高三数学函数专题含答案
- 格式:doc
- 大小:92.50 KB
- 文档页数:6
专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。
高三函数综合题1.已知函数f(x)=2x+2-x a(常数a∈R).(1)若a=-1,且f(x)=4,求x的值;(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.2.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.3.已知函数f(x)=x|x-a|+2x-3.(1)当a=4,2≤x≤5,求函数f(x)的最大值与最小值;(2)若x≥a,试求f(x)+3>0的解集;(3)当x∈[1,2]时,f(x)≤2x-2恒成立,求实数a的取值范围.4.已知函数f(x)=x2-1,g(x)=a|x-1|.(1)若函数h(x)=|f(x)|-g(x)只有一个零点,求实数a的取值范围;(2)当a≥-3时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.答案详解1.已知函数f(x)=2x+2-x a(常数a∈R).(1)若a=-1,且f(x)=4,求x的值;(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.解:(1)由a=-1,f(x)=4,可得2x-2-x=4,设2x=t,则有t-t -1=4,即t 2-4t-1=0,解得t=2±5,当t=2+5时,有2x=2+5,可得x=log 2(2+5).当t=2-5时,有2x=2-5,此方程无解.故所求x 的值为log 2(2+5).(2)设x 1,x 2∈[1,+∞),且x 1>x 2, 则f(x 1)-f(x 2)=(2x1+2-x 1a)-(2x 2+2-x 2a)=(2x 1-2x2)+2112222x x x x +-a=2121222x x x x +-(2x 1+x2-a)由x 1>x 2,可得2x1>2x 2,即2x1-2x2>0,由x 1,x 2∈[1,+∞),x 1>x 2,得x 1+x 2>2,故2x 1+x2>4>0,又a≤4,故2x 1+x 2>a ,即2x 1+x2-a >0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在[1,+∞)上是增函数.(3)因为函数f (x )=2x +2-xa ,存在x ∈[0,1],f (2x )>[f (x )]2⇔22x +2-2x a >22x +2a+2-2x a 2⇔2-2x (a 2-a )+2a <0 设t=2-2x,由x ∈[0,1],可得t ∈[41,1],由存在x ∈[0,1]使得f (2x )>[f (x )]2, 可得存在t ∈[41,1],使得(a 2-a )t+2a <0,令g (t )=(a 2-a )t+2a <0, 故有g(41)=41(a 2-a)+2a <0或g (1)=(a 2-a )+2a <0, 可得-7<a <0.即所求a 的取值范围是(-7,0).2.已知函数f (x )=x 2+(x-1)|x-a|. (1)若a=-1,解方程f (x )=1;(2)若函数f (x )在R 上单调递增,求实数a 的取值范围;(3)若a <1且不等式f (x )≥2x -3对一切实数x ∈R 恒成立,求a 的取值范围.解析:(1)当a=-1时,f (x )=x 2+(x-1)|x+1|,故有,f(x)= ⎩⎨⎧-<-≥-111122x x x ,当x≥-1时,由f (x )=1,有2x 2-1=1,解得x=1,或x=-1. 当x <-1时,f (x )=1恒成立, ∴方程的解集为{x|x≤-1或x=1}.(2)f(x)= ⎩⎨⎧<-+≥++-a x a x a ax a x a x )1()1(22若f (x )在R 上单调递增,则⎪⎩⎪⎨⎧>+≤+0141a a a ,解得a≥31,∴当a≥31时,f (x )在R 上单调递增. (3)设g (x )=f (x )-(2x-3),则g(x)=⎩⎨⎧<+--≥+++-a x a x a ax a x a ,3)1(,3)3(2x 2,不等式f (x )≥2x -3对一切实数x ∈R 恒成立,等价于不等式g (x )≥0对一切实数x ∈R 恒成立.∵a <1,∴当x ∈(-∞,a )时,g (x )单调递减,其值域为(a 2-2a+3,+∞),∵a 2-2a+3=(a-1)2+2≥2,∴g (x )≥0成立.3.已知函数f (x )=x|x-a|+2x-3.(1)当a=4,2≤x≤5,求函数f (x )的最大值与最小值; (2)若x≥a,试求f (x )+3>0的解集;(3)当x ∈[1,2]时,f (x )≤2x -2恒成立,求实数a 的取值范围. 解析:(1)当a=4时,f (x )=x|x-4|+2x-3,①2≤x<4时,f (x )=x (4-x )+2x-3=-(x-3)2+6, 当x=2时,f (x )min =5;当x=3时,f (x )max =6②当4≤x≤5时,f (x )=x (x-4)+2x-3=(x-1)2-4, 当x=4时,f (x )min =5;当x=5时,f (x )max =12综上所述,当x=2或4时,f (x )min =5;当x=5时,f (x )max =12 (2)若x≥a,f (x )+3=x[x-(a-2)],当a >2时,x >a-2,或x <0,因为a >a-2,所以x≥a; 当a=2时,得x≠0,所以x≥a;当a <2时,x >0,或x <a-2,①若0<a <2,则x≥a;②若a≤0,则x >0 综上可知:当a >0时,所求不等式的解集为[a ,+∞);(10分) 当a≤0时,所求不等式的解集为(0,+∞)(12分) (3)当x∈[1,2]时,f (x )≤2x -2,即x•|x -a|≤1⇔-x 1≤x -a≤x 1⇔x-x 1≤a≤x+x1 因为x-x1在x∈[1,2]上增,最大值是2-21=23,x+x1在x∈[1,2]上增,最小值是2,故只需23≤a≤2.故实数a 的取值范围是23≤a≤2.4.已知函数f (x )=x 2-1,g (x )=a|x-1|.(1)若函数h (x )=|f (x )|-g (x )只有一个零点,求实数a 的取值范围; (2)当a≥-3时,求函数h (x )=|f (x )|+g (x )在区间[-2,2]上的最大值.解:(1)∵函数h (x )=|f (x )|-g (x )只有一个零点,即h (x )=|f (x )|-g (x )=|x 2-1|-a|x-1|只有一个零点,显然x=1是函数的零点,∴即|x+1|-a=0无实数根,∴a <0;(2)h (x )=|f (x )|+g (x )=)=|x 2-1|+a|x-1|=⎪⎩⎪⎨⎧-≤≤--+-<<-++--≤≤--+121111211222x a ax x x a ax x x a ax x ,当1<x≤2时,∵a≥-3,∴-2a ≤23,当x=2时,h (x )的最大值为h (2)=a+3; 当-2≤x<-1时,2a≥-23,当x=-2时,h (x )的最大值为h (-2)=3a+3;当-1≤x≤1时,h (x )的最大值为max{h (-1),h (1),h (-2a )}=max{2a ,0,41a 2+a+1}=41a 2+a+1,∴函数h (x )最大值为h (a )=⎪⎪⎩⎪⎪⎨⎧+>+++<<+≤≤-+6241416240330332a a a x a a a .。
高三数学函数极限练习题及答案一、单项选择题(每题2分,共40分)1. 已知函数f(x) = 3x^2 + 2x - 1,求lim(x->2)(f(x))的值。
A. 16B. 18C. 20D. 242. 已知函数g(x) = sin(2x) / x,求lim(x->0)(g(x))的值。
A. -2B. -1C. 0D. 23. 已知函数h(x) = (x^2 + x - 2) / (x - 1),求lim(x->1)(h(x))的值。
A. 1B. 2C. 3D. 44. 已知函数k(x) = (x - 3) / (x^2 - 9),求lim(x->3)(k(x))的值。
A. 1B. 0C. 1/3D. 35. 已知函数m(x) = sqrt(x + 1) - 1,求lim(x->0)(m(x))的值。
A. 0B. 1/2C. 1D. 26. 已知函数n(x) = e^x - 1,求lim(x->0)(n(x))的值。
