高三数学课件:等差等比数列1
- 格式:ppt
- 大小:166.00 KB
- 文档页数:15
2019届⾼三数学复习--数列--数列、等差数列与等⽐数列2019届⾼三数学复习--数列--数列、等差数列与等⽐数列第10讲数列、等差数列与等⽐数列1.(1)[2014?全国卷Ⅱ]数列{an}满⾜an+1=,a8=2,则a1= .(2)[2018?全国卷Ⅰ]记Sn为数列{an}的前n项和.若Sn=2an+1,则S6= .[试做]命题⾓度数列的递推问题(1)解决数列的递推问题:关键⼀,利⽤an=得出an与an+1(或an-1)的递推式;关键⼆,观察递推式的形式,采⽤不同的⽅法求an.(2)若递推式形如an+1=an+f(n),an+1=f(n)?an,则可分别通过累加、累乘法求得通项公式,或⽤迭代法求得通项公式;若递推式形如an+1=pan+q(其中p,q均为常数,且p≠1),则通常化为an+1-t=p(an-t)的形式,其中t=,再利⽤换元法转化为等⽐数列求解.2.(1)[2017?全国卷Ⅲ]等差数列{an}的⾸项为1,公差不为0.若a2,a3,a6成等⽐数列,则{an}前6项的和为( )A.-24B.-3c.3D.8(2)[2016?全国卷Ⅰ]设等⽐数列{an}满⾜a1+a3=10,a2+a4=5,则a1a2…an的最⼤值为 .[试做]命题⾓度等差、等⽐数列的基本计算关键⼀:基本量思想(等差数列:⾸项a1和公差d.等⽐数列:⾸项a1和公⽐q).关键⼆:等差数列的性质,若+n=p+q(,n,p,q∈N*),则an+a=ap+aq;等⽐数列的性质,若+n=p+q(,n,p,q∈N*),则ana=apaq.3.(1)[2017?全国卷Ⅱ]等差数列{an}的前n项和为Sn,a3=3,S4=10,则 .(2)[2015?全国卷Ⅱ]设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn= .[试做]命题⾓度数列求和关键⼀:利⽤等差数列、等⽐数列的前n项和公式求解.关键⼆:利⽤数列求和⽅法(公式法、倒序相加法、分组求和法、并项求和法、错位相减法、裂项相消法)求解.⼩题1数列的递推关系1(1)已知数列{an}的前n项和为Sn,若3Sn=2an-3n,则a2018=( )A.22018-1B.32018-6c.-D.-(2)已知数列{an}满⾜a1=15,=2(n∈N*),则的最⼩值为 .[听课笔记]【考场点拨】由递推关系式求数列的通项公式,常⽤的⽅法有:①求出数列的前⼏项,再归纳猜想出数列的⼀个通项公式(注意验证);②将已知递推关系式整理、变形得到等差或等⽐数列的通项公式,或⽤累加法(适⽤于an+1=an+f(n)型)、累乘法(适⽤于an+1=an?f(n)型)、待定系数法(适⽤于an+1=pan+q 型)求通项公式.【⾃我检测】1.数列{an}满⾜a1=1,且对任意的,n∈N*,都有a+n=a+an+n,则+++…+等于( )A.B.c.D.2.定义各项均不为0的数列{an}:a1=1,a2=1,当n≥3时,an=an-1+.定义各项均不为0的数列{bn}:b1=1,b2=3,当n≥3时,bn=bn-1+.则=( )A.2017B.2018c.2019D.10093.在数列{an}中,a1=0,an+1=,则数列{an}的前2018项和S2018= .4.已知数列{an}的前n项和为Sn,且an+Sn=3n-1,则数列{an}的通项公式an= .⼩题2等差、等⽐数列的基本计算2(1)已知数列{an}的前n项和Sn=2n+1-2,bn=log2(?),数列{bn}的前n项和为Tn,则满⾜Tn>1024的n的最⼩值为( )A.9B.10c.12D.15(2)已知等差数列{an}中,a3=7,a9=19,Sn为数列{an}的前n项和,则的最⼩值为 .[听课笔记]【考场点拨】等差、等⽐数列问题的求解策略:(1)抓住基本量,⾸项a1、公差d或公⽐q;(2)熟悉⼀些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差数列,通项公式为an=p?qn-1(p,q≠0)的形式的数列为等⽐数列;(3)由于等⽐数列的通项公式、前n项和公式中变量n在指数位置,所以常采⽤两式相除(即⽐值的⽅式)进⾏相关计算.【⾃我检测】1.已知数列{an}是公⽐为q的等⽐数列,若a1,a3,a2成等差数列,则公⽐q的值为( )A.-B.-2c.1或-D.-1或2.