 3 =12得 q 2 +q —d =4 ②由①②及q >0解得 q=2,d =2故所求的通项公式为a n =2n-1,b n =3 2nJ9、〔2021福建卷〕等差数列{a n }中,a 1=1, a 3=-3.〔I 〕求数列{a n }的通项公式;〔II 〕假设数列{a n }的前k 项和S<=-35 ,求k 的值.10、〔2021重庆卷〕设{%}是公比为正数的等比数列, 的=2,京=a t + 4.〔I 〕求{4}的通项公式.18d 1 2d专业整理word 格式文档〔n 〕设也,是首项为1,公差为2的等差数列,求数列 色n+bj 的前口项和S&.11、〔2021浙江卷〕1 1 1 ... ........ ...公差不为0的等差数列{a n }的首项为a 〔a w R 〕,且一,一,——成等比数列.a 〔 a 2 a 4〔i 〕求数列{a n }的通项公式;一 * 1 1 1 11,,,, 〔n 〕对 n w N ,试比拟 —— + — + — + ...+ — 与一的大小.a ? a ? a ? a 2a 1 1 o1 1斛:设等差数列{a n }的公差为d ,由题意可知〔一〕=——a 2a 1 a 422即〔a 1 + d 〕 = a [〔a 1 + 3d 〕,从而 a 1d = d 由于 d # 0,所以 d = a 1 = a. 故通项公式a n = na.1 1 .. 1(n)解:记 T n =一 + — +111+—,由于a2n = 2 a a2 a 22 a 2n1一,从而,当a >0时,T n < 一 ;当a <0时,T na 1. 1 1 1 . . 1 所以 T n =-(- — - HI —) a 2 22 2n1 1 n 1 a (1F))1n a 寸 21 一一 2> 一a 1专业整理word格式文档12、(2021湖北卷)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b、b、b.(I)求数列{bn}的通项公式;5 .(II) 数列也}的前n项和为Sn,求证:数列WSn+—%是等比数列.4专业整理word格式文档13、〔2021年山东卷〕等差数列On }满足:a3 =7 , a5+a7=26,%}的前n项和为S n(I)求an及Sn ;(n )令b n= -^― ( n w N *),求数列b }的前n项和为T n. a n -1解:(I)设等差数列O n)的首项为a i,公差为d ,由于a3=7, a5+a7 =26,所以a i +2d =7 , 2ai+l0d=26, 解得a i=3, d=2,由于a n =a1 +(n—i)d ,G = n(ai;a n) 所以a n =2n 1 , S n = n(n 2)专业整理word 格式文档2(n)由于 a n =2n+1,所以 a n —1 = 4n(n+1)- 1 因此b n 二 一1一4n(n 1). 11 1 1 1 1 、 故 T n = b 1 ' b 2'' 1' b n = _ (1 — ― ■ — — — ' ------------- ■——)4 2 2 3 n n 1= 1(1—^^)=一n 一所以数列{6}的前n 项和T n =-n —4 n 1 4(n 1)4(n 1)14、(2021陕西卷){a n }是公差不为零的等差数列, a 1=1,且a 1, a 3, a 9成等比数列.(I)求数列{a }的通项; (n)求数列{2an }的前n 项和S.解 (I)由题设知公差d w 0,解得 d= 1, d= 0 (舍去), 故{ 曰}的通项 a n= 1+ (n — 1) x 1 = n.(n )由(I)知2am =2n,由等比数列前n 项和公式得 S=2+22+23+- +2n =2(1-2 )=2n+1-2.、1 -215、(2021重庆卷){a n }是首项为19,公差为-2的等差数列,S n 为{an }的前n 项和.(I)求通项a n 及S n ;(n)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公 式及其前n 项 和T n .解:U)由于W 是首项为陶二优公差d *2的等差数列, 所以4 = 19-25-1)二-2仆21, 柒=厌+"丁厂(-2)=一 20n.(Q)由颂意■卡,所以)口严■3; 2L K + "+3i,+L)=-Fl* + 20n + 」•216、(2021北京卷)1a n |为等差数列,且a 3=-6, a 6=0.专业整理由a 1=1, a 1, a 3, a 9成等比数列得1 2d 118d 1 2d(D 求| a n |的通项公式;(n)假设等差数列|b n |满足b=—8,电=a 〔+a 2+a 3,求|b n |的前n 项和公式 解:(I)设等差数列{a n }的公差d .A 2d =-6由于a 3 = —6,a 6=0 所以,a 5d = 0所以 a n = -10 (n -1) 2 =2n -12(n)设等比数列{b n }的公比为q 由于b 2 =a 〔+a 2+a 3 = —24,b= —8所以一8q = -24 即 q =3所以{b n }的前n 项和公式为S n=*…)=4(1—3n )1 -q17、(2021浙江卷)设a 1, d 为实数,首项为a 1,公差为d 的等差数{a n }的前n 项和为3,满足$S+15=0. (I)假设 S 5=S .求 &及 A I ;(n )求d 的取值范围.-15解:(I )由题息知S 0=——-3, S 5一 ISa +10d =5,… 一所以< a '解得a 1=7所以S =-3, a 1=7a 1-5d --8.(n )由于 SS 15=0,所以(5a 1+10d )(6 a 1+15d )+15=0,即 2a 12+9da 1+10d 2+1=0. 故(4 a 1+9d ) 2=d 2-8.所以d 2>8.[故d 的取值范围为d< -2 J218、(2021四川卷)等差数列{a n }的前3项和为6,前8项和为-4.(I )求数歹武a n }的通项公式;n 1 *(n)设 b n =(4 -a n )q (q k 0,n 」N ),求数列{b n }的前 n 项和 S n专业整理解得 a 1 - -10, d = 2 a =S - S =-8解;〔I 〕设{%}的公差为亦由己知得解得.i = 3. d = -A .