A. 1B. eC. 0D. 27. 已知函数p(x) = ln(1 + x),求lim(x->0)(p(x))的值。
A. 1B. ln(2)C. -1D. 08. 已知函数q(x) = (1 - cosx) / (x^2),求lim(x->0)(q(x))的值。
A. 1/2B. 1/3C. 1/4D. 1/59. 已知函数r(x) = tanx / x,求lim(x->0)(r(x))的值。
A. 1B. 0C. ∞D. -∞10. 已知函数s(x) = x^2 / (1 - cosx),求lim(x->0)(s(x))的值。
A. 0B. 1C. 2D. ∞11. 已知函数t(x) = (x - sinx) / x^3,求lim(x->0)(t(x))的值。
A. 0B. 1/2C. 1D. ∞12. 如果lim(x->a)(f(x))存在,则称函数f(x)在x=a处的极限存在。
沪教版(上海)高中数学度高三数学二轮复习函数方程专题之函数与不等式② 教学目标 理解并充分掌握基本的函数与不等式题型之间的转换问题,即函数题型用不等式来解,不等式题型用函数来做的思想.知识梳理函数与不等式(方程)是相互联系的,在一定条件下,他们可以相互转化,例如解方程()0f x =就是求函数的零点,解不等式()()f x g x >,就是当两个函数的函数值的大小关系确定后,求自变量的取值范围。
正确理解函数与不等式(方程)的这种对立统一关系,有利于提高综合运用知识分析问题和解决问题的能力.典例精讲例1.(★★★)已知函数()24f x mx =+,若在[2,1]-上存在唯一零点,则实数m 的取值范围是___________.解:由题意得:(2)(1)0f f -⋅≤,即(,2][1,)m ∈-∞-+∞例2.(★★★)函数3()log (3)1f x x =+-的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为___________. 解:由题意得点A 的坐标为(2,1)--,代入直线方程得:21m n +=.∴121244()(2)2244248n m n m m n m n m n m n m n +=++=+++=++≥+=,当且仅当4n m m n=.即1412m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立. 例3.(★★★)已知2()221f x x mx m =+++.(1)若函数有两个零点,且其中一个在区间(1,0)-,另一个在区间(1,2)内,求m 的取值范围(2)若函数的两个零点均在区间(0,1)内,求m 的取值范围.解:(1)(1)0122101(0)0210512(,)5(1)012210626(2)044210f m m m f m m f m m m f m m ->-++>⎧⎧⎧<-⎪⎪⎪<+<⎪⎪⎪⇒⇒⇒∈--⎨⎨⎨<+++<⎪⎪⎪>-⎪⎪⎪⎩>+++>⎩⎩. (2)221(22)1,2(1)x m x x m x --+=--=+.令1,(1,2)t x t =+∈. 所以221(1)11221212(2)()12222t t t m t t t t t t----+-=⋅=⋅=--+=-++. 所以212(1),222(1)3,122t m m m t +=--≤--<-<≤-. 课堂检测1.(★★)使2log ()1x x -<+成立的x 的取值范围是___________.解:结合函数图象可知:(1,0)x ∈-2.(★★★)设函数2()|45|f x x x =--,若在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方,则实数k 的取值范围是___________.解:由题意得:2345kx k x x +>-++在区间[1,5]-上恒成立. 即:2453x x k x -++>+在区间[1,5]-上恒成立, 由2453x x x -+++在[1,5]-上的最大值为2,得出2k >. 3.(★★★)三位同学合作学习,对问题“已知不等式222xy ax y ≤+,对于[1,2],[2,3]x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析” .乙说:“寻找x 与y 的关系,再作分析”.丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自己的其他解法,可求出实数a 的取值范围是___________.解:原式⇔ 22()y y a x x≥-在[1,2],[2,3]x y ∈∈上恒成立, 令[1,3]y t x=∈,则函数22t t -在[1,3]的最大值为1-,则1a ≥-. 4.(★★★★)已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c 满足a b c >>,0(,,)a b c a b c R ++=∈.(1)求证:两函数的图像交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影11A B 的长的取值范围.解:(1)222220444()y ax bx c ax bx c b ac b ac y bx⎧=++⇒++=⇒∆=-⇒∆=-⎨=-⎩. 因为a b c >>且0a b c ++=,所以0a >且0c <,20b ac ->,即0∆>.所以两函数图像有两个交点. (2)22221124()()13||221()2()24b ac a c ac c c c A B a a a a -+-===++=++ 因为0()()a b c b a c a a c c ++=⇒=-+⇒>-+>, 所以1(2,)2c a ∈--.故11||(3,23)A B ∈. 回顾总结1.在写不等式解集的时候一定要注意答案要写__________集合或区间形式.。
三角函数与函数导数单元测试一、选择题1、函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==2、已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C .②③D .②④ 3、设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f •;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =•.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ••=•B .()()()()()())(x h g h f x h g f •=•C .()()()()()())(x h g h f x h g f =D . ()()()()()())(x h g h f x h g f •••=••4、已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A .[22,22]-+ B .(22,22)-+ C .[1,3] D .(1,3)5、设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1 B .12 C .52 D .226、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]7、函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)8、函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)89、函数2sin 2xy x =-的图象大致是10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )911、设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ).A.()()1001,,-B.()()11,,-∞-+∞C.()()101,,-+∞D.()()101,,-∞-12、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ). A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦B.[)0,+∞, C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦13、若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=A .33B .33-C .39D .69-y0.1xO0.14已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭15)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 二、填空题16\如图,△ABC 中,AB=AC=2,BC=23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于______。
