2016届高考数学理新课标一轮总复习练习 函数、导数及其应用
- 格式:doc
- 大小:246.00 KB
- 文档页数:3
第四节 二次函数与幂函数[考纲传真] (教师用书独具)1.(1)了解幂函数的概念;(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x的图像,了解它们的变化情况.2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.(对应学生用书第16页)[基础知识填充]1.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0);顶点式:f (x )=a (x -h )2+k (a ≠0),顶点坐标为(h ,k ); 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图像与性质2.(1)定义:如果一个函数,底数是自变量x ,指数是常量α,即y =x α,这样的函数称为幂函数.(2)五种常见幂函数的图像与性质[知识拓展] 若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( ) (2)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a.( )(3)幂函数的图像一定经过点(1,1)和点(0,0).( ) (4)当n >0时,幂函数y =x n在(0,+∞)上是增函数.( ) [答案] (1)× (2)× (3)× (4)√2.y =x 2,y =⎝ ⎛⎭⎪⎫12x,y =4x 2,y =x 5+1,y =(x -1)2,y =x ,y =a x(a >1),上述函数是幂函数的有( ) A .0个 B .1个 C .2个D .3个C [只有y =x 2,y =x 是幂函数,故选C.]3.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,120B.⎝ ⎛⎭⎪⎫-∞,-120C.⎝⎛⎭⎪⎫120,+∞D.⎝ ⎛⎭⎪⎫-120,0C [由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.]4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.4 [f (x )=x 2+(a -4)x -4a ,由f (x )是偶函数知a -4=0,所以a =4.]5.(教材改编)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上递减.y =x -12 (0,+∞) [设f (x )=x α,则2α=22,所以α=-12,即幂函数的解析式为y =x -12,单调减区间为(0,+∞).](对应学生用书第17页)(1)幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的图像是( )(2)(2016·全国卷Ⅲ)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(1)C (2)A [(1)令f (x )=x α,由4α=2,∴α=12,∴f (x )=x 12.故选C.(2)a =243=423,b =323,c =2513=523. ∵y =x 23在第一象限内为增函数,又5>4>3, ∴c >a >b .][跟踪训练] (1)已知幂函数f (x )=(n 2+2n -2)·x n 2-3n(n ∈Z )在(0,+∞)上是减函数,则n 的值为( ) A .-3 B .1 C .2D .1或2(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________.(1)B (2)⎣⎢⎡⎭⎪⎫-1,23 [(1)由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3.当n =1时,f (x )=x -2=1x2在(0,+∞)上是减函数;当n =-3时,f (x )=x 18在(0,+∞)上是增函数.故n =1符合题意,应选B.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.]已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【导学号:79140037】[解] 法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图像的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7.已知二次函数f (x )的图像经过点(4,3),它在x 轴上截得的线段长为对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. [解] ∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图像被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图像过点(4,3), ∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.◎角度1 二次函数图像的识别及应用设abc >0,则二次函数f (x )=ax 2+bx +c 的图像可能是( )D [由A ,C ,D 知,f (0)=c <0.∵abc >0,∴ab <0,∴对称轴x =-b2a >0,知A ,C 错误,D 符合要求.由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误.] ◎角度2 二次函数的最值问题(2017·广州十六中月考)若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}C [f (x )=x 2-2x +1=(x -1)2,图像的对称轴是x =1. 因为f (x )在区间[a ,a +2]上的最小值为4,所以当1≤a 时,y min =f (a )=(a -1)2=4,解得a =-1(舍去)或a =3;当a +2≤1,即a ≤-1时,y min =f (a +2)=(a +1)2=4,解得a =1(舍去)或a =-3; 当a <1<a +2,即-1<a <1时,y min =f (1)=0≠4,不符合题意,故a 的取值集合为{-3,3}.]◎角度3 二次函数中的恒成立问题已知函数f (x )=x 2+bx +c (b ,c ∈R ),对任意的x ∈R ,恒有f ′(x )≤f (x ). (1)证明:当x ≥0时,f (x )≤(x +c )2;(2)若对满足题设条件的任意b ,c ,不等式f (c )-f (b )≤M (c 2-b 2)恒成立,求M 的最小值.[解] (1)证明:易知f ′(x )=2x +b . 由题设,对任意的x ∈R,2x +b ≤x 2+bx +c , 即x 2+(b -2)x +c -b ≥0恒成立,所以Δ=(b -2)2-4(c -b )≤0,从而c ≥b 24+1.于是c ≥1,且c ≥2b 24×1=|b |,当且仅当b =±2时等号成立. 因此2c -b =c +(c -b )>0.当x ≥0时,有(x +c )2-f (x )=(2c -b )x +c (c -1)≥0. 故当x ≥0时,f (x )≤(x +c )2. (2)由(1)知,c ≥|b |,则 当c >|b |时,有M ≥f (c )-f (b )c 2-b 2=c 2-b 2+bc -b 2c 2-b 2=c +2b b +c.令t =b c ,则-1<t <1,c +2b b +c =2-11+t. 而函数g (t )=2-11+t (-1<t <1)的值域为⎝⎛⎭⎪⎫-∞,32,因此,当c >|b |时,M 的取值范围为⎣⎢⎡⎭⎪⎫32,+∞.当c =|b |时,由(1)知,b =±2,c =2. 此时f (c )-f (b )=-8或0,且c 2-b 2=0, 从而f (c )-f (b )≤M (c 2-b 2)恒成立. 综上所述,M 的最小值为32.类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动求解方法:抓住“三点一轴”进行数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,具体方法是利用配方法、函数的单调性及分类讨论的思想求解2.二次函数中恒成立问题的求解思路x ⇔a xmax,x ⇔f xmin.[跟踪训练] (1)已知函数f (x )=ax 2-2x +2,若对一切x ∈⎣⎢⎡⎦⎥⎤2,2,f (x )>0都成立,则实数a 的取值范围为( )【导学号:79140038】A .⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎭⎪⎫12,+∞C .[-4,+∞)D .(-4,+∞)(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(1)B (2)⎝ ⎛⎭⎪⎫-22,0 [(1)因为对一切x ∈⎣⎢⎡⎦⎥⎤12,2,f (x )>0都成立,所以当x ∈⎣⎢⎡⎦⎥⎤12,2时,a >2x -2x 2=-2x 2+2x =-2⎝ ⎛⎭⎪⎫1x -122+12,又-2⎝ ⎛⎭⎪⎫1x -122+12≤12,则实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. (2)因为函数f (x )=x 2+mx -1的图像是开口向上的抛物线,要使对于任意x ∈[m ,m+1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. 所以实数m 的取值范围是⎝ ⎛⎭⎪⎫-22,0.]。
第8讲指数与指数函数1.根式(1)根式的概念(2)两个重要公式①na n=⎩⎨⎧!!!a###(n为奇数),|a|=⎩⎪⎨⎪⎧!!!a###(a≥0),!!!-a###(a<0)(n为偶数);②(na )n=__a __(注意:a 必须使na 有意义). 2.有理数的指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -mn =!!! 1a n###=!!! 1 ###(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于__0__,0的负分数指数幂__无意义__. (2)有理数指数幂的性质 ①a r a s=__ar +s__(a >0,r ,s ∈Q );②(a r )s =__a rs__(a >0,r ,s ∈Q ); ③(ab )r=__a r b r__(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.思维辨析(在括号内打“√”或“×”). (1)na n与(na )n 都等于a (n ∈N *).( × ) (2)2a·2b=2a b .( × )(3)函数y =3·2x与y =2x +1都不是指数函数.( √ )(4)若a m<a n(a >0且a ≠1),则m <n .( × ) (5)函数y =2-x在R 上为单调减函数.( √ ) 解析 (1)错误.当n 为偶数,a <0时,na 不成立.(2)错误.2a ·2b =2a +b≠2ab.(3)正确.两个函数均不符合指数函数的定义. (4)错误.当a >1时,m <n ;而当0<a <1时,m >n .(5)正确.y =2-x=⎝ ⎛⎭⎪⎫12x ,根据指数函数的性质可知函数在R 上为减函数.2.函数f (x )=1-2x的定义域是( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析 ∵1-2x≥0,∴2x≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( A )A .(1,5)B .(1,4)C .(0,4)D .(4,0)解析 当x =1时,f (x )=5.4.不等式2x 2-x <4的解集为__{x |-1<x <2}__.