高三数学专题复习-----函数(二)
- 格式:docx
- 大小:78.84 KB
- 文档页数:6
《函数的图像及其应用》(二)考查内容:主要涉及利用函数图像研究函数的性质、利用函数图像解不等式等一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数3211,0()32,0x x x x f x e x ⎧-<⎪=⎨⎪≥⎩则2(3)(2)f x f x ->的解集为( ) A .(,3)(1,)-∞-⋃+∞ B .(3,1)- C .(,1)(3,)-∞-+∞D .(1,3)-2.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( ) A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞3.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xf x <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-4.已知在R 上的偶函数()y f x =,当0x ≥时,()2f x x x =-,则关于x 的不等式()()2f f x ≤的解集为( )A .[]1,1-B .[]22-,C .[]3,3-D .[]4,4-5.已知函数()f x 是定义在[)(]4,00,4-⋃上的奇函数,当(]0,4x ∈时,()f x 的图象如图所示,那么满足不等式()31xf x ≥-的x 的取值范围是( )A .[)(]1,00,1-B .[](]4,20,1--C .[][]4,22,4-- D .[)[]1,02,4-6.函数()[](),y f x x ππ=∈-的图象如图所示,那么不等式()cos 0f x x ⋅≥的解集为( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .][,0,22πππ⎡⎤--⋃⎢⎥⎣⎦C .,2ππ⎡⎤-⎢⎥⎣⎦ D .0,22ππ⎧⎫⎡⎤-⋃⎨⎬⎢⎥⎩⎭⎣⎦7.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A .[1,-∪(0,1]B .[-1,0)∪C .[1,-∪D .[1,-∪1] 8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|1f x ax ≥-恒成立,则a 的取值范围是( ) A .[2,0]-B .[4,0]-C .[2,1]-D .[4,1]-9.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是( ) A .7[,)6-+∞B .5[,)3-+∞C .5[,)4-+∞D .4[,)3-+∞10.已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为( )A .(2⎤-⎦B .(2⎤-⎦C .2⎡⎤-⎣⎦D .[]1,0-11.已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-,则不等式()210f x ->的解集为( )A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),53,-∞-+∞D .()(),33,-∞-+∞12.设函数2()min{|2|,,|2|}f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者.下列说法错误的是 A .函数()f x 为偶函数B .若[1,)x ∈+∞时,有(2)()f x f x -≤C .若x ∈R 时,(())()f f x f x ≤D .若[]4,4x ∈-时|()2|()f x f x -≥二.填空题13.如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.14.已知22,0()32,0x x f x x x ⎧-≤=⎨->⎩,若|()|f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是__________15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x g x ≥在[]3,3-上的解集是________.16.设()(),()()0f x g x g x ≠分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''-<,且(2)0f -=,则不等式()0()f xg x >的解集为__ 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题:(1)求函数+2y k x b =+的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,直接写出1+2+12k x b x +>的解集.18.已知函数()|21|||2f x x x =+--. (1)解不等式()0f x ≤;(2)当[2,2]x ∈-时,|()||1|f x a ≥+有解,求实数a 的取值范围.19.已知函数()()20f x x a x a =-+>. (1)解不等式()2f x a ≥;(2)若函数()f x 的图象与直线2y a =围成的图形的面积为6,求实数a 的值.20.已知函数()()()()22102201log 1x x f x x x x x ⎧+≤⎪=-+<≤⎨⎪>⎩(1)画出()y f x =的简图,并指出函数值域;(2)结合图象,求当()1f x >时,x 的取值范围.21.设函数()121f x x x =+--.(1)画出()y f x =的图象;(2)当(],0x ∈-∞时,()f x ax b ≤+,求-a b 的最大值.22.