高三数学函数综合试题答案及解析1.给出四个函数,分别满足①;②;③;④,又给出四个函数的图象如下:则正确的配匹方案是()A.①—M ②—N③—P ④—QB.①—N②—P③—M④—QC.①—P②—M③—N④—QD.①—Q②—M③—N④—P【答案】D【解析】图象M是指数型函数,具有性质②;图象N是对数型函数,具有性质③图象P是幂函数,具有性质④,图象Q是正比例函数,具有性质①,故选D【考点】基本初等函数的图象与性质.2.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.3.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.4.函数的部分图像可能是()A B C D【答案】B【解析】∵,∴为奇函数,且存在多个零点导致存在多个零点,故的图像应为含有多个零点的奇函数图像.故选B.【考点】通过图像考查函数的奇偶性以及单调性.5.已知函数,若直线对任意的都不是曲线的切线,则的取值范围为.【答案】.【解析】f(x)=x3-3ax(a∈R),则f′(x)=3x2-3a若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,又抛物线开口向上则必在直线上面,即最小值大于直线斜率,则当x=0时取最小值,-3a>-1,则a的取值范围为,即答案为.【考点】线性规划.6.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为()A.B.C.D.【答案】B【解析】∵函数的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=>0,,即n+3m+2<0,∴-m<n<-3m-2,为平面区域D,如图:∴m<-1,n>1.∵的图象上存在区域D内的点,∴loga(-1+4)>1,∴∵a>1,∴lga>0,∴1g3>lga.解得1<a<3;故选B.【考点】1.利用导数研究函数的极值;2.不等式组表示平面区域.7.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.(1)当声音强度满足时,求对应的声音能量满足的等量关系式;(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.【答案】(1)解应用题问题,关键正确理解题意,列出对应的等量关系:(2)本题实质是解一个不等式:由题意得,,,即,当声音能量时,人会暂时性失聪.【解析】(1) (2)(1)2分4分6分(2)由题意得 10分12分14分答:当声音能量时,人会暂时性失聪. 15分【考点】实际问题应用题8.已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.【答案】(1,2)【解析】由f(x)=ln x+2x,x∈(0,+∞)得f′(x)=+2x ln 2>0,所以f(x)在(0,+∞)上单调递增.又f(x2+2)<f(3x),得0<x2+2<3x,所以x∈(1,2).9.函数的图象可能是()【答案】【解析】函数的定义域为,可排除;又时,,即,故选.【考点】函数的图象,函数的定义域,正弦函数、对数函数的性质.10.已知函数f(x)=若f(f(1))>3a2,则a的取值范围是________.【答案】(-1,3)【解析】由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a,若f(f(1))>3a2,则9+6a>3a2,即a2-2a-3<0,解得-1<a<3.11.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【答案】B【解析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g (x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.点评:此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.12.已知函数f(x)=lnx+a,其中a为大于零的常数.(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围.(2)求证:对于任意的n∈N*,且n>1时,都有lnn>++…+恒成立.【答案】(1)(0,1] (2)见解析【解析】(1)f′(x)=(x>0),由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≤x在[1,+∞)上恒成立,又因为当x∈[1,+∞)时,x≥1,所以a≤1,即a的取值范围为(0,1].(2)由(1)知函数f(x)=lnx+-1在[1,+∞)上为增函数,当n>1时,因为>1,所以f>f(1),即lnn-ln(n-1)>,对于n∈N*,且n>1恒成立,lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+[ln3-ln2]+[ln2-ln 1]>++…++,所以对于n∈N*,且n>1时,lnn>++…+恒成立.13.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.【答案】(1)f(x)=x+(2)(-∞,-4]【解析】(1)∵f(x)的图象与h(x)的图象关于点A(0,1)对称,设f(x)图象上任意一点坐标为B(x,y),其关于A(0,1)的对称点B′(x′,y′),则∴∵B′(x′,y′)在h(x)上,∴y′=x′++2.∴2-y=-x-+2,∴y=x+,即f(x)=x+.(2)∵g(x)=x2+ax+1,且g(x)在[0,2]上为减函数,∴-≥2,即a≤-4.∴a的取值范围为(-∞,-4].14.已知函数则函数的零点个数为()A.1B.2C.3D.4【答案】B【解析】函数,.即.所以函数的零点个数即等价于,方程的解得个数,即等价于函数的交点的个数.如图所示.所以共有两个交点.故选B.【考点】1.分段函数的性质.2.函数的零点问题.3.等价转换的数学能力.4.分类讨论的数学思想.15.已知符号函数则函数的零点个数为().A.1B.2C.3D.4【答案】B【解析】,时,,解得;当时,;当时,,即无解。
高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。
高三数学专题含参函数的单调性1.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求出这三个单调区间.2.判断函数f(x)=(a+1)ln x+ax2+1的单调性.3.已知函数f(x)=x2+2a ln x,(1)若函数f(x)的图象在(2,f(2))处的切线斜率为l,求实数a的值;(2)求函数f(x)的单调区间.4.设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间.5.已知函数f(x)=ln(1+x)-x+x2(k≥0).试求f(x)的单调区间.6.讨论函数f(x)=ax2+x-(a+1)ln x(a≥0)的单调性.7.函数f(x)=ax2-a-ln x,讨论f(x)的单调性.8.设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.求f(x)的单调区间.9.已知函数f(x)=-a(x-ln x).(1)当a=1时,试求f(x)在(1,f(1))处的切线方程;(2)当a≤0时,试求f(x)的单调区间.10.已知函数f(x)=ln x-ax+-1(a∈R).(1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.11.设函数f(x)=1+(1+a)x-x2-x3,其中a>0.