解析 不等式2x 2-x <4可化为2x 2-x <22,由指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a解析 由题意知0<a 2-1<1,即1<a 2<2,得-2<a <-1或1<a < 2.一 指数幂的化简与求值指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.【例1】 计算:(1)3a 92 a -3÷3a -73a 13;(2)(0.027) -13 -⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912 -(2-1)0;(3)已知m 12 +m -12=4,求m 32 -m -32m 12 -m -12 .解析 (1)原式=(a 92 a -32 )13 ÷(a -73 a 133 )12 =(a 3)13 ÷(a 2)12 =a ÷a =1.(2)原式=⎝ ⎛⎭⎪⎫271 000-13 -72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.(3)∵m 12 +m -12 =4,∴m +m -1+2=16,∴m +m -1=14, ∴m 32 -m -32 m 12 -m -12 =(m 12 -m -12 )(m +m -1+1)m 12 -m -12=m +m -1+1=14+1=15.二 指数函数的图象及应用指数函数图象的画法及应用(1)画指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a 和一条渐近线y =0.(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换,得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. 【例2】 (1)函数y =a x-1a(a >0,且a ≠1)的图象可能是( D )(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是__[-1,1]__.解析 (1)函数y =a x-1a(a >0,且a ≠1)的图象必过点(-1,0),故选D .(2)曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].三 指数函数的性质及应用指数函数性质问题的类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.【例3】 已知函数f (x )=e x -e -x(x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解析 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.∵f (x )的定义域为R ,且f (-x )=e -x-e x=-f (x ),∴f (x )是奇函数.(2)存在,由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立⇔x 2-t 2≥t -x 对一切x ∈R 都成立⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12,∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.1.(2018·山东德州一模)已知a =⎝ ⎛⎭⎪⎫3525 ,b =⎝ ⎛⎭⎪⎫2535 ,c =⎝ ⎛⎭⎪⎫2525 ,则( D ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析 ∵y =⎝ ⎛⎭⎪⎫25x为减函数,∴b <c ,又∵y =x 25 在(0,+∞)上为增函数,∴a >c ,∴b <c <a ,故选D .2.(2018·北京模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)=( A )A .1B .aC .2D .a 2解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0,又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A .3.函数y =4x+2x +1+1的值域为( B )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析 令2x=t (t >0),则函数y =4x+2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0).∵函数y =(t +1)2在(0,+∞)上递增,∴y >1.∴所求值域为(1,+∞),故选B .4.函数f (x )=a x+log a (x +1)(a >0,且a ≠1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( B )A .14 B .12 C .2D .4解析 ∵在[0,1]上y =a x与y =log a (x +1)具有相同的单调性,∴f (x )=a x+log a (x +1)在[0,1]上单调,∴f (0)+f (1)=a ,即a 0+log a 1+a 1+log a 2=a ,化简得1+log a 2=0,解得a =12.易错点 忽视对含参底数的讨论错因分析:对数函数、指数函数的底数含字母参数时,要分底数大于1和大于0小于1讨论.【例1】 已知函数f (x )=|a -1|a 2-9(a x -a -x)(a >0且a ≠1)在R 上为增函数,求a 的取值范围.解析 ①当a >1时,a x 在R 上为增函数,y =a -x =⎝ ⎛⎭⎪⎫1a x 在R 上为减函数,∴y =a x -a-x为增函数.∵f (x )为增函数,∴|a -1|a 2-9>0,解得a >3或a <-3,又∵a >1,∴a >3.②当0<a <1时,y =a x 在R 上为减函数,y =a -x在R 上为增函数, ∴y =a x-a -x在R 上为减函数.∵f (x )为增函数,∴|a -1|a 2-9<0,解得-3<a <1或1<a <3.又∵0<a <1,∴此时0<a <1.综上,a 的取值范围为(0,1)∪(3,+∞).【跟踪训练1】 (2018·东北三校联考)若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是( D )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .⎝ ⎛⎭⎪⎫0,12 解析 方程|a x-1|=2a (a >0,且a ≠1)有两个实数根转化为函数y =|a x-1|与y =2a 有两个交点.①当0<a <1时,如图①,∴0<2a <1,即0<a <12;②当a >1时,如图②, 而y =2a >1不符合要求.∴0<a <12.课时达标 第8讲[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2016·全国卷Ⅲ)已知a =243 ,b =425 ,c =2513 ,则( A ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析 因为a =243 =1613 ,b =425 =1615 ,c =2513 ,且幂函数y =x 13 在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .2.(2018·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析 |f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32,故选B .3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9,故选C .4.(2018·山西太原模拟)函数y =2x -2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 项,D 项.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2018·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2018·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析 作出函数f (x )=|2x-1|的图象,如图,∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a -1|=1-2a<1, ∴f (c )<1,∴0<c <1,∴1<2c<2, ∴f (c )=|2c -1|=2c-1, 又∵f (a )>f (c ),∴1-2a >2c-1, ∴2a +2c<2,故选D . 二、填空题7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是__(0,1)__.解析 因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.已知函数y =a 2x +2a x-1(a >1)在区间[-1,1]上的最大值是14,则a =__3__.解析 y =a 2x +2a x -1(a >1),令a x =t ,则y =t 2+2t -1⎝ ⎛⎭⎪⎫1a≤t ≤a ,此二次函数图象开口向上,对称轴为t =-1,又a >1,所以当t =a ,即x =1时取最大值,所以a 2+2a -1=14, 解得a =3.9.(2018·皖南八校联考)对于给定的函数f (x )=a x-a -x(x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是__①③④__(只需写出所有真命题的编号).①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.解析 ∵f (-x )=-f (x ),∴f (x )为奇函数,f (x )的图象关于原点对称,①真;当a >1时,f (x )在R 上为增函数,当0<a <1时,f (x )在R 上为减函数,②假;y =f (|x |)是偶函数,其图象关于y 轴对称,③真;当0<a <1时,y =f (|x |)在(-∞,0)上为增函数,在[0,+∞)上为减函数,∴当x =0时,y =f (|x |)取最大值为0,④真;当a >1时,f (|x |)在(-∞,0)上为减函数,在[0,+∞)上为增函数,∴当x =0时,y =f (|x |)取最小值为0,⑤假.综上,真命题是①③④.三、解答题10.化简:(1)a 3b 23ab 2(a 14 b 12 )4a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278 -23+(0.002)-12-10(5-2)-1+(2-3)0. 解析 (1)原式=(a 3b 2a 13b 23 ) 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1=-1679. 11.已知函数f (x )=⎝ ⎛⎭⎪⎫13a x 2-4x +3. (1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a(a >0), ∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1. 12.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1,所以f (x )=-2x +12x +1+a. 又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1. 由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得解集为t ⎪⎪⎪⎭⎬⎫t >1或t <-13.精美句子1、善思则能“从无字句处读书”。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结17导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=1+x-sin x在(0,2π)上是() A.