已知函数()y f x =是定义在R 上的偶函数,且[)0,x ∈+∞时,()[]()222,0,11,1,x x f x x x ⎧-∈⎪=⎨-∈+∞⎪⎩.(1)求(),0x ∈-∞时()f x 的解析式;(2)在如图坐标系中作出函数()f x 的大致图象;(3)若不等式()f x k ≤恰有5个整数解,求k 的取值范围.《函数的图像及其应用》(二)解析1.【解析】当0x <时,()321132f x x x =-,()2f x x x '=- ()0,0x f x ∴',()f x 单调递增,且0x →时,()0f x →,∴()0f x <当0x ≥时,()xf x e =单调递增,且()()01f x f ≥=因此可得()f x 单调递增,()()232f x f x ∴->可转化为232xx ->解得31x -<<,故选B 项.2.【解析】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 3.【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <;由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >; 又()y xf x =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xf x <的解集为:(2,1)(1,2)--⋃,故选:C4.【解析】因为()y f x =是R 上的偶函数,且当0x ≥时,()2f x x x =-,则当0x <时,0x ->,()()2f x f x x x =-=+。
高三数学复习专题目录专题一、数列与不等式数列(1)数列(2)专题二、三角函数三角函数(1)三角函数(2)专题三、立体几何立体几何(1)立体几何(2)专题一、数列与不等式一.基础知识梳理数列:1. 了解数列的概念和几种简单的表示方法(列表、图像、通项公式)2.了解数列是自变量为正整数的一类函数.3.了解递推公式是给出数列的一种方法,能据递推公式写出前几项,同时求出通项公式.4,理解等差、等比数列的概念,掌握等差数列的通项公式与前n项公式,并能解决简单实际问题.5.体会等差数列、等比数列与一次函数,指数函数,二次函数的关系.不等式:(必修部分)1.一元二次不等式^2+^ + c>0(cz>0)与相应的函数y = ax2+bx+c(a>0\相应的方程ax2+bx +c = 0(«〉。
)之间的关系2.一元二次不等式恒成立情况小结:J G >0 [a<0 ax2 + bx + c>0(a/0)恒成立 o。
,ax2 +bx + c <0(a/0)恒成立o。
3.二元一次不等式表示的平面区域:直线I: ax + by + c = 0把直角坐标平面分成了三个部分:(1)直线/上的点(x, y)的坐标满足ax +by+ c = 0(2)直线Z一侧的平面区域内的点(x, y)^^ax + by + oO(3)直线Z另一侧的平面区域内的点(x,y)满足ox + /<y + c<0所以,只需要在直线Z的某一侧的平面区域内,任取一特殊点(将,光),从ax0+by0+c值的正负,即可判断不等式表示的平面区域。
4.线性规划:如果两个变量x,y满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题.其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解.5.基本不等式:⑴如果"eR,那么/+〃 2 2沥,(当且仅当“=。
一.基础题组1.【山东省实验中学2017届高三第一次诊,11】已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则1()4f f ⎡⎤=⎢⎥⎣⎦.【答案】19考点:分段函数求值2.【湖北省黄石市2017届高三年级九月份调研,4】已知函数()221,1,1x x f x x ax x ⎧+<=⎨+≥⎩,若()()04f f a =,则实数a 等于( ) A .12 B .45C .2D .9 【答案】C 【解析】 试题分析:()()0(2)4242ff f a a a ==+=⇒=,选C.考点:分段函数求值【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.3.【江西南昌市2017届摸底考试,8】若定义域为R 的函数()f x 在(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A .(2)(3)f f >B .(2)(5)f f >C .(3)(5)f f >D .(3)(6)f f > 【答案】D考点:函数性质4.【山东省肥城市2017届高三上学期升级统测,9】定义在R 上的函数()f x 满足在区间[)1,1-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩, 其中m R ∈,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f m =( ) A .85- B .25- C .35 D .75【答案】B 【解析】试题分析:因为()()11 2.f x f x T +=-⇒=所以59111213()()||22222525f f f f m m ⎛⎫⎛⎫-=⇒-=⇒-=--⇒=- ⎪ ⎪⎝⎭⎝⎭,因此()325(3)(1)1.55f m f f =-=-=-+=-选B. 考点:分段函数性质5.【河南濮阳市一高2017届高三上学期第二次检测,6】“2log (23)1x -<”是“48x >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:因为2log (23)1x -<,所以3522x <<,又因为48x >,所以32x > ,所以3522x <<⇒32x >.即“2log (23)1x -<”是“48x >”的充分不必要条件,故选A. 