讨论f(x)在其定义域上的单调性.12.已知函数f(x)=a ln x+x2-(1+a)x(x>0),其中a为实数.求函数f(x)的单调区间.13.已知函数f(x)=e x-ax+a,其中a∈R,e为自然对数的底数.讨论函数f(x)的单调性,并写出对应的单调区间.14.已知函数f(x)=-ax2+(1+a)x-ln x(a∈R).当a>0时,求函数f(x)的单调递减区间.15.设函数f(x)=x2-m ln x(m>0),求函数f(x)的单调区间.16.已知函数f(x)=ax+x2-x ln a(a>0且a≠1),求函数f(x)的单调递增区间.17.已知函数f(x)=ln x-a(x-1),a∈R,讨论函数f(x)的单调性.18.已知函数f(x)=ax-e x(a∈R),求函数f(x)的单调区间.19.已知函数f(x)=ln x-ax-3(a≠0),讨论函数f(x)的单调性.20.已知函数f(x)=ln x-(a∈R),试判断f(x)在定义域内的单调性.21.已知f(x)=a(x-ln x)+,a∈R. 讨论f(x)的单调性.22.已知函数f(x)=a ln x-ax-3(a∈R).求函数f(x)的单调区间.23.设f(x)=x ln x-ax2+(2a-1)x,a∈R. 令g(x)=f′(x),求g(x)的单调区间.24.设函数f(x)=ax-2-ln x(a∈R).(1)若f(x)在点(e,f(e))处的切线斜率为,求a的值;(2)当a>0时,求f(x)的单调区间.25.设函数f(x)=.求函数f(x)在[0,2]上的单调区间.26.已知函数f(x)=a e xx-2a e x-x2+x.(1)求函数f(x)在(2,f(2))处的切线方程;(2)讨论函数f(x)的单调区间.27.已知m>0,讨论函数f(x)=的单调性.答案解析1.【答案】解f′(x)=3ax2+1,若a>0,则f′(x)>0,x∈(-∞,+∞),此时f(x)只有一个单调区间,矛盾.若a=0,则f(x)=x,此时f(x)也只有一个单调区间,矛盾.若a<0,则f′(x)=3a(x+)(x-),综上可知,a<0时,f(x)恰有三个单调区间,其中减区间为(-∞,-),(,+∞),增区间为[-,].【解析】2.【答案】解由题意知f(x)的定义域为(0,+∞),f′(x)=+2ax=.①当a≥0时,f′(x)>0,故f(x)在(0,+∞)上单调递增.②当a≤-1时,f′(x)<0,故f(x)在(0,+∞)上单调递减.③当-1<a<0时,令f′(x)=0,解得x=,则当x∈(0,)时,f′(x)>0;当x∈[,+∞)时,f′(x)≤0.故f(x)在(0,)上单调递增,在[,+∞)上单调递减.综上,当a≥0时,f(x)在(0,+∞)上单调递增;当a≤-1时,f(x)在(0,+∞)上单调递减;当-1<a<0时,f(x)在(0,)上单调递增,在[,+∞)上单调递减.【解析】3.【答案】解(1)f′(x)=2x+=,由已知f′(2)=1,解得a=-3.(2)函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=,当x变化时,f′(x),f(x)的变化情况如下:由上表可知,函数f(x)的单调递减区间是(0,];单调递增区间是(,+∞).【解析】4.【答案】解由已知得函数f(x)的定义域为(-1,+∞)且f′(x)=(a≥-1),①当-1≤a≤0时,f′(x)<0,函数f(x)在(-1,+∞)上单调递减;②当a>0时,由f′(x)=0,解得x=.f′(x)、f(x)随x的变化情况如下表:从上表可知,当x∈(-1,]时,f′(x)≤0,函数f(x)在(-1,]上单调递减;当x∈(,+∞)时,f′(x)>0,函数f(x)在(,+∞)上单调递增.综上所述:当-1≤a≤0时,函数f(x)在(-1,+∞)上单调递减.当a>0时,函数f(x)在(-1,]上单调递减,函数f(x)在(,+∞)上单调递增.【解析】5.【答案】解f′(x)=-1+kx=,x∈(-1,+∞).当k=0时,f′(x)=-,所以,在区间(-1,0)上,f′(x)>0;在区间[0,+∞)上,f′(x)≤0.故f(x)的单调递增区间是(-1,0),单调递减区间是[0,+∞);当0<k<1时,由f′(x)==0,得x 1=0,x2=>0,所以,在区间(-1,0)和(,+∞)上,f′(x)>0;在区间[0,]上,f′(x)≤0.故f(x)的单调递增区间是(-1,0)和(,+∞),单调递减区间是[0,];当k=1时,f′(x)=,故f(x)的单调递增区间是(-1,+∞);当k>1时,f′(x)==0,得x 1=∈(-1,0),x2=0,所以在区间(-1,)和(0,+∞)上,f′(x)>0;在区间[,0]上,f′(x)≤0,故f(x)的单调递增区间是(-1,)和(0,+∞),单调递减区间是[,0].【解析】6.【答案】解函数f(x)的定义域为(0,+∞),f′(x)=ax+1-=,①当a=0时,f′(x)=,由f′(x)≥0,得x≥1;由f′(x)<0,得0<x<1.所以,f(x)在(0,1)内为减函数,在[1,+∞)内为增函数;②当a>0时,f′(x)=,因为a>0,所以-<0,由f′(x)≥0,得x≥1;由f′(x)<0,得0<x<1.所以,f(x)在(0,1)内为减函数,在[1,+∞)内为增函数.综上所述,a≥0时,f(x)在(0,1)内为减函数;在[1,+∞)内为增函数.【解析】7.【答案】解由f(x)=ax2-a-ln x,得f′(x)=2ax-=(x>0),当a≤0时,f′(x)<0在(0,+∞)恒成立,则f(x)在(0,+∞)上为减函数;当a>0时,由f′(x)=0,得x=±=±,∴当x∈(0,)时,f′(x)<0,当x∈[,+∞)时,f′(x)≥0,则f(x)在(0,)上为减函数,在[,+∞)上为增函数.综上,当a≤0时,f(x)在(0,+∞)上为减函数,当a>0时,f(x)在(0,)上为减函数,在[,+∞)上为增函数.【解析】8.【答案】解(1)函数f(x)=(x-1)3-ax-b的导数为f′(x)=3(x-1)2-a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1-时,f′(x)>0,当1-≤x≤1+时,f′(x)≤0,可得f(x)的增区间为(-∞,1-),(1+,+∞),减区间为[1-,1+].【解析】9.【答案】解(1)当a=1时,f′(x)=-1+,f′(1)=0,f(1)=e-1.∴方程为y=e-1.(2)函数定义域为(0,+∞),f′(x)=-a(1-),==,当a≤0时,对于∀x∈(0,+∞),e x-ax>0恒成立,令f′(x)>0⇒x>1,令f′(x)<0⇒0<x<1,∴f(x)的减区间为(0,1),增区间为(1,+∞).【解析】10.【答案】解(1)当a=-1时,f(x)=ln x+x+-1,x∈(0,+∞),所以f′(x)=+1-,因此,f′(2)=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,又f(2)=ln 2+2,所以y=f(x)在点(2,f(2))处的切线方程为y-(ln 2+2)=x-2,即x-y+ln 2=0.(2)因为f(x)=ln x-ax+-1,所以f′(x)=-a+=-,x∈(0,+∞),令g(x)=ax2-x+1-a,x∈(0,+∞),①当a=0时,g(x)=-x+1,x∈(0,+∞),所以,当x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,g(x)<0,此时f′(x)>0,函数单调递增;②当a≠0时,由g(x)=0,即ax2-x+1-a=0,解得x 1=1,x2=-1.(ⅰ)当a=时,x 1=x2,g(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;(ⅱ)当0<a<时,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减,x∈(1,-1)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增,x∈(-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;(ⅲ)当a<0时,由于-1<0,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;x∈(1,+∞)时,g(x)<0,此时函数f′(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,+∞)上单调递增,当a=时,函数f(x)在(0,+∞)上单调递减,当0<a<时,函数f(x)在(0,1)和(-1,+∞)上单调递减;函数f(x)在(1,-1)上单调递增.