增函数B.减函数C.在(0,π)上单调递增,在(π,2π)上单调递减D.在(0,π)上单调递减,在(π,2π)上单调递增答案 A解析 f ′(x )=1-cos x >0,∴f (x )在(0,2π)上单调递增. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4 答案 C解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2(舍去).当-1≤x <0时,f ′(x )>0;当0<x ≤1时,f ′(x )<0.所以f (x )在[-1,0)上是增函数,在(0,1]上是减函数,所以f (x )max =f (0)=2.故选C.3.已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .-1e C .1 D .2ln 2 答案 D解析 由题意知f ′(x )=2e f ′(e )x -1e ,∴f ′(e)=2e f ′(e )e -1e ,f ′(e)=1e ,∴f (x )=2ln x -x e ,f ′(x )=2x -1e ,令f ′(x )=0,得x =2e ,当0<x <2e 时,f ′(x )>0,当x >2e 时,f ′(x )<0,∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减,∴f (x )的极大值为f (2e)=2ln (2e)-2=2ln 2.故选D.4.直线y =a 分别与曲线y =e x ,y =ln x +1交于M ,N 两点,则|MN |的最小值为( ) A .1 B .1-ln 2 C .ln 2 D .1+ln 2 答案 A解析 分别令e x =a ,ln x +1=a ,其中a >0,则x 1=ln a ,x 2=e a -1,从而|MN |=|x 1-x 2|=|ln a -e a -1|,构造函数h (a )=ln a -e a -1,求导得h ′(a )=1a -e a -1,当a ∈(0,1)时,h ′(a )>0,h (a )单调递增;当a ∈(1,+∞)时,h ′(a )<0,h (a )单调递减.所以h (a )有极大值h (1)=-1.因此|MN |的最小值为|h (1)|=1.故选A.5.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( )A .120000 cm 3B .128000 cm 3C .150000 cm 3D .158000 cm 3 答案 B解析 设水箱底长为x cm ,则高为120-x 2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0得0<x <120.设容器的容积为y cm 3,则有y =120-x 2·x 2=-12x 3+60x 2,则有y ′=-32x 2+120x .令y ′=0,解得x=80(x =0舍去).当x ∈(0,80)时,y ′>0,y 单调递增;当x ∈(80,120)时,y ′<0,y 单调递减.因此80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =-12×803+60×802=128000.故选B.6.(多选)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (a )<f (b )<f (c )B .函数f (x )在x =c 处取得极小值,在x =e 处取得极大值C .函数f (x )在x =c 处取得极大值,在x =e 处取得极小值D .函数f (x )的最小值为f (d ) 答案 AC解析 由导函数图象可知在(-∞,c ),(e ,+∞)上,f ′(x )>0,在(c ,e )上,f ′(x )<0,所以函数f (x )在(-∞,c ),(e ,+∞)上单调递增,在(c ,e )上单调递减,所以f (a )<f (b )<f (c );函数f (x )在x =c 处取得极大值,在x =e 处取得极小值;f (d )>f (e ),所以f (d )不是函数f (x )的最小值.故选AC.7.(多选)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )·sin x <0,则下列判断中正确的是( )A .f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4B .f ⎝ ⎛⎭⎪⎫ln π3>0C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3D .f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3答案 CD解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x ,因为f ′(x )cos x+f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减,因此g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4,即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错误;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错误;又g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确;又g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确.故选CD.8.若函数f (x )=x ln x -a2x 2-x +1有两个极值点,则a 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令g (x )=ln x -ax ,则g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,则f ′(x )在(0,+∞)上单调递增,当x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→+∞,所以f (x )只有一个极值点,不符合题意.当a >0时,可得f ′(x )有极大值点1a ,由于x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→-∞,因此原函数要有两个极值点,只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e .二、高考小题9.(2022·全国乙卷)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2 D .ab >a 2 答案 D解析 解法一:因为函数f (x )=a (x -a )2(x -b ),所以f ′(x )=2a (x -a )(x -b )+a (x -a )2=a (x -a )(3x -a -2b ).令f ′(x )=0,结合a ≠0可得x =a 或x =a +2b3. (1)当a >0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递增,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递减,所以x =a 为函数f (x )的极大值点,满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递增,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递减,在(a ,+∞)上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意.(2)当a <0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递减,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递减,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递增,在(a ,+∞)上单调递减,所以x =a 为函数f (x )的极大值点,满足题意.综上,a >0且b >a 满足题意,a <0且b <a 也满足题意.据此,可知必有ab >a 2成立.故选D.解法二:由题意可知a≠b,当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.综上,可知必有ab>a2成立.故选D.10.(2022·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为()A.-1 B.-2e-3C.5e-3D.1答案 A解析由题意可得f′(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,∴f′(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x -2)=e x-1(x-1)(x+2),∴当x∈(-∞,-2)时,f′(x)>0,f(x)单调递增;当x∈(-2,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)极小值=f(1)=-1.故选A.11.(2022·北京高考)设函数f(x)=e x+a e-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.答案-1(-∞,0]解析 ∵f (x )=e x +a e -x (a 为常数)的定义域为R ,且f (x )为奇函数,∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立,即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立.又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0].12.(2022·全国Ⅰ卷)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4(cos x +1)⎝ ⎛⎭⎪⎫cos x -12,所以当cos x ≤12时函数单调递减,当cos x ≥12时函数单调递增,从而得到函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-5π3,2k π-π3(k ∈Z ),函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ),所以当x =2k π-π3,k ∈Z 时,函数f (x )取得最小值,此时sin x =-32,sin 2x =-32,所以f (x )min =2×⎝ ⎛⎭⎪⎫-32-32=-332.13.(2022·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 ∵f (x )=2x 3-ax 2+1,∴f ′(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,不符合题意,∴a >0.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.∵f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),列表如下:x -1 (-1,0) 0 (0,1) 1 f ′(x ) 12 + 0 - 0 f (x )-41∴f (x )在[-1,1]上的最大值为1,最小值为-4.∴最大值与最小值的和为-3. 三、模拟小题14.(2022·四川省达州中学模拟)函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝ ⎛⎭⎪⎫1e ,e B .⎝ ⎛⎭⎪⎫0,1e C.⎝ ⎛⎭⎪⎫-∞,1e D .