等⽐数列{an}的⾸项为3,公⽐q≠1,若a4,a3,a5成等差数列,则数列{an}的前5项和S5=( )A.-31B.33c.45D.933.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取得最⼩值时,n的值为 .4.已知等差数列{an}的前n项和为Sn,a1=9,a5=1,则使得Sn>0成⽴的n的最⼤值为 .⼩题3等差、等⽐数列的性质3(1)已知等差数列{an}的前n项和为Sn,若a4,a10是⽅程x2-8x+1=0的两个根,则S13=( )A.58B.54c.56D.52(2)已知数列{an}的各项都为正数,对任意的,n∈N*,a?an=a+n恒成⽴,且a3?a5+a4=72,则log2a1+log2a2+…+log2a7= .[听课笔记]【考场点拨】等差、等⽐数列性质使⽤的注意点:(1)通项性质:若+n=p+q=2k(,n,p,q,k∈N*),则对于等差数列有a+an=ap+aq=2ak,对于等⽐数列有aan=apaq=.(2)前n项和的性质:对于等差数列有S,S2-S,S3-S2,…成等差数列;对于等⽐数列,若有S,S2-S,S3-S2,…成等⽐数列,则仅在q≠-1,或q=-1且为奇数时满⾜.【⾃我检测】1.已知数列{an}为等差数列,数列{bn}为等⽐数列,且满⾜a2017+a2018=π,=4,则tan=( )A.-1B.c.1D.2.已知等⽐数列{an}中,a5=2,a6a8=8,则=( )A.2B.4c.6D.83.已知正项等⽐数列{an}的前n项和为Sn,且S10=10,S30=130,则S40=( )A.-510B.400c.400或-510D.30或404.已知等差数列{an}的公差不为0,a1=1,且a2,a4,a8成等⽐数列,{an}的前n项和为Sn,则Sn=( )A.B.c.D.⼩题4等差、等⽐数列的综合问题4(1)已知等差数列{an}的前n项和为Tn,a3=4,T6=27,数列{bn}满⾜bn+1=b1+b2+b3+…+bn,b1=b2=1,设cn=an+bn,则数列{cn}的前11项和S11=( )A.1062B.2124c.1101D.1100(2)已知数列{an}的通项公式为an=n+t(t∈R),数列{bn}为公⽐⼩于1的等⽐数列,且满⾜b1?b4=8,b2+b3=6,设cn=+,在数列{cn}中,若c4≤cn(n∈N*),则实数t的取值范围为 .[听课笔记]【考场点拨】解决数列的综合问题的易失分点:(1)公式an=Sn-Sn-1适⽤于所有数列,但易忽略n≥2这个前提;(2)对含有字母的等⽐数列求和时要注意q=1或q≠1的情况,公式Sn=只适⽤于q≠1的情况.【⾃我检测】1.已知数列{an}的各项均为整数,a8=-2,a13=4,前12项依次成等差数列,从第11项起依次成等⽐数列,则a15=( )A.8B.16c.64D.1282.已知正项等⽐数列{an}的前n项和为Sn,且a1a6=2a3,a4与2a6的等差中项为,则S5=( )A.B.30c.31D.3.当n为正整数时,定义函数N(n)表⽰n的最⼤奇因数,如N(3)=3,N(10)=5.若S(n)=N(1)+N(2)+N(3)+…+N(2n),则S(5)=( )A.342B.345c.341D.3464.已知等⽐数列{an}满⾜a2a5=2a3,且a4,,2a7成等差数列,则a1?a2?…?an的最⼤值为 .模块三数列第10讲数列、等差数列与等⽐数列典型真题研析1.(1)(2)-63[解析](1)由题易知a8==2,得a7=;a7==,得a6=-1;a6==-1,得a5=2,于是可知数列{an}具有周期性,且周期为3,所以a1=a7=.(2)⽅法⼀:令n=1,得S1=a1=2a1+1,所以a1=-1,⼜由Sn=2an+1=2(Sn-Sn-1)+1(n≥2),得Sn=2Sn-1-1(n≥2),即Sn-1=2(Sn-1-1)(n≥2),所以数列{Sn-1}是以S1-1=-2为⾸项,2为公⽐的等⽐数列,所以S6-1=(-2)×25=-64,则S6=-63.⽅法⼆:令n=1,得S1=a1=2a1+1,所以a1=-1.由Sn=2an+1①,得Sn-1=2an-1+1(n≥2)②,①-②得an=2an-2an-1(n≥2),即an=2an-1(n≥2),所以{an}是以a1=-1为⾸项,2为公⽐的等⽐数列,于是S6==-63.2.(1)A(2)64[解析](1){an}为等差数列,且a2,a3,a6成等⽐数列,则=a2?a6,即(a1+2d)2=(a1+d)(a1+5d).