【解析】11.【答案】解f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2,由f′(x)=0,得x 1=,x2=,x1<x2,∴由f′(x)<0,得x<或x>;由f′(x)>0,得<x<,故f(x)在(-∞,)和(,+∞)上单调递减,在(,)上单调递增.【解析】12.【答案】解因为f′(x)=+x-(1+a)=(x>0),①当a≤0时,令f′(x)>0,得x>1;令f′(x)<0,得0<x<1,此时,函数f(x)的增区间是(1,+∞),减区间是(0,1),②当0<a<1时,令f′(x)>0,得x>1或0<x<a;令f′(x)<0,得a<x<1,此时,函数f(x)的增区间是(1,+∞)和(0,a),减区间是(a,1),③当a=1时,f′(x)≥0对任意x∈(0,+∞)恒成立,此时,函数f(x)的增区间是(0,+∞),无减区间,④当a>1时,令f′(x)>0,得x>a或0<x<1;令f′(x)<0,得1<x<a,此时,函数f(x)的增区间是(a,+∞)和(0,1),减区间是(1,a).【解析】13.【答案】解由函数f(x)=e x-ax+a,可知f′(x)=e x-a,①当a≤0时,f′(x)>0,函数f(x)在R上单调递增;②当a>0时,令f′(x)=e x-a=0,得x=ln a,故当x∈(-∞,ln a)时,f′(x)<0,此时f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,此时f(x)单调递增.综上所述,当a≤0时,函数f(x)的单调递增区间为(-∞,+∞);当a>0时,函数f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).【解析】14.【答案】解当a>0时,函数f(x)=-ax2+(1+a)x-ln x的导数f′(x)=-ax+1+a-=-(x>0),当a=1时,f′(x)≤0,f(x)递减;当a>1时,1>,f′(x)<0,可得x>1或0<x<;当0<a<1时,1<,f′(x)<0,可得0<x<1或x>.综上可得,a=1时,f(x)的减区间为(0,+∞);a>1时,f(x)的减区间为(1,+∞),(0,);0<a<1时,f(x)的减区间为(,+∞),(0,1).【解析】15.【答案】解函数f(x)的定义域为(0,+∞),f′(x)=,当0<x<时,f′(x)<0,函数f(x)单调递减,当x>时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调增区间是(,+∞),减区间是(0,).【解析】16.【答案】解函数f(x)的定义域为R,f′(x)=ax ln a+2x-ln a=2x+(ax-1)ln a.令h(x)=f′(x)=2x+(ax-1)ln a,h′(x)=2+ax ln2a,当a>0,a≠1时,h′(x)>0,所以h(x)在R上是增函数,又h(0)=f′(0)=0,所以,f′(x)>0的解集为(0,+∞),f′(x)<0的解集为(-∞,0),故函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0).【解析】17.【答案】解f(x)的定义域为(0,+∞),f′(x)=,若a≤0,则f′(x)>0,∴f(x)在(0,+∞)上单调递增,若a>0,则由f′(x)=0,得x=,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减.∴当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.【解析】18.【答案】解∵f′(x)=a-e x,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=ln a.由f′(x)>0得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).【解析】19.【答案】解由已知得f(x)的定义域为(0,+∞),且f′(x)=-a,当a>0时,f(x)的单调增区间为(0,],减区间为(,+∞);当a<0时,f(x)的单调增区间为(0,+∞),无减区间.【解析】20.【答案】解由题意得f(x)的定义域是(0,+∞)且f′(x)=,当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a<0时,f(x)在(0,-a]上单调递减,在(-a,+∞)上单调递增.【解析】21.【答案】解由f(x)=a(x-ln x)+(x>0),得f′(x)=a(1-)+=+==(x>0).若a≤0,则ax2-2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈[1,+∞)时,f′(x)≤0,f(x)为减函数;当a>0时,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈[1,]时,f′(x)≤0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈[,1]时,f′(x)≤0,f(x)为减函数.【解析】22.【答案】解f′(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],减区间为(1,+∞);当a<0时,f(x)的单调增区间为(1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数.【解析】23.【答案】解∵f(x)=x ln x-ax2+(2a-1)x(x>0),∴g(x)=f′(x)=ln x-2ax+2a,x>0,g′(x)=-2a=,当a≤0时,g′(x)>0恒成立,即得g(x)的单调增区间是(0,+∞);当a>0,x≥时,g′(x)≤0,函数为减函数,当0<x<时,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是[,+∞).【解析】24.【答案】解(1)函数的导数f′(x)=a-,若f(x)在点(e,f(e))处的切线斜率为,则f′(e)=a-=,得a=.(2)由f′(x)=a-=(x>0),当a>0时,令f′(x)=0,解得x=.当x变化时,f′(x),f(x)随x变化情况如下表:由表可知,f(x)在(0,)上是单调减函数,在(,+∞)上是单调增函数,所以,当a>0时,f(x)的单调减区间为(0,),单调增区间为(,+∞).【解析】25.【答案】解f′(x)=,当2-m≤0,即m≥2时,x∈[0,2],f′(x)≥0,f(x)在[0,2]上单调递增;当0<m<2时,令f′(x)≤0,得0≤x≤2-m,令f′(x)>0,得2-m<x≤2,所以f(x)在[0,2-m]上单调递减,在(2-m,2]上单调递增;当m≤0时,f′(x)≤0,f(x)在[0,2]上单调递减.【解析】26.【答案】解(1)函数f(x)=a e xx-2a e x-x2+x的导数为f′(x)=a(e x+x e x)-2a e x-x+1=(x-1)(a e x-1),可得f(x)在(2,f(2))处的切线斜率为a e2-1,切点为(2,0),即有切线的方程为y-0=(a e2-1)(x-2),即为y=(a e2-1)(x-2).(2)由f(x)的导数为f′(x)=(x-1)(a e x-1),①当a=0时,f′(x)=-(x-1),当x>1时,f′(x)<0,f(x)递减;当x<1时,f′(x)>0,f(x)递增;②当a<0时,当x>1时,f′(x)<0,f(x)递减;当x<1时,f′(x)>0,f(x)递增;③当a>0时,若a=,则f′(x)=(x-1)(e x-1-1),f(x)在R上递增;若a>,则f′(x)>0,即为(x-1)(x-ln)>0,可得x>1或x<ln;f′(x)<0,即为(x-1)(x-ln)<0,可得ln<x<1;若0<a<,则f′(x)>0,即为(x-1)(x-ln)>0,可得x<1或x>ln;f′(x)<0,即为(x-1)(x-ln)<0,可得1<x<ln.综上可得,a≤0时,f(x)的增区间为(-∞,1),减区间为(1,+∞);a=时,f(x)的增区间为(-∞,+∞);a>时,f(x)的增区间为(1,+∞),(-∞,ln),减区间为(ln,1);0<a<时,f(x)的增区间为(ln,+∞),(-∞,1),减区间为(1,ln).【解析】27.【答案】解f′(x)=,设g(x)=-mx2-(m+3)x-3,令g(x)=0,得x 1=-,x2=-1.①当0<m<3时,x1<x2,x,f′(x)与f(x)的变化情况如下:∴f(x)在区间(-∞,-),(-1,+∞)上是减函数,在区间(-,-1)上是增函数.②当m=3时,x1=x2,在区间(-∞,+∞)上,g(x)≤0,即f′(x)≤0,∴f(x)在区间(-∞,+∞)上是减函数.③当m>3时,x1>x2,x变化时,f′(x)与f(x)的变化情况如下:∴f(x)在区间(-∞,1),(-,+∞)上是减函数,在区间(-1,-)上是增函数.【解析】。