考点:1、对数函数的性质及指数函数的性质;2、充分条件与必要条件.6.【河南濮阳市一高2017届高三上学期第二次检测,6】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2- D .1(,1)(1,)2-∞-- 【答案】D考点:1、函数的定义域;2、对数函数的.7.【河南濮阳市一高2017届高三上学期第二次检测,3】下列函数中,是偶函数且在(0,)+∞上为增函数的是( )A .cos y x =B .21y x =-+ C .2log ||y x = D .xx y e e -=- 【答案】C【解析】考点:1、函数的奇偶性;2、函数的单调性.8.【河南濮阳市一高2017届高三上学期第二次检测,4】若0.2log 2a =,0.2log 3b =,0.22c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b << 【答案】B【解析】试题分析:0.2log y x =是减函数,所以0b a <<,又0c >,所以b a c <<.故选B. 考点:1、对数函数的性质;2、指数函数的性质.9.【河南濮阳市一高2017届高三上学期第二次检测,7】若3x a =,5x b =,则45x 等于( )A . 2abB .2a bC .2a b +D .22a b +【答案】A【解析】试题分析:()22459535x x xx x a b =⨯=⨯=.故选A.考点:指数的运算.10.【河南濮阳市一高2017届高三上学期第二次检测,9】已知函数(12),1,()1log ,13x a ax f x x x ⎧-≤⎪=⎨+>⎪⎩当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是( )A .1(0,]3B .11[,]32C .1(0,]2D .11[,]43【答案】A考点:1、分段函数的解析式;2、分段函数的单调性及数学的转化与划归思想.11.【河南濮阳市一高2017届高三上学期第二次检测,10】若函数2()2(2)||f x x x a x a =+--在区间[-3,1]上不是单调函数,则实数a 的取值范围是 ( )A .[-4,1]B .[-3,1]C .(-6,2)D .(-6,1) 【答案】C考点:1、分段函数的单调性;2、利用导数研究分段函数的极值点.12.【江西九江地区2017届高三七校联考,2】函数229log (1)x y x -=+的定义域是( )A .(1,3)-B .(1,3]-C .(1,0)(0,3)-D .(1,0)(0,3]-【答案】D 【解析】考点:函数定义域13.【江西九江地区2017届高三七校联考,4】幂函数2268()(44)m m f x m m x -+=-+在(0,)+∞为增函数,则m 的值为( )A .1或3B .1 C.3 D .2 【答案】B 【解析】试题分析:22441,6801m m m m m -+=-+>⇒=,选B. 考点:幂函数定义及性质14.【江西九江地区2017届高三七校联考,5】已知函数||()21x f x =-+,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩则()F x 是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .非奇非偶函数 【答案】A考点:分段函数奇偶性15.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( ) A .(,4)-∞ B .(4,4]- C .(,4)[2,)-∞+∞ D .[4,4)- 【答案】D 【解析】试题分析:由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.考点:复合函数单调性16.【广东海珠区2017届上学期高三综合测试(一),3】设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A .(2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(2)(3)()f f f π-<-<D .(3)(2)()f f f π-<-< 【答案】C考点:1、函数的奇偶性;2、函数的单调性.17.【河北唐山市2017届上学期高三摸底考,4】设函数(),y f x x R =∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B .【解析】试题分析:当“()y f x =的图象关于原点对称”时,函数()y f x =为奇函数,所以)()(x f x f -=-,所以)()(x f x f =-,所以()y f x =是偶函数;反过来,当“()y f x =是偶函数”时不能推出“()y f x =的图象关于原点对称”例如:2x y =,此时2x y =是偶函数,其图像不关于原点对称.所以“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的必要不充分条件,故应选B .18.【河北唐山市2017届上学期高三摸底考,8】设0x 是方程13xx ⎛⎫= ⎪⎝⎭的解,则0x 所在的范围是( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .2,13⎛⎫⎪⎝⎭【答案】B . 【解析】试题分析:构造函数x x f x -⎪⎭⎫ ⎝⎛=31)(,所以01031)0(0>=-⎪⎭⎫⎝⎛=f ,031313131)31(213131>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,021312131)21(212121<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,所以由零点的存在性定理可得函数x x f x-⎪⎭⎫⎝⎛=31)(在11,32⎛⎫ ⎪⎝⎭上存在零点,故应选B .