将a1=1代⼊上式并化简,得d2+2d=0,∵d≠0,∴d=-2,∴S6=6a1+d=1×6+×(-2)=-24.(2)设该等⽐数列的公⽐为q,则q==,可得a1+a1=10,得a1=8,所以an=8×n-1=n-4.所以a1a2…an=-3-2-1+0+…+(n-4)=,易知当n=3或n=4时,(n2-7n)取得最⼩值-6,故a1a2…an的最⼤值为-6=64.3.(1) (2)- [解析](1)设公差为d,则a1+2d=3且4a1+6d=10,解得a1=1,d=1,所以Sk=,=2,所以(2)因为a1=-1,an+1=SnSn+1,所以S1=-1,Sn+1-Sn=SnSn+1,所以-=-1,所以数列是⾸项为-1,公差为-1的等差数列,所以=-n,所以Sn=-.考点考法探究⼩题1例1(1)A(2)[解析](1)由题意可得3Sn=2an-3n,3Sn+1=2an+1-3(n+1),两式作差可得3an+1=2an+1-2an-3,即an+1=-2an-3,即an+1+1=-2(an+1),由3S1=2a1-3=3a1,可得a1=-3,∴a1+1=-2,∴数列{an+1}是⾸项为-2,公⽐为-2的等⽐数列,据此有a2018+1=(-2)×(-2)2017=22018,∴a2018=22018-1.(2)由=2,得an+1-an=2n,∵a1=15,∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=15+2+4+…+2(n-1)=15+2×=n2-n+15, ∵a1=15满⾜上式,∴an=n2-n+15,∴=n+-1,易知当n依次取1,2,3时,n+-1的值递减;当n取⼤于或等于4的⾃然数时,n+-1的值递增.当n=3时,=3+5-1=7;当n=4时,=4+-1=.故的最⼩值为.【⾃我检测】1.c [解析]∵an+=a+an+n对任意的,n∈N*都成⽴,∴an+1=an+a1+n=an+1+n,即an+1-an=1+n,∴a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),把上⾯(n-1)个式⼦相加可得,an-a1=2+3+4+…+n,∴an=1+2+3+…+n=(n≥2),当n=1时,a1=1,满⾜上式,∴an=,从⽽有==2,∴+++…+=2×=.2.D [解析]当n≥3时,由an=an-1+两边同除以an-1,可得=1+,即-=1,则数列是⾸项为1,公差为1的等差数列,所以=n-1(n≥2),所以an=a1×××…×=1×1×2×…×(n-1)(n≥2).同理可得-=1(n≥3),则数列是⾸项为3,公差为1的等差数列,所以=n+1(n≥2),可得bn=b1×××…×=1×3×4×…×(n+1)(n≥2), 所以==1009,故选D.3. [解析]∵a1=0,an+1=,∴a2==,a3===-,a4==0,∴数列{an}具有周期性,其周期为3,且a1+a2+a3=0,则S2018=S3×672+2=a1+a2=.4.3-[解析]由an+Sn=3n-1,得当n≥2时,an-1+Sn-1=3n-4,两式相减得an=an-1+,∴an-3=(an-1-3).∵当n=1时,a1+S1=3-1=2,∴a1=1,∵a1-3=-2,∴数列{an-3}是以-2为⾸项,为公⽐的等⽐数列, ∴an-3=-2?,∴an=3-.⼩题2例2 (1)A (2)3 [解析](1)因为数列{an}的前n项和Sn=2n+1-2,所以当n≥2时,an=Sn-Sn-1=2n+1-2n=2n,当n=1时,a1=21+1-2=2,满⾜上式,所以an=2n,所以bn=log2(?)=log2+log2=2n+2n,所以数列{bn}的前n项和Tn=+=n(n+1)+2n+1-2,易知当n∈N*时,Tn递增.当n=9时,T9=9×10+210-2=1112>1024;当n=8时,T8=8×9+29-2=582 所以满⾜Tn>1024的n 的最⼩值为9.(2)∵a3=7,a9=19,∴公差d===2,∴an=a3+(n-3)d=7+2(n-3)=2n+1,∴Sn==n(n+2),∴==≥×2=3,当且仅当n=2时取等号.【⾃我检测】1.c [解析]由题意知2a3=a1+a2,∴2a1q2=a1q+a1,即2q2=q+1,∴q=1或q=-.2.B [解析]∵等⽐数列{an}的⾸项为3,∴an=3qn-1,⼜a4,a3,a5成等差数列,∴a4+a5=2a3,∴q2+q=2,∴(q+2)(q-1)=0,∴q=-2,∴an=3?