专题5.3.1 函数的单调性知识储备1.函数的单调性与导数的关系 函数y =f (x )在区间(a ,b )内可导,(1)若f ′(x )>0,则f (x )在区间(a ,b )内是单调递增函数; (2)若f ′(x )<0,则f (x )在区间(a ,b )内是单调递减函数; (3)若恒有f ′(x )=0,则f (x )在区间(a ,b )内是常数函数.讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.2.常用结论汇总——规律多一点(1)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.(2020·全国高二课时练习)设函数()f x 的图象如图所示,则导函数()f x 的图象可能为( )A .B .C .D .【答案】C【解析】∵()f x 在(,1)-∞,(4,)+∞上为减函数,在(1,4)上为增函数, ∴当1x <或4x >时,()0f x '<;当14x <<时,()0f x '>.故选:C .2.(2020·全国高二专题练习)设奇函数()f x 在R 上存在导函数()'f x ,且在(0,)+∞上2()f x x '<,若331(1)()(1)3f m f m m m ⎡⎤--≥--⎣⎦,则实数m 的取值范围为( ) A .11,22⎡⎤-⎢⎥⎣⎦B .11,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,2⎛⎤-∞- ⎥⎝⎦D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】331(1)()(1)3f m f m m m ⎡⎤--≥--⎣⎦, 即3311(1)(1)()33f m m f m m ≥----,构造函数31()()3g x f x x =-,由题意知:在(0,)+∞上,2()()0g x f x x '=-<', 故()g x 在(0,)+∞上单调递减,()f x 为奇函数,()()()3311()33g x f x x f x x g x ∴-=-+=-+=-,即()g x 为奇函数, 故()g x 在R 上单调递减,因此原不等式可化为:()()1g m g m -≥,即1m m -≤,解得12m ≥.故选:D .3.(2020·全国高二课时练习)函数()sin 2,()3f x x xf f x π''⎛⎫=+⎪⎝⎭为()f x 的导函数,令31,log 22a b ==,则下列关系正确的是( )A .()()f a f b <B .()()f a f b >C .()()f a f b =D .()()f a f b ≤【答案】B【解析】由题意得,()cos 23f x x f π''⎛⎫=+⎪⎝⎭,cos 2333f f πππ''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,解得132f π⎛⎫'=-⎪⎝⎭,所以()sin f x x x =-. 所以()cos 10f x x '=-≤,所以()f x 为减函数.因为331log 2log 2b a =>==,所以()()f a f b >,故选:B . 4.(2020·全国高二课时练习)若函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =的图象可能是( )A .B .C .D .【答案】D【解析】设导函数()y f x '=的图象与x 轴交点的横坐标从左到右依次为123,,x x x ,其中1320,0x x x <>>,故()y f x =在()1,x -∞上单调递减,在()12,x x 上单调递增,在()23,x x 上单调递减,在()3,x +∞单调递增.故选:D .5.(2020·全国高二课时练习)若函数()()3230,f x ax x x b a b =+++>∈R 恰好有三个不同的单调区间,则实数a 的取值范围是( ) A .()()0,33,+∞ B .[)3,+∞ C .(]0,3 D .()0,3【答案】D【解析】由题意得()()23610f x ax x a '=++>,函数()f x 恰好有三个不同的单调区间,()f x '∴有两个不同的零点,所以,361200a a ∆=->⎧⎨>⎩,解得0<<3a .因此,实数a 的取值范围是()0,3.故选:D.6.(2020·全国高二课时练习)函数2()ln f x x x =的单调递减区间为( )A .B .⎫+∞⎪⎪⎝⎭C .)+∞D .0,e ⎛ ⎝⎭【答案】D【解析】由题意得,函数()f x 的定义域为(0,)+∞,21()2ln 2ln (2ln 1)f x x x x x x x x x x=⋅+⋅=+=+'.令()0f x '<,得2ln 10x ,解得0x <<,故函数2()ln f x x x =的单调递减区间为0,e ⎛ ⎝⎭.故选:D 7.(2020·江苏南通市·高三期中)设()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '+>,()02020f =,则不等式()20191x f x e ->+(其中e 为自然对数的底数)的解集为( ) A .()(),00,-∞⋃+∞ B .()(),02019,-∞+∞C .()0,∞+D .()2019,+∞【答案】C【解析】因为()f x 满足()()1f x f x '+>,, 令()()1xg x e f x =-⎡⎤⎣⎦,则()()()10xg x e f x f x ''=+->⎡⎤⎣⎦,所以()g x 在R 上是增函数, 又()02020f =,则()02019g =,不等式()20191xf x e ->+可化为()12019x e f x ->⎡⎤⎣⎦,即()()0g x g >, 所以0x >,所不等式的解集是()0,∞+,故选:C8.(2020·洛阳理工学院附属中学高三月考(理))已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫<⎪⎝⎭的解集为( ) A .ππ23⎛⎫-⎪⎝⎭, B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,, D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,, 【答案】A【解析】设()()cos f x g x x= ,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '> 所以()()cos f x g x x=在02π⎛⎫-⎪⎝⎭,上单调递增. 又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x=在02,上单调递增,所以()g x 在ππ,22⎛⎫-⎪⎝⎭上单调递增.当ππ,22x ⎛⎫∈-⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x=在ππ,22⎛⎫-⎪⎝⎭上单调递增,所以23x ππ-<<故选:A二、多选题9.(2020·全国高二课时练习)(多选)已知函数()f x 的定义域为R ,其导函数()'f x 的图象如图所示,则对于任意()1212,x x x x ∈≠R ,下列结论正确的是( )A .