故q=3— - 1) = 4—m 由〔I 〕得解答可得, b n =nL q 一,S n =1匕° 2 上1 3上2 …n_q n -假设q#1,将上式两边同乘以q 有qSHE+z^ + i+S-LL+nd两式相减得到q -1 S n = n|_q n _1_q 1 ―q 2 -------------- q n 」证实:专业整理S n 二1 所以, n 二 nq n -1 nnq - n 1 q 1 2q-1q n -1 nq n 1 - n 1 q n 1q-1 q-1一 n n 1S n =1 2 3 |M n = ------------------2n(n +1),(qfSn =J nq n+-(n+1)q n +12q -1(12 分) 19、〔2021上海卷〕数列{a n }的前n 项和为S n , * 且 S n = n — 5a n -85 , n = N 解:由 *S n = n -5a n -85, n N (1)可得: 4 =& =1 一5a1 -85 ,即 a 1 = T4.同时 S n1 =(n 1)-5a n1 -85 (2)从而由⑵一(1)可得:a n+=1-5(a n+-a n )rr 5 * … ............................. ...... ...5 即:a n 书—1 = — (a n —1),n w N ,从而{a n -1}为等比数列,首项 a 1 —1 = —15 ,公比为一,6 6 .. ............... 5 5 … 通项公式为 a n -1 =-15*(-)nJ1,从而 a0= —15*(—)nJL +1 n 6n 620、(2021辽宁卷)等比数列{ a n }的前n 项和为8n ,S 1 2, S 3, S 3成等差数列 (1)求{ a n }的公比q ;〔2〕求 a 1- %=3,求 S n2、解:〔I 〕依题意有 a 1+〔a 1+a 1q 〕=2〔a 1+&q+a1q 〕 由于a 1 #o,故_ 2 _2q q = 0一 一/ 1、2 八 a 1 -a 1( — 一)— 3(n)由可得2 故a=41 c4〔1 一〔—〕〕8% , 1# =—〔1 -〔 一〕〕专业整理b2 _〔——〕3 又 q ¥0,q 从而 从而。
历年高考新课标I 卷试题分类汇编(文)一数列1、(2010年第17题)设等差数列{q }满足4 =5,%。
=一9.(II )求{4}的前,项和S”及使得S 〃最大的序号〃的值。
「+2,/=5 9解:(1)由 am=aI+(.n-1) d 及 ai=5, aw=-9 得 i 4]+9d=_9 解得 t d=—2数列{am }的通项公式为a n =ll-2n o ... 6分(2)由(1)知 Sm=nai+———-d=10n-n 2因为 Sm=-(n-5)2+25. 所以n=5时,Sm 取得最大值。
……12分2、(20H 年第17题)已知等比数列{〃}中,6 =1,公比q = L.1 — </(I ) S 〃为{%}的前〃项和,证明:s n =——2(II ) h n = log 3 67, + log 3 «2 + .. - + log 3 ,求数列2 的通项公式。
(I )证明:因为q=L, q = L 所以数列{祗}的通项式为3 331(1-—)故 s.=T 1—3z IT x. 7J f , 八 八 c 、 n(n + l) .. , 〃(〃 + l) (II ) 解:b n = log 3+ log 3 a 2 + ... + log 3a n =一(1 + 2 + 3+—・ + 〃)=- --- 故a=-- -------- 223、(2012年第12题)数列{6}满足q*+(—l )〃氏=2〃 —1,则{«,}的前60项和为(D ) A. 3690 B. 3660 C. 1845 D. 18304、(2012年第14题)等比数列伯力的前n 项和为数,若S3+3Sz=0,则公比q= -2 ・5、(2013年第6题)设首项为1,公比为错误!未找到引用源。
的等比数列{〃〃}的前〃项和为S 〃,则(D )(A) S n = 2a n — 1 (B) S n = 3(0-2 (C) S 〃=4-3。
word 格式文档历年高考《数列》真题汇编1、 (2011 年新课标卷文)已知等比数列 { a n} 中,a111,公比 q.33( I )S n为{ a n}的前 n 项和,证明:S n 1a n 2( II)设 b n log 3 a1log 3 a2log 3 a n,求数列 { b n} 的通项公式.1 ( 1)n 111(1 1 )11解:(Ⅰ)因为 a n. S n33n3n,333n1123所以 S n1a n,2(Ⅱ) b n log 3 a1log 3 a2log 3 a n(1n(n 1) 2 ....... n)n(n1) .2所以 {b n } 的通项公式为b n22、 (2011全国新课标卷理)等比数列a n的各项均为正数,且2a13a21,a329a2 a6 .(1)求数列a n的通项公式.(2)设 b n log 3 a1 log 3 a2......log 3 a n , 求数列1的前项和 .b n解:(Ⅰ)设数列 {a n} 的公比为 q,由a329a2a6得 a339a42所以 q21。
有条件可知 a>0,19故 q。
311n。
由 2a13a21得2a13a2q 1 ,所以a1。
故数列 {a n} 的通项式为 a n=33(Ⅱ) b n log1 a1log1 a1...log1 a1(1 2 ...n)n(n 1)2故122(11) b n n( n1)n n1word 格式文档1 1 ... 1 2((1 1 ) ( 1 1) ...(11))2n b 1 b 2 b n2 2 3n n 1n 1所以数列 { 1} 的前 n 项和为2nb nn 13、( 2010 新课标卷理)设数列a n 满足 a 1 2, a n 1 a n3 22n 1(1)求数列 a n 的通项公式;(2)令 b nna n ,求数列的前 n 项和 S n解(Ⅰ)由已知,当n ≥ 1 时,an 1[( a n 1 a n ) (a n a n 1 ) (a 2 a 1)] a 13(2 2n 122 n 32) 222( n1) 1。
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。
1.(10理)已知数列满足,且对任意都有(Ⅰ)求;(Ⅱ)设证明:是等差数列; (Ⅲ)设,求数列的前项和.2.(10文)已知等差数列{}n a 的前3项和为6,前8项和为-4. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1(4)((0,)n n n b a q q n N -*=-≠∈,求数列{}n b 的前n 项和n S 。