考点:1、函数与方程.19.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,6】设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,求3(7)(log 12)f f -+=( )A .8B .15C .7D .16 【答案】C 【解析】考点:分段函数.20.【湖南永州市2017届高三第一次模拟,4】若2a =,384b =,ln2c =,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】B考点:基本函数.21.【湖北2017届百所重点校高三联考,5】“11e eb dx x≤⎰”是“函数()2,03,0xx x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:因e e b 1lnln -≤,即2≤b ;因函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数,故21≤+b ,即1≤b ,故2≤b 是1≤b 的必要非充分条件,应选B.考点:充分必要条件及运用.【易错点晴】本题是一道函数的单调性和充分必要条件整合在一起的综合问题.求解这类问题时,要充分借助题设条件,先搞清楚判定哪个命题是哪个命题的条件,再将问题转换为判定在一个命题成立的前提下,另一个命题的真假问题.本题求解时,要先将不等式“11eeb dx x≤⎰”翻译成2≤b 成立的前提下,命题“函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”是否成立的问题,当然这里要用到绝对值函数语指数函数的性质.验证必要性时,要考察这个命题的逆命题的真伪.显然命题不真;反之成立,故应选B.22.【江西九江地区2017届高三七校联考,13】若方程210x mx m -+-=有两根,其中一根大于2,另一根小于2的充要条件是__________. 【答案】3m >【解析】考点:二次函数实根分布23.【江西九江地区2017届高三七校联考,15】若函数3211(),22()1log,2xaxf xx x-⎧≤⎪⎪=⎨⎪>⎪⎩(0a>,且1a≠)的值域是R,则实数a的取值范围是________.【答案】2[,1)2考点:分段函数值域【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.24.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,14】已知定义在R上的偶函数()f x在[0,)+∞上单调递减,且(1)0f=,则不等式(2)0f x-≤的解集是__________.【答案】(,1][3,)-∞+∞【解析】试题分析:因为()f x在R上为单调递减的偶函数,且(1)0f=,所以不等式(2)0f x-≤等价于|2|1x-≥,解得3x≥或1x≤,所以等式(2)0f x-≤的解集为(,1][3,)-∞+∞.考点:1、函数的奇偶性;2、函数的单调性;3、不等式的解法.25.【江苏南通市如东县、徐州丰县2017届10月联考,2】函数1()lg(1)1f x xx=++-的定义域是▲.【答案】()()1,11,-⋃+∞考点:定义域26.【江苏南通市如东县、徐州丰县2017届10月联考,4】设幂函数()f x kx α=的图象经过点()4,2,则k α+=▲ . 【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义27.【江苏南通市如东县、徐州丰县2017届10月联考,5】计算121(lg lg 25)1004--÷= ▲ .【答案】-20 【解析】试题分析:11211(lg lg 25)100lg 10204100---÷=÷=-考点:对数式运算28.【江苏南通市如东县、徐州丰县2017届10月联考,7】已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .【答案】2- 【解析】试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=-29.【江苏南通市如东县、徐州丰县2017届10月联考,8】已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集是 ▲ .【答案】[]2,4- 【解析】试题分析:当0x ≥时,()22xf x =-单调递增,又()33226f =-=()16|1|324f x x x ∴-⇒-≤⇒-≤≤≤考点:利用函数性质解不等式30.【四川巴中市2017届“零诊”,14】若31044=+-x x ,则=4log 3x .【答案】1±.考点:对数的运算.二.能力题组1.【山东省实验中学2017届高三第一次诊,10】已知定义在R 上的偶函数()f x 满足(4)()f x f x -=,且(1,3]x ∈-时,21cos ,13,()2,11,x x f x x x π⎧+<≤⎪=⎨⎪-<≤⎩则()()lg ||g x f x x =-的零点个数是( ) A .9 B .10C .18D .20【答案】C 【解析】试题分析:(4)()()4f x f x f x T -==-⇒=,只需考虑(0,10]x ∈上()y f x =与lg y x =交点个数,在第一个周期(0,4]x ∈上有3个交点,第二个周期(4,8]x ∈上有4个交点,在 (8,10]x ∈上有2个交点,共有9个交点,因此零点个数一共是18个,选C. 考点:函数零点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,7】设e 是自然对数的底,0a >且1a ≠,0b >且1b ≠,则“log 2log a b e >”是“01a b <<<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B3.