()()()12120x x f x f x --<⎡⎤⎣⎦B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】AD【解析】由题中图象可知,导函数()'f x 的图象在x 轴下方,即()0f x '<,且其绝对值越来越小,因此过函数()f x 图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得()f x 的大致图象如图所示.A 选项表示12x x -与()()12f x f x -异号,即()f x 图象的割线斜率()()1212f x f x x x --为负,故A 正确;B 选项表示12x x -与()()12f x f x -同号,即()f x 图象的割线斜率()()1212f x f x x x --为正,故B 不正确;122x x f +⎛⎫⎪⎝⎭表示122x x +对应的函数值,即图中点B 的纵坐标,()()122f x f x +表示当1x x =和2x x =时所对应的函数值的平均值,即图中点A 的纵坐标,显然有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,故C 不正确,D 正确.故选:AD .10.(2020·全国高二课时练习)(多选)如图是函数()y f x =的导函数()'f x 的图象,则下面判断正确的是( )A .()f x 在(3,1)-上是增函数B .()f x 在(1,3)上是减函数C .()f x 在(1,2)上是增函数D .当4x =时,()f x 取得极小值【答案】CD【解析】()'f x 的图象在(3,1)-上先小于0,后大于0,故()f x 在(3,1)-上先减后增,因此A 错误;()'f x 的图象在(1,3)上先大于0,后小于0,故()f x 在(1,3)上先增后减,因此B 错误;由图可知,当(1,2)x ∈时,()0f x '>,所以()f x 在(1,2)上单调递增,因此C 正确;当(2,4)x ∈时,()0f x '<,当(4,5)x ∈时,()0f x '>,所以当4x =时,()f x 取得极小值,因此D 正确.故选:CD .11.(2020·全国高二课时练习)(多选)已知函数2()(ln )f x x x a a =-+,则下列结论正确的是( )A .0,0,()0a x f x ∃>∀>B .0,0,()0a x f x ∃>∃>C .0,0,()0a x f x ∀>∀>D .0,0,()0a x f x ∀>∃>【答案】ABD 【解析】当12a =时,211()ln 22f x x x ⎛⎫=-+ ⎪⎝⎭,函数的定义域为(0,)+∞,211()2ln 2ln 2ln 2f x x x x x x x x x x x ⎛⎫=-+⋅=-+= ⎪⎝'⎭,令()0f x '=,得1x =,当1x >时,()0f x '>,此时函数单调递增, 当01x <<时,()0f x '<,此时函数单调递减,故当1x =时,函数()f x 取得极小值,也是最小值,11(1)022f =-+=, 则0,()(1)0x f x f ∀>=,故选项A 正确; 当5a =时,2()(ln 5)5f x x x =-+, 则22()(ln 5)5450f e e e e =-+=-+<,故0,0,()0a x f x ∃>∃>,故选项B 正确,选项C 错误;因为2(1)1(ln1)0f a a a a =-+=-+=,所以0,10a x ∀>∃=>,使()0f x 成立,因此选项D正确.故选:ABD.12.(2020·广东揭阳市·高三期中)下列函数在其定义域上既是奇函数又是减函数的是( ) A .()2x f x = B .()sin f x x x =- C .()x x f x e e -=- D .()||f x x x =-【答案】BCD【解析】对于A ,()2x f x =既不是奇函数也不是偶函数,且单调递增,故A 错误;对于B ,()f x 的定义域为R ,且()()()()sin sin f x x x x x f x -=-+=--=-,()f x ∴是奇函数,又()cos 10f x x '=-≤恒成立,故()f x 是减函数,故B 正确; 对于C ,()f x 的定义域为R ,且()()xxf x e f x e--=-=-,()f x ∴是奇函数,)0(x x f x e e -'--<=,故()f x 是减函数,故C 正确;对于D ,()f x 的定义域为R ,且()()||||f x x x x x f x -=-==-,()f x ∴是奇函数,又22,0(),0x x f x x x x x ⎧<=-=⎨-≥⎩是减函数,故D 正确.故选:BCD.三、填空题13.(2020·全国高二课时练习)已知函数()f x 与()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为___________.【答案】()0,1、()4,+∞【解析】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞.14.(2020·山西高三期中(理))已知()3216132m f x x x x =-++在()1,1-单调递减,则m 的取值范围为______. 【答案】[]5,5- 【解析】()f x 在()1,1-单调递减,∴2()60f x x mx '=+-≤在()1,1-恒成立,又2()6f x x mx '=+-是开口向上的二次函数,为使()0f x '≤在()1,1-恒成立,只需(1)0(1)0f f ''-≤⎧⎨≤⎩,即160160m m --≤⎧⎨+-≤⎩,则[]5,5m ∈-.故答案为:[]5,5-.15.(2020·全国高二单元测试)设()'f x 是函数()f x 在R 的导函数,对x R ∀∈,2()()f x f x x -+=,且[0x ∀∈,)+∞,()f x x '>.若()()2f a f a --22a -,则实数a 的取值范围为__.【答案】(-∞,1] 【解析】2()()f x f x x -+=,2211()()022f x x f x x ∴-+--=,令21()()2g x f x x =-, 2211()()()()022g x g x f x x f x x -+=--+-=, ∴函数()g x 为奇函数.(0,)x ∈+∞时,()f x x '>.(0,)x ∴∈+∞时,()()0g x f x x '='->,故函数()g x 在(0,)+∞上是增函数, 故函数()g x 在(,0)-∞上也是增函数, 由(0)0f =,可得()g x 在R 上是增函数.()()2f a f a --22a -,等价于()()()2222a f a f a ---22a -,即()()2g a g a -,2a a ∴-,解得1a .故答案为:(-∞,1]. 四、双空题16.(2020·江苏省太湖高级中学高二期中)已知函数()(0)bf x ax b x=+>的图象在点()()1,1P f 处的切线与直线210x y +-=垂直,则a 与b 的关系为_______(用b 表示),若函数()y f x =在区间1[,)2+∞上单调递增,则b 的最大值等于______. 【答案】2b + 23【解析】由题意,函数()(0)b f x ax b x=+>,可得2()b f x a x '=-,所以(1)f a b '=-, 即函数()f x 的图象在点()()1,1P f 处的切线的斜率为k a b =-又由函数()f x 的图象在点()()1,1P f 处的切线与直线210x y +-=垂直, 所以()1()12a b -⨯-=-,可得2a b -=,即a 与b 的关系为2a b -=;又由函数()y f x =在区间1[,)2+∞上单调递增, 可得2()0b f x a x '=-≥在区间1[,)2+∞上恒成立, 即22b b x +≥在区间1[,)2+∞上恒成立,整理得22b x b ≤+在区间1[,)2+∞上恒成立, 又由2min 1()4x =,所以124b b ≤+,解得203b <≤, 所以b 的最大值等于23.故答案为:2a b -=,23.。
2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。
含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。
另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。
一、概念与性质参考答案
1.解析:(4)中元素c没有象,不符合映射定义中的“集A中的任意一个元
素在集B中都有元素与之对应”;(5)中,与元素a对应的元素有两个,不符合
映射定义中的“对于集A中的任意一个元素,在集B中都有唯一确定的元素与
之对应”;而(1)(2)(3)中的对应都符合映射定义.故本题正确答案为A.