⎝ ⎛⎭⎪⎫1e ,+∞ 答案 B解析 因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .15.(2022·湖南湘潭模拟)已知定义域为R 的函数f (x )的导函数为f ′(x ),且f ′(x )>f (x ),若实数a >0,则下列不等式恒成立的是( )A.af (ln a )≥e a -1f (a -1)B.af (ln a )≤e a -1f (a -1)C.e a -1f (ln a )≥af (a -1)D.e a-1f(ln a)≤af(a-1) 答案 D解析令g(x)=f(x)e x ,则g′(x)=f′(x)-f(x)e x>0,所以g(x)为增函数.令h(a)=ln a-a+1,则h′(a)=1a-1.当a∈(0,1)时,h′(a)>0,h(a)单调递增,当a∈(1,+∞)时,h′(a)<0,h(a)单调递减,所以h(a)≤h(1)=0,所以ln a≤a-1,所以g(ln a)≤g(a-1),即f(ln a)a≤f(a-1)e a-1,所以e a-1f(ln a)≤af(a-1).故选D.16.(2022·新高考八省联考)已知a<5且a e5=5e a,b<4且b e4=4e b,c<3且c e3=3e c,则()A.c<b<a B.b<c<aC.a<c<b D.a<b<c答案 D解析因为a e5=5e a,a<5,故a>0,同理b>0,c>0,令f(x)=e xx,x>0,则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,a<5,故e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1,同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c),因为f(5)>f(4)>f(3),故f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.17.(多选)(2022·福建省福州市高三调研考试)设函数f(x)=e xln x,则下列说法正确的是( )A.f (x )的定义域是(0,+∞)B.x ∈(0,1)时,f (x )图象位于x 轴下方C.f (x )存在单调递增区间D.f (x )有且仅有一个极值点 答案 BCD解析 由题意,函数f (x )=e x ln x 满足⎩⎨⎧x >0,ln x ≠0,解得x >0且x ≠1,所以函数f (x )=e xln x的定义域为(0,1)∪(1,+∞),所以A 不正确;由f (x )=e xln x ,当x ∈(0,1)时,ln x <0,所以f (x )<0,所以f (x )在(0,1)上的图象都在x 轴的下方,所以B 正确;因为f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -1x (ln x )2,所以f ′(x )>0在定义域上有解,所以函数f (x )存在单调递增区间,所以C 正确;令g (x )=ln x -1x ,则g ′(x )=1x +1x 2(x >0),所以g ′(x )>0,函数g (x )单调递增,又g (1)=-1<0,g (2)=ln 2-12>0,所以∃x 0∈(1,2)使得f ′(x 0)=0,且当x ∈(0,1),(1,x 0)时,f (x )单调递减,当x ∈(x 0,+∞)时,f (x )单调递增,所以函数f (x )只有一个极值点,所以D 正确.故选BCD.18.(多选)(2022·河北秦皇岛第二次模拟)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( )A.a ∈⎝ ⎛⎭⎪⎫0,1eB.y =f (x )在(0,e)上单调递增C.x 1+x 2>6D.若a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,则x 2-x 1<2-a a答案 ABD解析 由f (x )=ln x -ax ,可得f ′(x )=1x -a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,由f ′(x )=1x -a =0,解得x =1a ,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又由函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),可得f ⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,可得a <1e .综上可得0<a <1e ,故A 正确;当a →1e 时,x 1+x 2→2e<6,故C 错误,∵当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f (x )单调递增,又a ∈⎝ ⎛⎭⎪⎫0,1e ,∴(0,e)⊆⎝ ⎛⎭⎪⎫0,1a ,故B 正确;∵f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,且a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,∴1,x 1∈⎝ ⎛⎭⎪⎫0,1a ;2a ,x 2∈⎝ ⎛⎭⎪⎫1a ,+∞,∵f (1)=-a <0=f (x 1),∴x 1>1,∵f ⎝ ⎛⎭⎪⎫2a =ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a-1=2-aa ,故D 正确.故选ABD.19.(2022·江苏常州高三质量检测)已知f (x )=e x ,g (x )=2x .若f (x 1)=g (x 2),d =|x 2-x 1|,则d 的最小值为________.答案1-ln 22解析 令f (x 1)=g (x 2)=k >0,则x 1=ln k ,x 2=k 24,所以x 2-x 1=k 24-ln k ,令g (k )=k 24-ln k (k >0),则g ′(k )=k 2-1k =k 2-22k ,当0<k <2时,g ′(k )<0;当k >2时,g ′(k )>0;所以g (k )在(0,2)上单调递减,在(2,+∞)上单调递增,则g (k )min =g (2)=1-ln 22>0,所以d =|x 2-x 1|=|g (k )|≥1-ln 22,则d 的最小值为1-ln 22.20.(2022·吉林第四次调研测试)若函数f (x )=mx 2-e x +1(e 为自然对数的底数)在x =x 1和x =x 2两处取得极值,且x 2≥2x 1,则实数m 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫1ln 2,+∞解析 因为f (x )=mx 2-e x +1,所以f ′(x )=2mx -e x ,又函数f (x )在x =x 1和x =x 2两处取得极值,所以x 1,x 2是方程2mx -e x=0的两个不等实根,且x 2≥2x 1,即m =e x2x (x ≠0)有两个不等实根x 1,x 2,且x 2≥2x 1.令h (x )=e x 2x (x ≠0),则直线y =m 与曲线h (x )=e x2x 有两个交点,且交点横坐标满足x 2≥2x 1,又h ′(x )=e x (2x -2)4x 2=e x (x -1)2x 2,由h ′(x )=0,得x =1,所以当x >1时,h ′(x )>0,即函数h (x )=e x2x 在(1,+∞)上单调递增;当x <0,0<x <1时,h ′(x )<0,即函数h (x )=e x2x 在(-∞,0),(0,1)上单调递减.作出函数h (x )的图象如图所示.当x2=2x1时,由e x12x1=e x22x2,得x1=ln 2,此时m=e x12x1=1ln 2,因此,由x2≥2x1,得m≥1ln 2.一、高考大题1.(2022·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0).令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增.令f′(x)<0,则x>2ln 2,此时函数f(x)单调递减.故函数f(x)的单调递增区间为⎝⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝⎛⎭⎪⎫2ln 2,+∞.(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x a a x =1(x >0)有两个不同的解,故方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0). 令g ′(x )=1-ln xx 2=0,解得x =e.令g ′(x )>0,则0<x <e ,此时函数g (x )单调递增. 令g ′(x )<0,则x >e ,此时函数g (x )单调递减. 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e .又g (1)=0,故要使方程ln x x =ln a a 有两个不同的解,则0<ln a a <1e . ①当0<a <1时,不符合条件; ②当a >1时,因为g (x )max =g (e)=1e , 故a ∈(1,e)∪(e ,+∞).综上,a 的取值范围为(1,e)∪(e ,+∞).2.(2022·新高考Ⅱ卷)已知函数f (x )=(x -1)e x -ax 2+b . (1)讨论f (x )的单调性;(2)从下面两个条件中选一个,证明:f (x )有一个零点. ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .解 (1)由函数的解析式可得,f ′(x )=x (e x -2a ), 当a ≤0时,若x ∈(-∞,0),则f ′(x )<0,f (x )单调递减, 若x ∈(0,+∞),则f ′(x )>0,f (x )单调递增;当a>0时,令f′(x)=0,得x1=0,x2=ln (2a),当0<a<12时,若x∈(-∞,ln (2a)),则f′(x)>0,f(x)单调递增,若x∈(ln (2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(-∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln (2a)),则f′(x)<0,f(x)单调递减,若x∈(ln (2a),+∞),则f′(x)>0,f(x)单调递增.(2)证明:若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b-1>0,f(-2b)=(-1-2b)e-2b-4ab2+b<0,而由(1)知函数f(x)在区间(-∞,0)上单调递增,故函数f(x)在区间(-∞,0)上有一个零点.f(ln (2a))=2a[ln (2a)-1]-a[ln(2a)]2+b>2a[ln (2a)-1]-a[ln (2a)]2+2a=2a ln (2a)-a[ln (2a)]2=a ln (2a)[2-ln (2a)],由于12<a≤e22,1<2a≤e2,所以0<ln (2a)≤2,故a ln (2a)[2-ln (2a)]≥0,所以f(ln (2a))>0,结合函数的单调性可知,函数f (x )在区间(0,+∞)上没有零点. 综上可得,题中的结论成立. 若选择条件②:由于0<a <12,故0<2a <1,则f (0)=b -1≤2a -1<0, 当b ≥0时,e 2>4,4a <2,f (2)=e 2-4a +b >0,而函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点. 