(-2)n-1,∴S5==33,故选B.3.6 [解析]设数列{an}的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以当n=6时,Sn取得最⼩值.4.9 [解析]因为a1=9,a5=1,所以公差d==-2,所以Sn=9n+n(n-1)(-2)=10n-n2,令Sn>0,得00成⽴的n的最⼤值为9.⼩题3例3 (1)D (2)21 [解析](1)由根与系数的关系可得a4+a10=8,结合等差数列的性质可得a1+a13=a4+a10=8,则S13===52.(2)令=1,∵a?an=a+n,∴a1?an=a1+n,∴数列{an}为等⽐数列.由a3?a5+a4=72,得+a4=72,∵a4>0,∴a4=8,∴log2a1+log2a2+…+log2a7=log2(a1?a2?…?a7)=log2=log287=21.【⾃我检测】1.c[解析]由等差数列的性质可知,a2+a4033=a2017+a2018=π,由等⽐数列的性质可知,b1b39==4,所以tan=tan=1,故选c.2.A [解析]设数列{an}的公⽐为q.∵数列{an}是等⽐数列,∴a6a8==8,∴a7=2(与a5同号),∴q2==,∴=q4=()2=2.故选A.3.B [解析]∵正项等⽐数列{an}的前n项和为Sn,∴S10,S20-S10,S30-S20,S40-S30也成等⽐数列,∴10×(130-S20)=(S20-10)2,解得S20=40或S20=-30(舍),故S40-S30=270,∴S40=400,故选B.4.A [解析]设等差数列{an}的公差为d(d≠0).∵a2,a4,a8成等⽐数列,∴=a2?a8,即(a1+3d)2=(a1+d)?(a1+7d),∴(1+3d)2=(1+d)?(1+7d),∴d=1,∴Sn=n+=.故选A.⼩题4例 4 (1)c (2)[-4,-2] [解析](1)设数列{an}的公差为d,则解得∴数列{an}的通项公式为an=n+1.当n≥2时,bn+1-bn=bn,∴bn+1=2bn,即数列{bn}从第⼆项起为等⽐数列,∴bn=2n-2(n≥2), ∴数列{bn}的通项公式为bn=分组求和可得数列{cn}的前11项和S11=(2+3+4+…+12)+(1+1+2+22+…+29)=77+210=1101.(2)在等⽐数列{bn}中,由b1?b4=8得b2?b3=8,⼜b2+b3=6,且公⽐q⼩于1,∴b2=4,b3=2,∴q==,因此bn=b2qn-2=4×=.由cn=+,得cn=∴cn是取an,bn中的较⼤者.由题易知c4是数列{cn}中的最⼩项,⼜bn=递减,an=n+t递增,∴当c4=a4时,c4≤cn,即a4≤cn,a4是数列{cn}中的最⼩项,则必须满⾜b4 【⾃我检测】1.B [解析]设由数列{an}的前12项构成的等差数列的公差为d,从第11项起构成的等⽐数列的公⽐为q,由a13===4,解得d=1或d=,⼜数列{an}的各项均为整数,故d=1,所以q==2,所以an=故a15=24=16,故选B.2.c [解析]设正项等⽐数列{an}的公⽐为q,q>0.∵a1a6=2a3,a4与2a6的等差中项为,∴q5=2a1q2,a1(q3+2q5)=3,得a1=16,q=,则S5==31.3.A [解析]由题设知,N(2n)=N(n),N(2n-1)=2n-1,∴S(n)=[1+3+5+…+(2n-1)]+[N(2)+N(4)+N(6)+…+N(2n)]=4n-1+[N(1)+N(2)+N(3)+…+N(2n-1)]=4n-1+S(n-1)(n≥2),⼜S(1)=N(1)+N(2)=2, ∴S(n)=4n-1+4n-2+…+41+2=,∴S(5)==342.故选A.4.1024[解析]设数列{an}的公⽐为q.由已知得a3a4=a2a5=2a3?a4=2,a4+2a7=2×?a7=,∴==q3, ∴q==2-1,a1==24,∴an=24?2-(n-1)=25-n,∴a1?a2?…?an=24×23×…×25-n=24+3+…+(5-n)===,∴当n=4或5时,a1?a2?…?an取得最⼤值1024.[备选理由]例1为由递推关系求数列的通项公式问题,难度较⼤;例2考查等⽐数列前n项和中参数的计算,不同于原例2只考查等差、等⽐数列的基本量的计算;例3考查等⽐数列的计算,采⽤整体求解⽐较⽅便;例4为等差数列性质的应⽤问题;例5是⼀道等差数列与等⽐数列的综合题.