【河南濮阳市一高2017届高三上学期第二次检测,11】函数2()xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4) 【答案】C【解析】试题分析:取0a =,可知(4)正确;取4a =-,可知(3)正确;取1a =,可知(2)正确;无论a 取何值都无法作出(1).故选C.考点:1、函数的图象和性质;2、选择题的“特殊值法”.【方法点睛】本题主要考查函数的图象和性质、选择题的“特殊值法”,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.4.【江西九江地区2017届高三七校联考,6】已知正方体1111ABCD A B C D -的棱长为1,E 、F 分别是边1AA 、1CC 的中点,点M 是1BB 上的动点,过三点E 、M 、F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =, 则y 关于x 的函数()y f x =的解析式为( )A .23()222f x x x =-+,[0,1]x ∈B .23()222f x x x =-++,[0,1]x ∈ C .3()2f x x =-,[0,1]x ∈ D .3()2f x x =-,[0,1]x ∈【答案】A考点:函数解析式5.【江西九江地区2017届高三七校联考,8】函数221x x e x y e =-的大致图象是( )A .B .C .D .【答案】A 【解析】考点:函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.6.【江西九江地区2017届高三七校联考,11】已知函数()f x 和(1)f x +都是定义在R 上的偶函数,若[0,1]x ∈时,1()()2x f x =,则( )A .15()()32f f ->B .15()()32f f -<C .15()()32f f -=D .19()()32f f -<【解析】试题分析:()(),(1)(1)(2)()f x f x f x f x f x f x =-+=-+⇒+=-,所以5111(2)()2,()()()()2233f x f x T f f f f +=⇒==<=-,选A.考点:函数对称性与周期性7.【广东海珠区2017届上学期高三综合测试(一),8】已知函数()ln ||f x x x =-,则()f x 的图象大致为( )【答案】A【解析】试题分析:因为0x <时()()ln f x x x =--,()f x 在(0,)+∞上递增,0x >时,1()ln ,'()1f x x x f x x=-=-,可得()f x 在(0,1)上递减,在(1,)+∞上递增,所以只有选项A 合题意,故选A.考点:1、函数的图象和性质;2、利用导数研究函数的单调性.8.【河北衡水中学2017届上学期一调,6】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象.9.【湖南永州市2017届高三第一次模拟,12】已知函数()()()11 232 [2)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,,,则函数()()cos g x f x x π=-在区间[]08,内所有零点的和为( )A .16B .30C .32D .40 【答案】C 【解析】10.【湖北2017届百所重点校高三联考,8】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D. 考点:函数图象的性质及运用.11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为( ) A .94 B .2 C .92D .4 【答案】A考点:函数的图象和性质及运用.12.【四川巴中市2017届“零诊”,11】定义在R 上的奇函数)(x f 和偶函数)(x g 满足:xe x g xf =+)()(,给出如下结论:①2)(x x e e x f --=且)2()1(0g f <<;②R x ∈∀,总有1)]([)]([22=-x f x g ; ③R x ∈∀,总有0)()()()(=+--x g x f x g x f ; ④R x ∈∃0,使得)()(2)2(000x g x f x f >. 其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④ 【答案】A. 【解析】试题分析:由题意得,()()()2()()()()()2x x x x x xe ef x f xg x e f x g x f x g x e e eg x ---⎧+=⎪⎧+=⎪⎪⇒⎨⎨-+-=-+=+⎪⎩⎪=⎪⎩,①:1220(1)(2)222e e e e e f g ---+<=<<=,故①正确;②:2222[()][()]()()122x x x x e e e e g x f x --+--=-=,故②正确;③:()()()()()()()()0f x g x f x g x f x g x f x g x --+=-+=,故③正确;④:000000220002()()2(2)222x x x x x x e e e e e e f x g x f x ----+-=⋅⋅==,故④错误,即正确的结论为①②③,故选A.考点:函数的性质.13.【江西九江地区2017届高三七校联考,16】给出下列四个命题:①函数()log (21)1a f x x =--的图象过定点(1,0);②已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()(1)f x x x =+,则()f x 的解析式为2()||f x x x =-;③函数1||1y x =-的图象可由函数1||y x =图象向右平移一个单位得到;④函数1||1y x =-图象上的点到点(0,1)距离的最小值是3.