答案:A
2.解析:A、C、D中的对应法则都是“一对多”,故它们不是函数的图象,
正确答案为B.
答案:B
3.B
4.解析:因为x+y=1,所以2x·2y=2x+y=2.这就是说,集合N中的元素,
其横坐标与其纵坐标之积为常数2,又显然集合N中横、纵坐标都是正数,故本
题正确答案为D.
答案:D
5.解析:(1)的对应中,对于集A中值0,在集合B中,没有元素与之对应,
故(1)的对应不是从A到B的映射;(2)的对应中,对于集A中的任意一个非零x
的值,在集合B中,都有两个元素与之对应(不满足唯一性),故(2)的对应不是从
A到B的映射;(3)、(4)的对应都满足映射的定义,故(3)、(4)的对应都是从A到
B的映射.故选B.
答案:B
6.-1
7.解析:依题意,(3,1)→(6,2),则 3k=61+b=2,∴k=2,b=1.
答案:k=2,b=1
8.9 8
9.解析:∵f(ab)=f(a)+f(b),
∴f(72)=f(8×9)=f(8)+f(9)=f(4×2)+f(3×3)=
f(4)+f(2)+2f(3)=f(2×2)+f(2)+2f(3)
=3f(2)+2f(3)=3p+2q.
10.解析:∵f(a)∈N,f(b)∈N,f(c)∈N,且
f(a)+f(b)+f(c)=0,
∴有0+0+0=0+1+(-1)=0.当f(a)=f(b)=f(c)=0时,只有一个映射;当
f(a)、f(b)、f(c)中恰有一个为0,而另两个分别为1,-1时,有C13·A22=6个映射.因
此所求的映射的个数为1+6=7.
二、解析式与定义域参考答案 答案:B 5.解析:(1)由|f(x)|≥13⇒ x<01x≥13⇒-3≤x<0. (2)由|f(x)|≥13⇒ x≥013x≥13⇒ x≥013x≥13⇒ 当0<x≤4时,S=f(x)=12·4·x=2x; ∴这个函数的解析式为 ∴(5a+1)(1-a)=0,∴a=-15或a=1(舍). ∴ a<0-a2-4a-1a>0 ∴ a<0a2+4a+1>0 解得a<-2-3或-2+3∴所求实数a的取值范围是()-∞,-2-3∪(-2+3,0). 3.解析:要f(μ)的值域是[)0,+∞,则μ可取(-∞,-1]∪[)0,+∞.又 8.解析:由||x+1≥||x-2⇒()x+12≥()x-22⇒x≥12, 故f()x= ||x+1x≥12||x-2x<12,其图象如下, 则fmin()x=f12=12+1=32. 又函数y=f(x)=12x2-2x+4的定义域、值域都是闭区间[2,2b],所以有f(2b) y= 5x-12x2-0.5+0.25x0≤x≤55×5-12×52-0.5+0.25xx>5 解得5≥x≥4.75-21.5625≈0.1(百台)或5<x<48(百台)时,即企业年产量
1.解析:由 1-x>03x+1>0⇒-13
2.解析:令1-x1+x=t,则x=1-t1+t,
∴f(t)=2tt2+1,∴f(x)=2xx2+1.
答案:C
3.A 4.A
0≤x≤1.
∴不等式|f(x)|≥13的解集为{x|-3≤x≤1}.
答案:D
6.解析:∵2∉A,∴4-4a+a2-1<0,即a2-4a+3<0,
解得1答案:17.解析:设f(x)=kx+b,则f[f(x)]=kf(x)+b=k(kx+b)+b=k2x+kb+b.
由于该函数与y=2x-1是同一个函数,
∴k2=2且kb+b=-1,∴k=±2.
当k=2时,b=1-2;
当k=-2时,b=1+2.
答案:2x+1-2或-2x+1+2
8.4
9.解析:(1)这个函数的定义域为(0,12),
当4<x≤8时,S=f(x)=8;
当8<x<12时,S=f(x)=12·4·(12-x)=24-2x.
f(x)= 2x, x∈0,4],8, x∈4,8],24-2x, x∈8,12.
(2)其图形如右,由图知,
[f(x)]max=8.
10.解析:(1)∵不等式f(x)>-2x的解集为(1,3),
∴x=1和x=3是方程ax2+(b+2)x+c=0(a<0)的两根,
∴ b+2a=-4ca=3 ,∴b=-4a-2,c=3a,
又方程f(x)+6a=0有两个相等的实根.
∴Δ=b2-4a(c+6a)=0,∴4(2a+1)2-4a×9a=0.
∴a=-15,b=-65,c=-35,
∴f(x)=-15x2-65x-35.
(2)由(1)知f(x)=ax2-2(2a+1)x+3a
=ax-2a+1a2-2a+12a+3a
=ax-2a+1a2+-a2-4a-1a
∵a<0,
∴f(x)的最大值为-a2-4a-1a ,
∵f(x)的最大值为正数.
三、值域与最值参考答案
1.A 2.D
g(x)是二次函数,定义域连续,故g(x)不可能同时取(-∞,-1]和[)0,+∞.结
合选项只能选C.
答案:C
4.解析:按a>b,a答案:D
5.C 6.2 7.2009
答案:32
9.解析:∵y=f(x)=12(x2-4x+8)=12(x-2)2+2,
∴其图象的对称轴是x=2.
因此y=f(x)在[2,2b]上是递增函数,且2b>2,即b>1.
=2b,即12(2b)2-2×2b+4=2b,
∴b2-3b+2=0,∴b=1(舍去),b=2.
10.解析:(1)利润y是指生产数量x的产品售出后的总收入R(x)与其总成
本C(x)之差,由题意,当x≤5时,产品能全部售出,当x>5时,只能销售500
台,所以
= 4.75x-12x2-0.50≤x≤512-0.25x x>5.
(2)在0≤x≤5时,y=-12x2+4.75x-0.5,
当x=-b2a=4.75(百台)时,ymax=10.78125(万元);
当x>5(百台)时,y<12-0.25×5=10.75(万元),
所以当生产475台时,利润最大.
(3)要使企业不亏本,即要求
0≤x≤5-12x2+4.75x-0.5≥0或 x>5
12-0.25x≥0
,
在10台到4800台之间时,企业不亏本.