例 1 [配例1使⽤]已知数列{an}满⾜a1=1,a2=,若anan-1+2anan+1=3an-1an+1(n≥2,n∈N*),则数列{an}的通项公式为an= .[答案][解析]∵anan-1+2anan+1=3an-1an+1(n≥2,n∈N*), ∴+=,即-=2,⼜∵-=2,∴数列是以2为⾸项,2为公⽐的等⽐数列,∴-=2n,∴当n≥2时,=++…++=2n-1+2n-2+…+2+1==2n-1.当n=1时,=1,满⾜上式,∴=2n-1,∴an=.例 2 [配例2使⽤]已知等⽐数列{an}的前n项和Sn=32n-1+r,则r的值为( )A.B.-c.D.-[解析]B 当n=1时,a1=S1=3+r;当n≥2时,an=Sn-Sn-1=32n-1-32n-3=32n-3(32-1)=8?32n-3=8?32n-2?3-1=?9n-1.∵数列{an}为等⽐数列,∴3+r=,∴r=-,故选B.例3[配例2使⽤]在等⽐数列{an}中,已知a1+a2+a3=1,a2+a3+a4=2,则a8+a9+a10= .[答案]128[解析]设数列{an}的公⽐为q.∵a1+a2+a3=1,a2+a3+a4=(a1+a2+a3)q=2,∴q=2,∴a8+a9+a10=(a1+a2+a3)q7=27=128.例4 [配例3使⽤]在等差数列{an}中,其前n项和为Sn,若2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=( )A.17B.26c.30D.56[解析]c 设等差数列{an}的公差为d,由等差数列的性质可得a1+a7=2a4,a9+a11=2a10,则有6a4+6a10=24,即a1+6d=2,所以S13=13a1+d=13(a1+6d)=26,2a7=2(a1+6d)=4,所以S13+2a7=30.例5 [配例4使⽤]已知各项都是正数的等⽐数列{an}的公⽐q≠1,且a2,a3,a1成等差数列,则的值为( )A.B.c.D.或[解析]B 由题得a3×2=a2+a1,∴a1q2=a1q+a1,∴q=,∴==q2=.。
[A 组 小题提速练]1.(等差数列求和及性质)在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于( ) A .3 B .6 C .9D .36解析:∵a 1+a 2+…+a 10=30, 得a 5+a 6=305=6,又a n >0, ∴a 5·a 6≤⎝⎛⎭⎪⎫a 5+a 622=⎝ ⎛⎭⎪⎫622=9. 答案:C2.(等差数列求和及不等式)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0的最大的自然数n 是( ) A .9 B .10 C .11D .12解析:∵{a n }的公差d =3-74-2=-2,∴{a n }的通项为a n =7-2(n -2)=-2n +11,∴{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=9a 5>0,S 10=a 5+a 62·10=0,S 11=11a 6<0,故选A. 答案:A3.(等差数列求和)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( ) A .S 4<S 3 B .S 4=S 3 C .S 4>S 1D .S 4=S 1解析:设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎨⎧a 1+d =-6,a 1+5d =6,解得⎩⎨⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B. 答案:B4.(等差数列求和及最值)在等差数列{a n }中,a 6+a 11=0,且公差d >0,则数列{a n }的前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:由题意知a 6<0,a 11>0,且a 1+5d +a 1+10d =0,所以a 1=-152d .又数列{a n }的前n 项和S n =na 1+n n -12d =d2[(n -8)2-64],所以当n =8时,数列{a n }的前n 项和取得最小值.