3.(09理)设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1nn na b n N a +=∈-。
(I )求数列{}n b 的通项公式;(II )记*221()n n n c b b n N -=-∈,设数列{}n c 的前n 项和为n T ,求证:对任意正整数n 都有32n T <; (III )设数列{}n b 的前n 项和为n R 。
已知正实数λ满足:对任意正整数,n n R n λ≤恒成立,求λ的最小值。
4.(09文)设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1nn na b n N a +=∈-。
(I )求数列{}n a 与数列{}n b 的通项公式;(II )设数列{}n b 的前n 项和为n R ,是否存在正整数k ,使得4n R k ≥成立?若存在,找出一个正整数k ;若不存在,请说明理由;(III )记*221()n n n c b b n N -=-∈,设数列{}n c 的前n 项和为n T ,求证:对任意正整数n 都有32n T <; {}n a 1202a ,a ==m,n N *∈22121122m n m n a a (m n )+-+-+=+-35a ,a 2121n n n b a a (n N*)+-=- ∈{}n b 121210n n n n c (a a q (q ,n N*)- +-=- ) ≠∈{}n c n n S5. (08理)设数列{}n a 的前n 项和为n S ,已知()21nn n ba b S -=-(Ⅰ)证明:当2b =时,{}12n n a n --⋅是等比数列;(Ⅱ)求{}n a 的通项公式6.设数列{}n a 的前n 项和为22n n n S a =- , (Ⅰ)求14,a a(Ⅱ)证明:{}12nn a a +-是等比数列;(Ⅲ)求{}n a 的通项公式6. (07理)已知函数2()4f x x =-,设曲线()y f x =在点(,())n n x f x 处的切线与x 轴的交点为1(,0)n x +(*)n N ∈,其中1x 为正实数. (Ⅰ)用n x 表示1n x +;(Ⅱ) 证明:对一切正整数1,n n n x x +≤的充要条件是12x ≥ (Ⅲ)若14x =,记2lg2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式。
数列--历届高考真题一、解答题1.(2019·浙江高考真题)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 2.(2019·北京高考真题(文))设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.3.(2019·天津高考真题(文)) 设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a = ,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c bn ⎧⎪=⎨⎪⎩为奇数为偶数求()*112222n na c a c a c n N +++∈L .4.(2019·全国高考真题(理))已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.5.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.6.(2010·山东高考真题(文))(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前项和为n S .(1)求n a 及n S ; (2)令211n a -,求数列{}n b 的前n 项和n T .7.(2017·全国高考真题(文))已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,且a 1=1,b 1=1,a 2+b 2=4. (1)若a 3+b 3=7,求{b n }的通项公式; (2)若T 3=13,求S 5.8.(2018·天津高考真题(理))(2018年天津卷理)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N ∗),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(I )求{a n }和{b n }的通项公式;(II )设数列{S n }的前n 项和为T n (n ∈N ∗), (i )求T n ; (ii )证明∑(T k +b k+2)b k (k+1)(k+2)nk=1=2n+2n+2−2(n ∈N ∗).9.(2018·天津高考真题(文))设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.10.(2018·全国高考真题(文))已知数列{a n }满足a 1=1,na n+1=2(n +1)a n ,设b n =a n n.(1)求b 1 , b 2 , b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.11.(2018·全国高考真题(理))记S n 为等差数列{a n }的前n 项和,已知a 1=−7,S 3=−15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.12.(2017·上海高考真题)根据预测,某地第n (n ∈N ∗)个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),其中a n ={5n 4+15,1≤n ≤3−10n +470,n ≥4,b n =n +5,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量S n =−4(n −46)2+8800(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?13.(2017·天津高考真题(理))已知{a n }为等差数列,前n 项和为S n (n ∈N ∗),{b n }是首项为2的等比数列,且公比大于0, b 2+b 3=12,b 3=a 4−2a 1,S 11=11b 4. (Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)求数列{a 2n b n }的前n 项和(n ∈N ∗).14.(2015·重庆高考真题(文))已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的通项公式b n 及{b n }的前n 项和T n . 15.(2017·山东高考真题(文))已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .16.(2017·全国高考真题(文))设数列{a n }满足a 1+3a 2+⋯+(2n −1)a n =2n .(1)求{a n }的通项公式; (2)求数列{a n 2n+1} 的前n 项和.17.(2017·全国高考真题(文))记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