当b <0时,构造函数H (x )=e x -x -1,则H ′(x )=e x -1, 当x ∈(-∞,0)时,H ′(x )<0,H (x )单调递减, 当x ∈(0,+∞)时,H ′(x )>0,H (x )单调递增, 注意到H (0)=0,故H (x )≥0恒成立, 从而有e x ≥x +1,当x >1时,x -1>0,则f (x )=(x -1)e x -ax 2+b ≥(x -1)(x +1)-ax 2+b =(1-a )x 2+(b -1),当x >1-b1-a时,(1-a )x 2+(b -1)>0, 取x 0=1-b1-a+1,则f (x 0)>0, 由于f (0)<0,f ⎝⎛⎭⎪⎫1-b 1-a +1>0,函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点.f (ln (2a ))=2a [ln (2a )-1]-a [ln (2a )]2+b≤2a [ln (2a )-1]-a [ln (2a )]2+2a =2a ln (2a )-a [ln (2a )]2 =a ln (2a )[2-ln (2a )], 由于0<2a <1,所以ln (2a )<0, 故a ln (2a )[2-ln (2a )]<0,结合函数的单调性可知,函数f (x )在区间(-∞,0)上没有零点. 综上可得,题中的结论成立.3.(2022·天津高考)已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时,①求曲线y =f (x )在点(1,f (1))处的切线方程; ②求函数g (x )=f (x )-f ′(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.解 (1)①当k =6时,f (x )=x 3+6ln x ,f ′(x )=3x 2+6x . 可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8. ②依题意,g (x )=x 3-3x 2+6ln x +3x ,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2=3(x -1)3(x +1)x 2,令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )∞),g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝ ⎛⎭⎪⎫3x 21+k x 1+3x 22+k x 2-2⎝ ⎛⎭⎪⎫x 31-x 32+k ln x 1x 2=x 31-x 32-3x 21x 2+3x 1x 22+k ⎝ ⎛⎭⎪⎫x 1x 2-x 2x 1-2k ln x 1x 2=x 32(t 3-3t 2+3t -1)+k ⎝ ⎛⎭⎪⎫t -1t -2ln t .(*) 令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x >1时,h ′(x )=1+1x 2-2x =⎝ ⎛⎭⎪⎫1-1x 2>0,所以h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1)=0,即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以x 32(t 3-3t 2+3t -1)+k ⎝⎛⎭⎪⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎪⎫t -1t -2ln t =t 3-3t 2+6ln t +3t -1. (**)由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0. (***)由(*)(**)(***)可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0,所以当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.二、模拟大题4.(2022·广东珠海高三摸底测试)已知函数f (x )=e x -a ln xx -a (e 为自然对数的底数)有两个零点.(1)若a =1,求曲线y =f (x )在x =1处的切线方程;(2)若f (x )的两个零点分别为x 1,x 2,证明:x 1x 2>e 2e x 1+x 2.解 (1)当a =1时,f (x )=e x-ln x x -1,f ′(x )=e x-1-ln x x 2.又f (1)=e -1,所以切点坐标为(1,e -1),切线的斜率为k =f ′(1)=e -1, 所以切线的方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:由已知得f (x )=x e x -a (ln x +x )x =0有两个不等的正实根,所以方程x e x -a (ln x +x )=0有两个不等的正实根,即x e x -a ln (x e x )=0有两个不等的正实根,a ln (x e x )=x e x ①要证x 1x 2>e 2e ex 1+x 2, 只需证(x 1e x 1)·(x 2e x 2)>e 2,即证ln (x 1e x 1)+ln (x 2e x 2)>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2.由①得a ln t 1=t 1,a ln t 2=t 2,所以a (ln t 2-ln t 1)=t 2-t 1,a (ln t 2+ln t 1)=t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1(ln t 2-ln t 1) =⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1, 只需证⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1>2. 设0<t 1<t 2,令t =t 2t 1,则t >1, 所以只需证ln t >2(t -1)t +1. 令h (t )=ln t -2(t -1)t +1,t >1,则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 所以h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即当t >1时,ln t -2(t -1)t +1>0成立.所以ln t 1+ln t 2>2,即(x 1e x 1)·(x 2e x 2)>e 2,即x 1x 2>e 2e e x 1+x 2. 5.(2022·江苏泰州中学高三期初检测)已知函数f (x )=1+ln (x +1)x +1. (1)求函数y =f (x )的最大值;(2)令g (x )=(x +1)f (x )-(a -2)x +x 2,若g (x )既有极大值,又有极小值,求实数a 的取值范围;(3)求证:当n ∈N *时,ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+…+ln ⎝ ⎛⎭⎪⎫1+1n <2n . 解 (1)f ′(x )=-ln (x +1)(x +1)2,x ∈(-1,+∞), 在(-1,0)上,f ′(x )>0,函数f (x )单调递增,在(0,+∞)上,f ′(x )<0,函数f (x )单调递减,所以f (x )max =f (0)=1.(2)g (x )=(x +1)f (x )-(a -2)x +x 2=1+ln (x +1)-(a -2)x +x 2g ′(x )=1x +1-(a -2)+2x=2x 2+(4-a )x +3-a x +1, g (x )既有极大值,又有极小值,等价于2x 2+(4-a )x +3-a =0在区间(-1,+∞)上有两个不相等的实数根.即⎩⎨⎧2+(a -4)+3-a >0,a -44>-1,Δ=(a -4)2-8(3-a )>0,解得a >22,所以实数a 的取值范围为(22,+∞).(3)证明:由(1)得,当x >0时,f (x )<1,即ln (1+x )<x ,可得ln ⎝⎛⎭⎪⎫1+1n <1n (n ∈N *), 于是ln ⎝ ⎛⎭⎪⎫1+11<11,ln ⎝⎛⎭⎪⎫1+12<12,…, ln ⎝⎛⎭⎪⎫1+1n <1n , 于是ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+...+ln ⎝ ⎛⎭⎪⎫1+1n <1+12+13+ (1)=1+222+223+…+22n <1+21+2+22+3+…+2n -1+n=1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n .6.(2022·新高考八省联考)已知函数f (x )=e x -sin x -cos x ,g (x )=e x +sin x +cos x .(1)证明:当x >-5π4时,f (x )≥0;(2)若g (x )≥2+ax ,求a .解 (1)证明:分类讨论:①当x ∈⎝ ⎛⎦⎥⎤-5π4,-π4时,f (x )=e x -2sin ⎝ ⎛⎭⎪⎫x +π4>0; ②当x ∈⎝ ⎛⎭⎪⎫-π4,0时,f ′(x )=e x -cos x +sin x ,f ′(0)=0, 令m (x )=e x -cos x +sin x ,则m ′(x )=e x +sin x +cos x =e x +2sin ⎝ ⎛⎭⎪⎫x +π4>0, 则函数f ′(x )在⎝ ⎛⎭⎪⎫-π4,0上单调递增, 则f ′(x )<f ′(0)=0,则函数f (x )在⎝ ⎛⎭⎪⎫-π4,0上单调递减, 则f (x )>f (0)=0;③当x =0时,由函数的解析式可知f (0)=1-0-1=0,当x ∈[0,+∞)时,令H (x )=-sin x +x (x ≥0),则H ′(x )=-cos x +1≥0,故函数H (x )在区间[0,+∞)上单调递增,从而H (x )≥H (0)=0,即-sin x +x ≥0,-sin x ≥-x ,从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1,令y =e x -x -1,则y ′=e x -1,当x ≥0时,y ′≥0,故y =e x -x -1在[0,+∞)上单调递增,故函数y =e x -x -1在[0,+∞)上的最小值为e 0-0-1=0,从而在区间[0,+∞)上,e x -x -1≥0.从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1≥0.综上可得,题中的结论成立.(2)令F (x )=e x +sin x +cos x -ax -2,F (x )≥0,则F (x )min ≥0.又F (0)=0,所以F (x )在R 上的最小值为F (0). F ′(x )=e x +cos x -sin x -a ,令G (x )=e x +cos x -sin x -a ,则G ′(x )=e x -sin x -cos x =f (x ),由(1)知,当x >-5π4时,G ′(x )≥0,所以G (x )在⎝ ⎛⎭⎪⎫-5π4,+∞上单调递增,G (0)=2-a . ①当a >2时,G (0)<0,G (a +ln a )=a (e a -1)+2cos ⎝ ⎛⎭⎪⎫a +ln a +π4>2(e 2-1)-2>0. 故G (x )在(0,a +ln a )内存在零点,设为x 1, 当x ∈(0,x 1)时,G (x )<0,即F ′(x )<0, 则F (x )在(0,x 1)上单调递减,所以F (x 1)<F (0)=0,与题意不符,舍去; ②当≤a <2时,G (0)>0,G ⎝ ⎛⎭⎪⎫-5π4=故G (x )在⎝ ⎛⎭⎪⎫-5π4,0上存在零点,设为x 2, 当x ∈(x 2,0)时,G (x )>0,即F ′(x )>0, 则F (x )在(x 2,0)上单调递增,所以F (x 2)<F (0)=0,与题意不符,舍去; ③当a =2时,G (0)=0,则当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,G (x )<0, 当x ∈(0,+∞)时,G (x )>0,即当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,F ′(x )<0, 当x ∈(0,+∞)时,F ′(x )>0,所以F (x )在⎝ ⎛⎭⎪⎫-5π4,0上单调递减,在(0,+∞)上单调递增, 所以当x ∈⎝ ⎛⎭⎪⎫-5π4,+∞时,F (x )≥F (0)=0. 又当x ∈⎝ ⎛⎦⎥⎤-∞,-5π4时,F (x )=e x +2sin ⎝ ⎛⎭⎪⎫x +π4-2x -2>-2+5π2-2>0. 因此,当a =2时,F (x )≥0.综上,a =2.。