故选C. 答案:C5.(数学文化与等比数列求和)中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还.其大意为:有一人走378里路,第一天健步行走,从第二天起因为脚痛每天走的路程都为前一天的一半,走了6天后到达目的地,问此人每天走多少里路.则此人第五天走的路程为( ) A .48里 B .24里 C .12里D .6里解析:依题意知,此人每天走的路程数构成以12为公比的等比数列a 1,a 2,…,a 6,由S6=a1⎝⎛⎭⎪⎫1-1261-12=378,解得a1=192,所以此人第五天走的路程为a5=192×124=12(里).故选C.答案:C6.(等比数列性质及基本不等式)已知首项与公比相等的等比数列{a n}满足a m a2n=a2 4(m,n∈N*),则2m+1n的最小值为( )A.1 B.3 2C.2 D.9 2解析:设该数列的首项及公比为a,则由题可得a m×a2n=a4×2,即a m×a2n=a m+2n=a4×2,得m+2n=8,所以2m+1n=18(m+2n)·⎝⎛⎭⎪⎫2m+1n=182+2+4nm+mn≥182+2+24nm×mn=1,当且仅当4nm=mn,即m=4,n=2时等号成立,故选A.答案:A7.(等比数列前n项和)在等比数列{a n}中,a1+a n=34,a2·a n-1=64,且前n 项和S n=62,则项数n等于( )A.4 B.5C.6 D.7解析:设等比数列{a n}的公比为q,由a2a n-1=a1a n=64,又a1+a n=34,解得a1=2,a n=32或a1=32,a n=2.当a1=2,a n=32时,S n=a11-q n1-q=a1-a n q1-q=2-32q1-q=62,解得q=2.又a n=a1q n-1,所以2×2n-1=2n=32,解得n=5.同理,当a1=32,a n=2时,由S n=62,解得q=12.由a n=a1q n-1=32×⎝⎛⎭⎪⎫12n-1=2,得⎝⎛⎭⎪⎫12n-1=116=⎝⎛⎭⎪⎫124,即n-1=4,n=5.综上,项数n等于5,故选B.答案:B8.(等差数列前n 项和性质)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 016的值等于( ) A .-2 015 B .2 015 C .2 016D .0解析:设数列{a n }的公差为d ,S 12=12a 1+12×112d ,S 10=10a 1+10×92d , 所以S 1212=12a 1+12×112d 12=a 1+112d .S 1010=a 1+92d ,所以S 1212-S 1010=d =2, 所以S 2 016=2 016×a 1+2 015×2 0162d =0.答案:D9.(等比数列前n 项和性质)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n解析:设等比数列{a n }的公比为q ,∵S 3=7,S 6=63,∴q ≠1,∴⎩⎪⎨⎪⎧a 11-q 31-q =7,a 11-q 61-q =63,解得⎩⎨⎧a 1=1,q =2,∴a n =2n -1,∴na n =n ·2n -1,设数列{na n }的前n 项和为T n ,∴T n =1+2×2+3×22+4×23+…+(n -1)·2n -2+n ·2n -1,2T n =2+2×22+3×23+4×24+…+(n -1)·2n -1+n ·2n ,∴-T n =1+2+22+23+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴T n =1+(n -1)×2n ,故选D. 答案:D10.(递推关系、通项及性质)已知数列{a n }满足a 1=2,2a n a n +1=a 2n +1,设b n =a n -1a n +1,则数列{b n }是( ) A .常数列 B .摆动数列 C .递增数列D .递减数列解析:由2a n a n +1=a 2n +1可得a n +1=a 2n +12a n ,b n +1=a n +1-1a n +1+1=a 2n +12a n -1a 2n +12a n+1=a 2n -2a n +1a 2n +2a n +1=a n -12a n +12=b 2n ,由b n >0且b n ≠1,对b n +1=b 2n 两边取以10为底的对数,可得lgb n +1=2lg b n ,所以数列{lg b n }是以lg b 1=lg 2-12+1=lg 13为首项,2为公比的等比数列,所以lg b n =2n -1lg 13,b n =(13)2n -1,故数列{b n }是递减数列,故选D. 