其中所有正确命题的序号是_________. 【答案】②④考点:函数性质14.【河北省衡水中学2017届高三上学期第三次调,16】已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是______________.【答案】1724b <≤考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.15.【江苏南通市如东县、徐州丰县2017届10月联考,10】已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 【答案】43【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,13,33b b b b b b b b a =⇒=>⇒==43a b +=考点:指对数式运算16.【山东省肥城市2017届高三上学期升级统测,15】已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点, 则a 的取值范围是 .【答案】()11,5,973⎛⎫⎪⎝⎭考点:函数交点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.17.【湖北2017届百所重点校高三联考,16】设函数()f x 对任意实数x 满足()()1f x f x =-+,且当01x ≤≤时,()()1f x x x =-,若关于x 的方程()f x kx =有3个不同的实数根,则k 的取值范围是___________. 【答案】(){}526,1322--+【解析】试题分析:因()()1f x f x =-+,故)()2(x f x f =+,即函数)(x f 是周期为2的周期函数,画出函数函数]1,0[),(∈=x x f y 的图象,再借助函数满足的条件()()1f x f x =-+及图象的对称性,画出函数)(x f y =的图象如图,结合图象可得12+=-kx x x ,故04)1(2>-+=∆k k ,解之可得1625<<-k 或223+-=k ,故应填(){}526,1322--+.y=kx+1yx-2-1O -2-12121考点:函数的图象等有关知识的综合运用.【易错点晴】函数图象和性质是高中数学教与学中的重点和难点之一,也是高考和各级各类考试的热点内容.本题以函数零点的个数的形式将二次函数与一次函数的零点问题进行有机地整合,有效地考查和检测学生综合运用所学知识去分析问题解决问题的能力.求解时,先探求函数的周期性,再画出函数的图象,然后借助函数的图象进行分析探求建立不等式,进而求得实数k 的取值范围是(){}526,1322--+.18.【河南濮阳市一高2017届高三上学期第二次检测,15】若“m a >”是“函数11()()33x f x m =+-的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为__________. 【答案】1-三.拔高题组1.【河北省衡水中学2017届高三摸底联考,11】已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()fx a a R =∈实根个数不可能为 ( )A . 2个B .3个C . 4个D .5 个 【答案】D考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.2.【河北衡水中学2017届上学期一调,10】已知()11,01,22,1,x x x f x x -⎧+≤<⎪=⎨⎪≥⎩存在210x x >≥,使得()()12f x f x =,则()12x f x 的取值范围为( )A .2112⎫-⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .24⎫⎪⎪⎣⎭D .2212⎫-⎪⎪⎣⎭【答案】A 【解析】考点:对数函数的图象及二次函数的性质.3.【河南百校联考2017届高三9月质检,9】已知()1145279722,,,log 979x x f x a b c --⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B 【解析】试题分析:()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B.考点:比较大小4.【河北邯郸2017届9月联考,12】已知函数42412sin4()22x x x f x x +++=+,则122016()()()201720172017f f f +++=( ) A .2017 B .2016 C .4034 D .4032 【答案】D .考点:1、函数的基本性质;2、函数的奇偶性;3、函数的综合应用.【思路点睛】本题主要考查了函数的基本性质、函数的奇偶性和函数的综合应用,考查学生综合知识能力,属中档题.其解题的一般思路为:首先将已知条件进行化简并得到222sin 2)21(xx x x f ++=+,并令222sin )21(xx x x g +=+,进而可判断出其奇偶性,再由奇函数的图像与性质可得出所求的结果即可.其解题的关键是正确的化简变形并判断出函数的奇偶性.5.【河南濮阳市一高2017届高三上学期第二次检测,21】(本小题满分12分)已知函数()22xxf x -=+. (1)求方程5()2f x =的根; (2)求证:()f x 在[0,)+∞上是增函数;(3)若对于任意[0,)x ∈+∞,不等式(2)()f x f x m ≥-恒成立,求实数m 的最小值. 【答案】(1)1x =或1x =-;(2)证明见解析;(3)0.