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结18导数的应用(二)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=x-ln x的单调递增区间为()A.(-∞,0) B.(0,1)C.(1,+∞) D.(-∞,0)∪(1,+∞)答案 C解析函数的定义域为(0,+∞).f′(x)=1-1x,令f′(x)>0,得x>1.故选C.2.已知奇函数f′(x)是连续函数f(x)(x∈R)的导函数,若x>0时,f′(x)>0,则() A.f(0)>f(log32)>f(-log23)B.f(log32)>f(0)>f(-log23)C.f(-log23)>f(log32)>f(0)D.f(-log23)>f(0)>f(log32)答案 C解析因为f′(x)是奇函数,所以f(x)是偶函数.所以f(-log23)=f(log23),而log23>log22=1,0<log32<1,所以0<log32<log23.又当x>0时,f′(x)>0,所以f(x)在(0,+∞)上是增函数,所以f(0)<f(log32)<f(log23),所以f(0)<f(log32)<f(-log23).3.已知函数f(x)=x·2x,则下列结论正确的是()A.当x=1ln 2时,f(x)取最大值B.当x=1ln 2时,f(x)取最小值C.当x=-1ln 2时,f(x)取最大值D.当x=-1ln 2时,f(x)取最小值答案 D解析由题意知,f′(x)=2x+x·2x ln 2,令f′(x)=0,得x=-1ln 2,又当x<-1ln 2时,f′(x)<0,f(x)单调递减;当x>-1ln 2时,f′(x)>0,f(x)单调递增.∴当x=-1ln 2时,f(x)取最小值.4.函数y =x +1e x 的图象大致为( )答案 C解析 因为y =x +1e x ,所以y ′=-xe x ,令y ′>0,则x <0,令y ′<0,则x >0,所以函数y =x +1e x 在(-∞,0)上为增函数,在(0,+∞)上为减函数,且0是函数的极大值点,结合4个函数的图象,知选C.5.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2答案 B解析 因为f (x )的定义域为(0,+∞),f ′(x )=4x -1x ,由f ′(x )=0,得x =12.据题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.故选B. 6.已知函数f (x )的定义域为(0,+∞),若y =f (x )x 在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=f(x)x2在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2.若函数f(x)=x3-2hx2-hx,且f(x)∈Ω1,f(x)∉Ω2,则实数h的取值范围是()A.(0,+∞) B.[0,+∞)C.(-∞,0) D.(-∞,0]答案 C解析因为f(x)∈Ω1且f(x)∉Ω2,即g(x)=f(x)x=x2-2hx-h在(0,+∞)上是增函数,所以h≤0,而h(x)=f(x)x2=x-hx-2h在(0,+∞)上不是增函数,因为h′(x)=1+hx2,所以当h(x)在(0,+∞)上是增函数时,有h≥0,当h(x)在(0,+∞)上不是增函数时,有h<0.综上所述,实数h的取值范围是(-∞,0).故选C.7.(多选)已知函数y=f(x)在R上可导且f(0)=1,其导函数f′(x)满足f′(x)-f(x)x-1>0(x≠1),对于函数g(x)=f(x)e x,下列结论正确的是() A.函数g(x)在(1,+∞)上为单调递增函数B.1是函数g(x)的极小值点C.函数g(x)至多有两个零点D.当x≤0时,不等式f(x)≤e x恒成立答案ABC解析函数g(x)=f(x)e x ,则g′(x)=f′(x)-f(x)e x,当x>1时,f′(x)-f(x)>0,故g(x)在(1,+∞)上单调递增,A正确;当x<1时,f′(x)-f(x)<0,故g(x)在(-∞,1)上单调递减,故1是函数g(x)的极小值点,B正确;若g(1)<0,则y=g(x)至多有两个零点,若g(1)=0,则y=g(x)有一个零点,若g(1)>0,则y=g(x)没有零点,故C正确;g(x)在(-∞,1)上单调递减,则g(x)在(-∞,0)上单调递减,g(0)=f(0)e0=1,可知x≤0时,g(x)≥g(0),故f(x)e x≥1,即f(x)≥e x,D错误.故选ABC.8.(多选)已知函数f(x)=2a ln x+x2+b.下列说法正确的是()A.当a=-1时,f(x)的极小值点为(1,1+b)B.若f(x)在[1,+∞)上单调递增,则a∈[-1,+∞)C.若f(x)在定义域内不单调,则a∈(-∞,0)D.若a=-32且曲线y=f(x)在点(1,f(1))处的切线与曲线y=-e x相切,则b=-2答案BC解析极小值点为一个实数,故A错误;由f′(x)=2ax+2x≥0,可得a≥-x2.因为x≥1,所以a≥-1,故B正确;f′(x)=2a+2x2x,当a≥0时,f′(x)>0恒成立;当a<0时,f′(x)不恒为正数,所以f(x)不单调,故C正确;因为a=-32,所以f(x)=-3ln x+x2+b.因为f′(x)=-3x+2x2,所以f′(1)=-1.因为f(1)=b+1,所以切线方程为y=-x+b+2.设直线y=-x+b+2与曲线y=-e x相切的切点的横坐标为x0,则-e x0=-1,所以x 0=0,即切点坐标为(0,-1),代入y =-x +b +2,可得b =-3,故D 错误.9.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.答案 (1,2)解析 ∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,且定义域为(-1,1),又导函数值恒大于0,∴原函数在定义域上单调递增,∴所求不等式变形为f (1-x )<f (x 2-1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).二、高考小题10.(2022·全国乙卷)设a =2ln 1.01,b =ln 1.02,c = 1.04-1,则( ) A .a <b <c B .b <c <a C .b <a <c D .c <a <b 答案 B解析 因为a =2ln 1.01=ln 1.0201,b =ln 1.02,所以a >b .令f (x )=2ln (1+x )-(1+4x -1)(x >0),则f ′(x )=21+x -21+4x,因为当0<x <2时,x 2<2x ,所以当0<x <2时,1+2x +x 2<1+2x +2x ,即1+x <1+4x ,所以当0<x <2时,f ′(x )>0,f (x )单调递增,所以f (0.01)>f (0)=0,所以a >c .同理,令g (x )=ln (1+2x )-( 1+4x -1)(x >0),则g ′(x )=21+2x -21+4x,因为当x >0时,(1+2x )2>1+4x ,所以当x >0时,g ′(x )<0,g (x )单调递减,所以g (0.01)<g (0)=0,所以c >b .综上a >c >b .故选B.11.(2022·天津高考)已知a ∈R ,设函数f (x )=⎩⎨⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( )A .[0,1]B .[0,2]C .[0,e]D .[1,e] 答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,∴当a ≥1时,f (x )min =f (1)=1>0恒成立,当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1.综上,a ≥0.当x >1时,f (x )=x -a ln x ≥0恒成立,即a ≤xln x恒成立.设g (x )=xln x ,则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,g (x )单调递减,当x >e 时,g ′(x )>0,g (x )单调递增,∴g (x )min =g (e)=e ,∴a ≤e.综上,a 的取值范围为0≤a ≤e ,即[0,e].故选C.12.(2022·新高考Ⅰ卷)函数f (x )=|2x -1|-2ln x 的最小值为________. 答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x ,f ′(x )=2-2x =2(x -1)x ,当x >1时,f ′(x )>0,f (x )单调递增;当12<x <1时,f ′(x )<0,f (x )单调递减,故f (x )min =f (1)=1;②当0<x ≤12时,f (x )=1-2x -2ln x ,f ′(x )=-2-2x =-2(x +1)x <0,此时函数f (x )=1-2x -2ln x 为⎝ ⎛⎦⎥⎤0,12上的减函数.故f (x )min =f ⎝ ⎛⎭⎪⎫12=2ln 2>1.综上,f (x )min =f (1)=1.13.(2022·江苏高考)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,12解析 易知函数f (x )的定义域关于原点对称.∵f (x )=x 3-2x +e x -1e x ,∴f (-x )=(-x )3-2(-x )+e -x -1e-x =-x 3+2x +1e x -e x =-f (x ),∴f (x )为奇函数,又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2=3x 2≥0(当且仅当x =0时,取“=”),从而f (x )在R 上单调递增,∴f (a -1)+f (2a 2)≤0⇔f (a -1)≤f (-2a 2)⇔-2a 2≥a -1,解得-1≤a ≤12.三、模拟小题14.(2022·辽宁沈阳东北育才学校高三第一次模拟)定义在(0,+∞)上的函数f (x )的导函数f ′(x )满足xf ′(x )<6f (x ),则必有( )A .64f (1)<f (2)B .81f (1)>16f (3)C .4f (2)>f (4)D .729f (2)>64f (3) 答案 D解析 由xf ′(x )<6f (x ),得x 6f ′(x )<6x 5·f (x ).设g (x )=f (x )x 6,x >0,则g ′(x )=xf ′(x )-6f (x )x 7<0,故g (x )在(0,+∞)上单调递减,则g (1)>g (2)>g (3)>g (4),则64f (1)>f (2),729f (2)>64f (3),64f (2)>f (4),729f (1)>f (3),但由于f (1),f (2),f (3),f (4)的正负不确定,所以81f (1)>16f (3),4f (2)>f (4)都未必成立.故选D.15.(2022·湖北黄石高三上调研)已知a =4ln 5π,b =5ln 4π,c =5ln π4,则a ,b ,c 的大小关系是( )A .a <b <cB .b <c <aC .b <a <cD .c <b <a 答案 A解析 令f (x )=ln xx (x ≥e),可得f ′(x )=1x ·x -ln x x 2=1-ln x x 2,当x ≥e 时,f ′(x )≤0恒成立,所以f (x )=ln x x 在[e ,+∞)上单调递减,所以f (π)>f (4)>f (5),即ln ππ>ln 44>ln 55,可得4ln π>πln 4,5ln 4>4ln 5,所以ln π4>ln 4π,5πln 4>4πln 5,所以5ln π4>5ln 4π,5ln 4π>4ln 5π,即c >b ,b >a ,所以a <b <c .故选A.16.