答案:D11.(等比数列、等差数列混合及性质)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .1B .22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3, ∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3.答案:D12.(等差数列性质,等比数列通项)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1. 答案:3n -113.(S n 与a n 关系及等差数列通项)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n ,n ∈N *,则a n =________. 解析:当n =1时,a 2=3S 1=3a 1=3. 当n ≥2时,∵a n +1=3S n ,∴a n =3S n -1,两式相减得a n +1-a n =3(S n -S n -1)=3a n ,即a n +1=4a n ,当n ≥2时,{a n }是以3为首项,4为公比的等比数列,得a n =3×4n -2.综上,a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.答案:⎩⎨⎧1,n =1,3×4n -2,n ≥2.14.(等差数列通项)已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f-2-a n(n ∈N *),则a 2 016的值为________.解析:根据题意,不妨设f (x )=(12)x,则a 1=f (0)=1,∵f (a n +1)=1f-2-a n,∴a n +1=a n +2,∴数列{a n }是以1为首项、2为公差的等差数列,∴a n =2n -1,∴a 2 016=4 031. 答案:4 03115.(等差数列及性质、不等式)已知数列{a n }满足a 2=2a 1=2,na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,若{a n }为单调递增数列,则实数λ的取值范围为________.解析:因为na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,所以2na n +2=(2n +4)a n +λ(2n 2+4n ),即na n +2-(n +2)a n =λ(n 2+2n ),所以a n +2n +2-a nn =λ.设b n =a nn,则b n +2-b n =λ,因为a 1=1,a 2=2,所以b 1=b 2=1. 所以当n 为奇数时,b n =1+n -12λ;当n 为偶数时,b n =1+n -22λ.所以a n=⎩⎪⎨⎪⎧n +n n -1λ2,n 为奇数,n +n n -2λ2,n 为偶数.由数列{a n }为单调递增数列,得a n <a n +1. ①当n 为奇数且n >1时,n +n n -1λ2<n +1+n +1n +1-2λ2,所以λ>21-n, 又-1≤21-n<0,所以λ≥0; ②当n 为偶数时,2n +nn -2λ2<2n +1+n +1n +1-1λ2,所以λ>-23n ,又-13≤-23n<0,所以λ≥0. 综上,实数λ的取值范围为[0,+∞). 答案:[0,+∞)[B 组 大题规范练]1.(S n 与a n 的关系,等比数列的证明)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求a n . 解析:(1)因为数列{a n }的前n 项和为S n , 且S n =2a n -3n (n ∈N *).所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)证明:因为S n =2a n -3×n ,所以S n +1=2a n +1-3×(n +1), 两式相减,得a n +1=2a n +3,*把b n =a n +3及b n +1=a n +1+3,代入*式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1, 所以a n =b n -3=6×2n -1-3=3(2n-1).2.