(2)证明:设120x x ≤<,则211211221212(22)(12)()()22(22)022x x x x x x x x x x f x f x +-----=+-+=<, ∴12()()f x f x <,∴()f x 在[0,)+∞上是增函数. (3)由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()f x f x m ≥-对于[0,)x ∈+∞恒成立,且()2f x ≥,2()(2)()[()]2m f x f x f x f x ≥-=-+.又0x ≥,∴由(2)知()f x 最小值为2, ∴()2f x =时,m 最小为2-4+2=0.考点:1、简单的指数方程;2、单调性的证明方法及不等式恒成立问题.【方法点晴】本题主要考查、简单的指数方程、单调性的证明方法及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(3)是利用方法①求得m 的最小值的.6.【河南濮阳市一高2017届高三上学期第二次检测,18】(本小题满分12分)设222()(log )2log (0)f x x a x b x =-+>.当14x =时,()f x 有最小值-1. (1)求a 与b 的值;(2)求满足()0f x <的x 的取值范围. 【答案】(1)23a b =-⎧⎨=⎩;(2)11(,)82x ∈.考点:1、二次函数配方法求最值;2、简单的对数不等式.7.【江西九江地区2017届高三七校联考,17】(本小题满分10分)设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间3[0,]2上的值域. 【答案】(1)2a =,(2)215[log ,2]4【解析】试题分析:(1)由(1)2f =的log 42a =,解得2a =(2)因为22()log [(1)4]f x x =--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.因此()f x 在区间3[0,]2上的值域是考点:函数定义域与值域8.【江西九江地区2017届高三七校联考,19】(本小题满分12分)已知二次函数()f x 的对称轴2()x f x =-,的图象被x 轴截得的弦长为3(0)1f =. (1)求()f x 的解析式;(2)若1(())2x f k >对[1,1]x ∈-恒成立,求实数k 的取值范围. 【解析】试题分析:(1)由题意可得二次函数两个零点,所以用零点式设()(23)(23)f x a x x =++,再根据(0)1f =解得1a =(2)不等式恒成立问题一般转化为对应函数最值问题min 1(())2x f k >,而求函数最值,先确定内函数值域11()[,2]22x t =∈,即为外函数定义域,再根据二次函数对称轴与定义区间位置关系得最小值由(0)11f a =⇒=,∴2()(23)(23)41f x x x x x =++=++;………………6分(2)当[1,1]x ∈-时,11()[,2]22xt =∈,………………8分 ∵()f x 开口向上,对称轴为2x =-.∴()f t 在1[,2]2t ∈上单调递增.………………9分 ∴min113()()24f t f ==.所以实数k 的取值范围是13(,)4-∞.………………12分 考点:二次函数解析式及最值【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.9.【江苏南通市如东县、徐州丰县2017届10月联考,16】(本小题满分14分)已知函数()33x x f x λ-=+⋅()R λ∈(1) 当1λ=时,试判断函数()33x x f x λ-=+⋅的奇偶性,并证明你的结论;【答案】(1) 偶函数(2) 27λ-≤考点:函数奇偶性,不等式恒成立问题【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.10.【江苏南通市如东县、徐州丰县2017届10月联考,19】(本小题满分16分)已知函数()133x x af x b+-+=+.(1) 当1a b ==时,求满足()3x f x =的x 的取值;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值. 【答案】(1) 1x =- (2) ①()1,-+∞,②6 【解析】试题分析:(1)根据+1333x x =⋅ ,可将方程()3xf x =转化为一元二次方程:()2332310x x ⋅+⋅-=,再根据指数函数范围可得133x= ,解得1x =- (2) ①先根据函数奇偶性确定a b ,值:1,3a b ==,再利用单调性定(2) 因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且解得:1133a a b b ⎧==-⎧⎪⎨⎨==-⎪⎩⎩或,因为()f x 的定义域是R ,所以13a b =-⎧⎨=-⎩舍去 所以1,3a b ==, 所以()13133x x f x +-+=+ ………………………………………6分①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有: ()()()()211212121222333331313131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x ->,所以()()12f x f x >,因此()f x 在R 上递减. ………………………………………8分因为()()2222f t t f t k -<-,所以2222t t t k ->-,所以440t ∆=+>,解得:1t >-,所以k 的取值范围为()1,-+∞ ………………………………………10分 ②因为()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,所以()()3323x x g x f x --=-考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。
第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。