(2022·山西太原高三模拟)点M 在曲线G :y =3ln x 上,过M 作x 轴的垂线l ,设l 与曲线y =1x 交于点N ,OP →=OM →+ON →3,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( )A .0B .1C .2D .3 答案 C解析 设M (t ,3ln t ),则N ⎝ ⎛⎭⎪⎫t ,1t ,所以OP →=OM →+ON →3=⎝ ⎛⎭⎪⎫2t 3,ln t +13t ,依题意可得ln t +13t =0,设g (t )=ln t +13t ,则g ′(t )=1t -13t 2=3t -13t 2,当0<t <13时,g ′(t )<0,则g (t )单调递减;当t >13时,g ′(t )>0,则g (t )单调递增,所以g (t )min =g ⎝ ⎛⎭⎪⎫13=1-ln 3<0,且g ⎝ ⎛⎭⎪⎫1e 2=-2+e 23>0,g (1)=13>0,所以g (t )=ln t +13t =0有两个不同的解,所以曲线G 上的“水平黄金点”的个数为2.故选C.17.(多选)(2022·新高考八省联考)已知函数f (x )=x ln (1+x ),则( ) A .f (x )在(0,+∞)单调递增 B .f (x )有两个零点C .曲线y =f (x )在点⎝ ⎛⎭⎪⎫-12,f ⎝⎛⎭⎪⎫-12处切线的斜率为-1-ln 2 D .f (x )是偶函数 答案 AC解析 由f (x )=x ln (1+x )知函数f (x )的定义域为(-1,+∞),f ′(x )=ln (1+x )+x1+x ,当x ∈(0,+∞)时,ln (1+x )>0,x1+x>0,所以f ′(x )>0,故f (x )在(0,+∞)上单调递增,A 正确;当-1<x <0时,f ′(x )<0,所以f (x )在(-1,0)上单调递减.又因为f (x )在(0,+∞)上单调递增,所以f (x )min =f (0)=0.所以f (x )≥0,f (x )只有0一个零点,B 错误;令x =-12,f ′⎝ ⎛⎭⎪⎫-12=ln 12-1=-ln 2-1,故曲线y =f (x )在点⎝ ⎛⎭⎪⎫-12,f ⎝⎛⎭⎪⎫-12处切线的斜率为-1-ln 2,C 正确;由函数f (x )的定义域为(-1,+∞),不关于原点对称,可知f (x )不是偶函数,D 错误.故选AC.18.(多选)(2022·山东省潍坊一中高三开学检测)函数f (x )=x ln x ,g (x )=f ′(x )x ,下列命题中正确的是( )A .不等式g (x )>0的解集为⎝ ⎛⎭⎪⎫1e ,+∞B .函数g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减C .若函数F (x )=f (x )-ax 2有两个极值点,则a ∈(0,1)D .若x 1>x 2>0时,总有m 2(x 21-x 22)>f (x 1)-f (x 2)恒成立,则m ≥1 答案 AD解析 因为f (x )=x ln x ,g (x )=f ′(x )x =ln x +1x ,则g ′(x )=-ln xx 2,令g ′(x )>0,可得x ∈(0,1),故g (x )在该区间上单调递增;令g ′(x )<0,可得x ∈(1,+∞),故g (x )在该区间上单调递减.又当x >1时,g (x )>0,且g ⎝ ⎛⎭⎪⎫1e =0,g (1)=1.故g (x )的图象如图所示:对于A ,数形结合可知g (x )>0的解集为⎝ ⎛⎭⎪⎫1e ,+∞,故A 正确;对于B ,由上面分析可知,B 错误;对于C ,若函数F (x )=f (x )-ax 2有两个极值点,即F (x )=x ln x -ax 2有两个极值点,又F ′(x )=ln x -2ax +1,要满足题意,则需ln x -2ax +1=0在(0,+∞)上有两个根,即2a =ln x +1x 在(0,+∞)上有两个根,也即直线y =2a 与y =g (x )的图象有两个交点.数形结合,则0<2a <1,解得0<a <12,故C 错误;对于D ,若x 1>x 2>0时,总有m 2(x 21-x 22)>f (x 1)-f (x 2)恒成立,即m 2x 21-x 1ln x 1>m 2x 22-x 2ln x 2恒成立.构造函数h (x )=m2x 2-x ln x ,则h (x 1)>h (x 2)对任意的x 1>x 2>0恒成立.故h (x )在(0,+∞)上单调递增,则h ′(x )=mx -ln x -1≥0在(0,+∞)上恒成立.也即ln x +1x ≤m 在区间(0,+∞)上恒成立,则m ≥g (x )max =1,故D 正确.故选AD.19.(2022·河北石家庄第一中学高三教学质量检测(一))已知函数f (x )=16x 3+12bx 2+cx 的导函数f ′(x )是偶函数,若方程f ′(x )-ln x =0在区间⎣⎢⎡⎦⎥⎤1e ,e (其中e 为自然对数的底数)上有两个不相等的实数根,则实数c 的取值范围是________________.答案 ⎣⎢⎡⎭⎪⎫-1-12e 2,-12解析 ∵f (x )=16x 3+12bx 2+cx ,∴f ′(x )=12x 2+bx +c ,导函数y =f ′(x )的对称轴为直线x =-b ,由于该函数为偶函数,则-b =0⇒b =0,∴f ′(x )=12x 2+c ,令f ′(x )-ln x =0,即12x 2+c -ln x =0,得c =ln x -12x 2.令g (x )=ln x -12x 2,问题转化为当直线y =c 与函数g (x )=ln x -12x 2在区间⎣⎢⎡⎦⎥⎤1e ,e 上的图象有两个交点时,求实数c 的取值范围.g ′(x )=1x -x =1-x 2x ,令g ′(x )=0,得x =1,列表如下:x ⎝ ⎛⎭⎪⎫1e ,1 1 (1,e) g ′(x ) + 0 - g (x )极大值所以函数y =g (x )在x =1处取得极大值,亦即最大值,g (x )max =g (1)=-12,又g ⎝ ⎛⎭⎪⎫1e =-1-12e 2,g (e)=1-e 22,显然,g (e)<g ⎝ ⎛⎭⎪⎫1e ,如图所示,结合图象可知,当g ⎝ ⎛⎭⎪⎫1e ≤c <g (1)时,即当-1-12e 2≤c <-12时,直线y =c 与函数y=g (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上的图象有两个交点,因此,实数c 的取值范围是⎣⎢⎡⎭⎪⎫-1-12e 2,-12.一、高考大题1.(2022·全国乙卷)设函数f (x )=ln (a -x ),已知x =0是函数y =xf (x )的极值点. (1)求a ;(2)设函数g (x )=x +f (x )xf (x ),证明:g (x )<1.解 (1)由题意,得y =xf (x )=x ln (a -x ),x ∈(-∞,a ),y ′=ln (a -x )+x [ln (a -x )]′=ln (a -x )+x x -a. 因为x =0是函数y =xf (x )的极值点, 所以y ′|x =0=ln a =0,所以a =1.(2)证明:由(1)可知f (x )=ln (1-x ),要证g (x )<1,即证x +f (x )xf (x )<1,即需证x +ln (1-x )x ln (1-x )<1,x ∈(-∞,0)∪(0,1).因为当x ∈(-∞,0)时,x ln (1-x )<0,当x ∈(0,1)时,x ln (1-x )<0; 所以需证x +ln (1-x )>x ln (1-x ), 即x +(1-x )ln (1-x )>0.令h (x )=x +(1-x )ln (1-x ),x ∈(-∞,1)且x ≠0, 则h ′(x )=1+(-1)ln (1-x )+(1-x )·-11-x=-ln (1-x ),所以当x ∈(-∞,0)时,h ′(x )<0,h (x )单调递减; 当x ∈(0,1)时,h ′(x )>0,h (x )单调递增, 所以h (x )>h (0)=0,即x +ln (1-x )>x ln (1-x ), 所以x +ln (1-x )x ln (1-x )<1成立,所以x +f (x )xf (x )<1,即g (x )<1.2.(2022·新高考Ⅰ卷)已知函数f (x )=x (1-ln x ). (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b <e. 解 (1)因为f (x )=x (1-ln x ),所以f (x )的定义域为(0,+∞),f ′(x )=1-ln x +x ·⎝ ⎛⎭⎪⎫-1x =-ln x .当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:由题意,a,b是两个不相等的正数,且b ln a-a ln b=a-b,两边同时除以ab,得ln aa -ln bb=1b-1a,即ln a+1a=ln b+1b,1a⎝⎛⎭⎪⎫1-ln1a=1b⎝⎛⎭⎪⎫1-ln1b,即f⎝⎛⎭⎪⎫1a=f⎝⎛⎭⎪⎫1b.令x1=1a ,x2=1b,由(1)知f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,且当0<x<e时,f(x)>0,当x>e时,f(x)<0,不妨设x1<x2,则0<x1<1<x2<e.要证2<1a +1b<e,即证2<x1+x2<e.先证x1+x2>2,要证x1+x2>2,即证x2>2-x1,因为0<x1<1<x2<e,所以2-x1>1,又f(x)在(1,+∞)上单调递减,所以即证f(x2)<f(2-x1),又f(x1)=f(x2),所以即证f(x1)<f(2-x1),即证当x∈(0,1)时,f(x)-f(2-x)<0.构造函数F(x)=f(x)-f(2-x),则F′(x)=f′(x)+f′(2-x)=-ln x-ln (2-x)=-ln [x(2-x)],当0<x<1时,0<x(2-x)<1,则-ln[x(2-x)]>0,即当0<x<1时,F′(x)>0,所以F(x)在(0,1)上单调递增,所以当0<x<1时,F(x)<F(1)=0,所以当0<x <1时,f (x )-f (2-x )<0成立, 所以x 1+x 2>2成立. 再证x 1+x 2<e ,由(1)知,f (x )的极大值点为x =1,f (x )的极大值为f (1)=1, 过点(0,0),(1,1)的直线方程为y =x ,设f (x 1)=f (x 2)=m ,当x ∈(0,1)时,f (x )=x (1-ln x )>x , 直线y =x 与直线y =m 的交点坐标为(m ,m ),则x 1<m . 欲证x 1+x 2<e ,即证x 1+x 2<m +x 2=f (x 2)+x 2<e , 即证当1<x <e 时,f (x )+x <e.构造函数h (x )=f (x )+x ,则h ′(x )=1-ln x ,当1<x <e 时,h ′(x )>0,所以函数h (x )在(1,e)上单调递增,所以当1<x <e 时,h (x )<h (e)=f (e)+e =e ,即f (x )+x <e 成立,所以x 1+x 2<e 成立. 综上可知,2<1a +1b <e 成立.3.(2022·浙江高考)设a ,b 为实数,且a >1,函数f (x )=a x -bx +e 2(x ∈R ). (1)求函数f (x )的单调区间;(2)若对任意b >2e 2,函数f (x )有两个不同的零点,求a 的取值范围;(3)当a =e 时,证明:对任意b >e 4,函数f (x )有两个不同的零点x 1,x 2(x 1<x 2),满足x 2>b ln b 2e 2x 1+e 2b .注:e =2.71828…是自然对数的底数. 解 (1)由题意,得f ′(x )=a x ln a -b .因为a >1,所以ln a >0,a x >0, 所以当b ≤0时,f ′(x )>0, 函数f (x )在R 上单调递增.当b >0时,令f ′(x )>0,则a x >b ln a ,所以x >log a b ln a ,令f ′(x )<0,得x <log a bln a , 所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,log a b ln a 上单调递减,在⎝ ⎛⎭⎪⎫log ab ln a ,+∞上单调递增. 综上,当b ≤0时,函数f (x )在R 上单调递增;当b >0时,函数f (x )在⎝ ⎛⎭⎪⎫-∞,log ab ln a 上单调递减,在⎝ ⎛⎭⎪⎫log a b ln a ,+∞上单调递增. (2)因为函数f (x )有两个不同的零点,所以a x -bx +e 2=0有两个不同的根,即曲线y =a x 与直线y =bx -e 2有两个不同的交点.易知直线y =bx -e 2与y 轴交于点(0,-e 2). 