(等差数列定义、等比数列通项及求和)已知数列{a n }满足a 1=1,a n +1-a n =3,数列{b n }满足b n =3a n . (1)求数列{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n . 解析:(1)因为a 1=1,a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2, 故b n =3a n =33n -2.(2)由(1)知b n +1b n =33n +133n -2=27,所以数列{b n }是以3为首项,27为公比的等比数列,则数列{a n +b n }的前n 项和S n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =[1+4+…+(3n -2)]+(3+34+…+33n -2) =32n 2-12n +326·27n -326. 3.(a n 与S n 关系、等比数列证明及不等式最值)已知数列{a n }的前n 项和为S n ,满足a n +S n =2n .(1)证明:数列{a n -2}为等比数列,并求出a n ; (2)设b n =(2-n )(a n -2),求{b n }的最大项. 解析:(1)证明:由a 1+S 1=2a 1=2,得a 1=1.由a n +S n =2n 可得a n +1+S n +1=2(n +1),两式相减得,2a n +1-a n =2, ∴a n +1-2=12(a n -2),∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列,a n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1,故a n =2-⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知b n =(2-n )×(-1)×⎝ ⎛⎭⎪⎫12n -1=(n -2)×⎝ ⎛⎭⎪⎫12n -1,由b n +1-b n =n -12n-n -22n -1=n -1-2n +42n=3-n 2n≥0,得n ≤3,由b n +1-b n <0得n >3,∴b 1<b 2<b 3=b 4>b 5>…>b n >…,故{b n }的最大项为b 3=b 4=14.4.(等差、等比数列通项及和的最值)设S n ,T n 分别是数列{a n },{b n }的前n 项和,已知对于任意n ∈N *,都有3a n =2S n +3,数列{b n }是等差数列,且T 5=25,b 10=19.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb nn n +1,求数列{c n }的前n 项和R n ,并求R n 的最小值.解析:(1)由3a n =2S n +3,得 当n =1时,有a 1=3; 当n ≥2时,3a n -1=2S n -1+3, 从而3a n -3a n -1=2a n ,即a n =3a n -1, 所以a n ≠0,a na n -1=3, 所以数列{a n }是首项为3,公比为3的等比数列,因此a n =3n . 设数列{b n }的公差为d ,由T 5=25,b 10=19, 得⎩⎨⎧5b 1+10d =25,b 1+9d =19,解得b 1=1,d =2, 因此b n =2n -1.(2)由(1)可得c n =2n -13nn n +1=[3n -n +1]3n n n +1=3n +1n +1-3nn,R n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫-31+322+⎝ ⎛⎭⎪⎫-322+333+…+⎝ ⎛⎭⎪⎫-3nn +3n +1n +1=3n +1n +1-3,因为c n =2n -13nn n +1>0,所以数列{R n }单调递增.所以n =1时,R n 取最小值,故最小值为32.。
第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。