18.(2015·湖北高考真题(文))设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =, 22b =, q d =, 10100S =.(Ⅰ)求数列{}n a , {}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 19.(2011·辽宁高考真题(理))已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和. 20.(2015·湖南高考真题(文))(本小题满分13分)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n+1=3S n −S n+1+3,(n ∈N ∗), (Ⅰ)证明:a n+2=3a n ; (Ⅱ)求S n 。
21.(2015·四川高考真题(理))设数列{a n }的前n 项和S n =2a n −a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列{1a n}前n 项和T n ,求使|T n −1|<11000成立的n 的最小值。
22.(2015·四川高考真题(文))(本小题满分12分)设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式;(Ⅱ)设数列{1a n}的前n 项和为T n ,求T n .23.(2015·湖北高考真题(理))设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (1)求数列{}n a ,{}n b 的通项公式; (2)当1>d 时,记nn na cb =,求数列{}n c 的前n 项和n T . 24.(2015·安徽高考真题(文))已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .25.(2015·广东高考真题(文))(本小题满分14分)设数列{a n }的前n 项和为S n ,n ∈Ν∗.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n+1+S n−1. (1)求a 4的值;(2)证明:{a n+1−12a n }为等比数列; (3)求数列{a n }的通项公式.26.(2015·山东高考真题(理))【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233nn S =+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .27.(2015·重庆高考真题(理))(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++ 28.(2015·上海高考真题(文))(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分. 已知数列与满足,.(1)若,且,求数列的通项公式;(2)设的第项是最大项,即,求证:数列的第项是最大项;(3)设130a λ=<,,求的取值范围,使得对任意m ,,0n a ≠,且1,66m n a a ⎛⎫∈ ⎪⎝⎭. 29.(2015·全国高考真题(理))S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(Ⅰ)求{a n }的通项公式; (Ⅱ)设b n =1an a n+1,求数列{b n }的前n 项和.30.(2015·浙江高考真题(文))已知数列{a n }和{b n }满足,a 1=2,b 1=1,a n+1=2a n (n ∈N ∗),b 1+12b 2+13b 3+⋯+1n b n =b n+1−1,n ∈N ∗.(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .31.(2015·福建高考真题(文))等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.32.(2014·四川高考真题(理))设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n ∈N ∗).(1)若a 1=−2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,学科网函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2−1ln2,求数列{an b n}的前n 项和T n .33.(2014·全国高考真题(理))已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n −1,其中λ为常数. (1)证明:a n+2−a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.34.(2014·广东高考真题(理))设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--, *n N ∈,且315S =.(1)求1a 、2a 、3a 的值; (2)求数列{}n a 的通项公式.35.(2014·山东高考真题(理))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T . 36.(2014·全国高考真题(文))已知{a n }是递增的等差数列,a 2,a 4是方程的根。