先考虑曲线y =a x 与直线y =bx -e 2相切的情况. 设切点坐标为(t ,a t ),则切线的斜率为a t ln a , 所以切线方程为y -a t =a t ln a (x -t ), 则y =(a t ln a )x +a t -ta t ln a =bx -e 2, 所以a t -ta t ln a =a t -a t ln a t =-e 2, 令a t =m ,则m -m ln m =-e 2,m >0, 令g (m )=m -m ln m +e 2,则g ′(m )=-ln m , 当m ∈(0,1)时,g ′(m )>0, 当m ∈(1,+∞)时,g ′(m )<0,故g(m)在(0,1)上单调递增,在(1,+∞)上单调递减,又g(e2)=0,当m∈(0,1)时,g(m)=m(1-ln m)+e2>0,所以a t=e2,所以要满足条件,则b>a t ln a=e2ln a恒成立.因为b>2e2,所以2e2≥e2ln a,得1<a≤e2.故a的取值范围为(1,e2].(3)证明:当a=e时,f(x)=e x-bx+e2,所以f′(x)=e x-b,令f′(x)>0,得x>ln b,令f′(x)<0,得x<ln b,所以函数f(x)在(-∞,ln b)上单调递减,在(ln b,+∞)上单调递增,所以f(x)min=f(ln b)=b-b ln b+e2,由(2)得g(x)=x-x ln x+e2在(1,+∞)上单调递减,又b>e4,所以b-b ln b+e2<-3e4+e2<0.>0,设h(b)=b-2ln b,b>e4,则h′(b)=1-2bh(b)在(e4,+∞)上单调递增,所以h(b)>h(e4)=e4-8>0,所以b>2ln b,所以e b>b2,所以f(b)=e b-b2+e2>e2>0,又f(0)=1+e2>0,f(x)min =f(ln b)<0,0<ln b<b,所以函数f(x)在(0,ln b)和(ln b,b)上各存在一个零点,分别为x1,x2(x1<x2),则e x1-bx1+e2=0,所以bx 1=e x 1+e 2, 所以要证x 2>b ln b 2e 2x 1+e 2b ,只需证x 2-e 2b >ln b 2e 2bx 1=ln b 2e 2(e x1+e 2). 因为f (2)=2e 2-2b <2e 2-2e 4<0, 所以可知0<x 1<2,所以e x 1+e 2<2e 2, 所以ln b 2e 2(e x 1+e 2)<ln b2e 2·2e 2=ln b , 故只需证x 2-e 2b >ln b ,即x 2>e 2b +ln b . f ⎝ ⎛⎭⎪⎫e 2b +ln b =e -b ⎝ ⎛⎭⎪⎫e 2b +ln b +e 2 =e-b ln b =b,因为b >e 4,所以所以f ⎝ ⎛⎭⎪⎫e 2b +ln b <0,所以x 2∈⎝ ⎛⎭⎪⎫e 2b +ln b ,b ,所以x 2>e 2b +ln b .所以x 2>b ln b 2e 2x 1+e 2b 成立. 二、模拟大题4.(2022·河北衡水深州长江中学高三开学考试)已知函数f (x )=ln x +ax +1x ,a ∈R .(1)求f (x )的单调区间,并求当a =1时,f (x )的最大值;(2)若对任意的x ∈(0,+∞),f (x )≤e x 恒成立,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞), f (x )=ln x x +a +1x ,则f ′(x )=-ln x x 2,则当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). 当a =1时,f (x )max =f (1)=1+a =2. (2)由题得当x >0时, ln x x +a +1x ≤e x恒成立,即a ≤x e x -ln x -1x 在(0,+∞)上恒成立.令G (x )=x e x -ln x -1x =e ln x e x -ln x -1x=e x +ln x -ln x -1x,令h (x )=e x -x -1,则h ′(x )=e x -1,当x ∈(-∞,0)时,h ′(x )<0,h (x )单调递减; 当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增. ∴h (x )≥h (0)=0,∴e x ≥x +1,当x =0时取等号,∴e x +ln x ≥x +ln x +1,当x +ln x =0时取等号, ∴G (x )=e x +ln x -ln x -1x ≥x +ln x +1-ln x -1x=1,当x +ln x =0时等号成立,G (x )取到最小值.令H (x )=x +ln x ,则H ′(x )=1+1x >0(x >0),∴H (x )在(0,+∞)上单调递增,又H ⎝ ⎛⎭⎪⎫1e =1e -1<0,H (1)=1>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得H (x 0)=0, ∴G (x )min =1.则a ≤G (x )min =1,∴实数a 的取值范围为(-∞,1].5.(2022·湖北武汉、襄阳、荆门、宜昌四地六校高三起点联考)设f (x )=x sin x +cos x ,g (x )=x 2+4.(1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点.解 (1)f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=0,则x =0或x =±π2.当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,f ′(x )>0,f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,f (x )单调递减. (2)证明:h (x )=x 2+4-4x sin x -4cos x ,h (0)=0,∴x =0是h (x )的一个零点, ∵h (x )是偶函数,∴要确定h (x )在R 上的零点个数,只需确定x >0时,h (x )的零点个数即可.①当x >0时,h ′(x )=2x -4x cos x =2x (1-2cos x ).令h ′(x )=0,得cos x =12,x =π3+2k π或x =-π3+2k π(k ∈N ).x ∈⎝ ⎛⎭⎪⎫0,π3时,h ′(x )<0,h (x )单调递减,h ⎝ ⎛⎭⎪⎫π3=π29+2-23π3<0, x ∈⎝ ⎛⎭⎪⎫π3,5π3时,h ′(x )>0,h (x )单调递增,h ⎝ ⎛⎭⎪⎫5π3=25π29+103π3+2>0, ∴h (x )在⎝ ⎛⎭⎪⎫0,5π3内有唯一零点. ②当x ≥5π3时,由于sin x ≤1,cos x ≤1,h (x )=x 2+4-4x sin x -4cos x ≥x 2+4-4x-4=x 2-4x =t (x ),而t (x )在⎝ ⎛⎭⎪⎫5π3,+∞上单调递增,t (x )≥t ⎝ ⎛⎭⎪⎫5π3>0, ∴h (x )>0恒成立,故h (x )在⎝ ⎛⎭⎪⎫5π3,+∞内无零点, ∴h (x )在(0,+∞)内有一个零点.由于h (x )是偶函数,∴h (x )在(-∞,0)内有一个零点,而h (0)=0,∴h (x )在R 上有且仅有三个零点.6.(2022·广东省广州市执信、广雅、六中三校高三联考)已知函数f (x )=a ln x +x 2,其中a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明:f (x )≤x 2+x -1;(3)试比较ln 2222+ln 3232+ln 4242+…+ln n 2n 2与(n -1)(2n +1)2(n +1)(n ∈N *且n ≥2)的大小,并证明你的结论.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a x +2x =a +2x 2x .①当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②当a <0时,令f ′(x )=0,解得x = -a 2, 当0<x < -a 2时,a +2x 2<0,所以f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0, -a 2上单调递减; 当x > -a 2时,a +2x 2>0,所以f ′(x )>0,所以f (x )在⎝ ⎛⎭⎪⎫ -a 2,+∞上单调递增. 综上,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a <0时,函数f (x )在⎝ ⎛⎭⎪⎫0, -a 2上单调递减,在⎝ ⎛⎭⎪⎫ -a 2,+∞上单调递增. (2)证明:当a =1时,f (x )=ln x +x 2,要证明f (x )≤x 2+x -1, 即证ln x ≤x -1,即证ln x -x +1≤0.设g (x )=ln x -x +1,则g ′(x )=1-x x ,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0.所以1为极大值点,且g (x )在x =1处取得最大值. 所以g (x )≤g (1)=0,即ln x -x +1≤0,故f (x )≤x 2+x -1. (3)ln 2222+ln 3232+ln 4242+…+ln n 2n 2<(n -1)(2n +1)2(n +1). 证明:由(2)知ln x ≤x -1(当且仅当x =1时等号成立),即ln x x ≤1-1x ,则有ln 2222+ln 3232+ln 4242+…+ln n 2n 2<1-122+1-132+…+1-1n 2=n -1-⎝ ⎛⎭⎪⎫122+132+…+1n 2 <n -1-⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =n -1-⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1 =n -1-⎝ ⎛⎭⎪⎫12-1n +1=(n -1)(2n +1)2(n +1), 故ln 2222+ln 3232+ln 4242+…+ln n 2n 2<(n -1)(2n +1)2(n +1).。
自主园地 备考套餐
加固训练 练透考点
1.若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则燃烧剩下的
高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )
A B
C D
解析:依题设可知,蜡烛高度h与燃烧时间t之间构成一次函数关
系,
又∵函数图像必过点(0,20)、(4,0)两点,且该图像应为一条线段.∴
选B项.
答案:B
2.某城市对一种售价为每件160元的商品征收附加税,税率为
R%(即每销售100元征税R元),若年销售量为30-52R万件,要使附
加税不少于128万元,则R的取值范围是( )
A.[4,8] B.[6,10]
C.[4%,8%] D.[6%,100%]
解析:根据题意,要使附加税不少于128万元,需
30-52R
×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].
答案:A
3.有一位商人,从北京向上海的家中打电话,通话m分
钟的电话费,由函数f(m)=1.06×(0.5[m]+1)(元)决定,其中m>0,
[m]是大于或等于m的最小整数.则从北京到上海通话时间为5.5分钟
的电话费为( )
A.3.71元 B.3.97元
C.4.24元 D.4.77元
解析:∵m=5.5,∴[5.5]=6.代入函数解析式,得f(5.5)=
1.06×(0.5×6+1)=4.24.
答案:C
4.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,
开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则
截取的矩形面积的最大值为__________.
解析:依题意知:20-xx=y-824-y,即x=54(24-y),
∴阴影部分的面积
S=xy=54(24-y)y=54(-y2+24y),
∴当y=12时,S有最大值为180.
答案:180