专题02 函数的奇偶性与单调性【方法点拨】1. 若函数f (x )为偶函数,则f (x )=f (|x |),其作用是将“变量化正”,从而避免分类讨论.2. 以具体的函数为依托,而将奇偶性、单调性内隐于函数解析式去求解参数的取值范围,是函数的奇偶性、单调性的综合题的一种重要命题方式,考查学生运用知识解决问题的能力,综合性强,体现能力立意,具有一定难度.【典型题示例】例1 (2022·江苏新高考基地高三第一次联考·19改编)已知函数f (x )=1-a5x +1为奇函数,且存在m ∈[-1,1],使得不等式f (x 2)+f (mx -2)≤2-x 2-mx 成立,则x 的取值范围是 . 【答案】[-2,2]【解析】求得a =2,且f (x )为R 上的增函数,f (x 2)+f (mx -2)≤2-x 2-mx 可化为f (x 2)+x 2≤2-mx -f (mx -2) 由f (x )为奇函数,得2-mx -f (mx -2)= 2-mx +f (2-mx )令F (x )=f (x )+x ,则F (x 2)≤F (2-mx ),故有x 2≤2-mx ,即x 2+mx -2≤0 令G (x )= x 2+mx -2因为存在m ∈[-1,1],使G (x )= x 2+mx -2≤0 故G (-1)= x 2-x -2≤0或G (1)= x 2+x -2≤0 解之得-2≤x ≤2.例2 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,在f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 【答案】1[1,]2-【分析】直接发现函数的单调性、奇偶性,将2(1)(2)0f a f a -+≤移项,运用奇偶性再将负号移入函数内,逆用单调性脱“f ”.【解析】 ∵f (-x )=(-x )3+2x +e -x -e x =-f (x )且x ∈R , ∴f (x )是奇函数∵函数f (x )=x 3-2x +e x -1ex ,∴f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex ≥0(当且仅当x =0时取等号),∴f (x )在R 上单调递增.,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,解之得-1≤a ≤12.所以实数a 的取值范围是⎣⎡⎦⎤-1,12. 例3 已知函数()e +1e x x f x -=-(e 为自然对数的底数),若2(21)42)(f x f x +->-,则实数x 的取值范围为 . 【答案】()1,3-【分析】本题是例2的进一步的延拓,其要点是需对已知函数适当变形,构造出一个具有奇偶性、单调性的函数,其思维能力要求的更高,难度更大.【解析】令()()1e e x xx F x f -=-=-,易知()F x 是奇函数且在R 上单调递增由2(21)42)(f x f x +->-得[]2(4)11(21)(21)1f x f x f x -->--=--- 即2(4)(21)F x F x ->--由()F x 是奇函数得(21)(12)F x F x ---=,故2(4)(12)F x F x ->-由()F x 在R 上单调递增,得2412x x ->-,即2302x x -<-,解得13x -<<, 故实数x 的取值范围为()1,3-.例4 已知函数()222131x x f x x =-++.若存在()1,4m ∈使得不等式()()2432f ma f m m -++>成立,则实数a 的取值范围是________.【答案】(),8-∞【分析】令()()1F x f x =-,判断函数()F x 的奇偶性与单调性,从而将不等式转化为234m m ma +>-,分离参数可得43a m m<++,令4()3g m m m =++,(1,4)m ∈,利用对勾函数的单调性可得()8g m <,结合题意即可求解a 的取值范围. 【解析】函数222()()131xx f x f x x ==-++,若存在(1,4)m ∈使得不等式2(4)(3)2f ma f m m -++>成立,令2222()()1(31)3131xx x x x F x f x x =-=-=-++,22(31)(13)()()3113x x xxx x F x F x -----===-++, 所以,()F x 为奇函数.不等式2(4)(3)2f ma f m m -++>,即2(4)1(3)10f ma f m m --++->, 即2(4)(3)0F ma F m m -++>,所以2(3)(4)(4)F m m F ma F ma +>--=-, 因为20y x=>在(0,)+∞上为增函数,21031x y =->+在(0,)+∞上为增函数,所以22()(1)31x F x x =-+在(0,)+∞上为增函数, 由奇函数的性质可得()F x 在R 上为增函数,所以不等式等价于234m m ma +>-,分离参数可得43a m m<++, 令4()3g m m m=++,(1,4)m ∈, 由对勾函数的性质可知()g m 在(1,2)上单调递减,在(2,4)上单调递增,g (1)8=,g (4)8=,所以,()8g m <,所以由题意可得8a <, 即实数a 的取值范围是(,8)-∞. 故答案为:(,8)-∞.例5 已知函数112,1()2,1x x x f x x --⎧≥=⎨<⎩,若()2(22)2f x f x x -≥-+,则实数x 的取值范围是( ) A .[2,1]-- B .[1,)+∞C .RD .(,2][1,)-∞-+∞【答案】D【解析】函数1112,1()22,1x x x x f x x ----⎧==⎨<⎩,故()f x 关于直线1x =对称,且在[1,)+∞上单减,函数()f x 的图象如下: 2(22)(2)x f x x --+,且f22172()124x x x -+=-+>恒成立,2|221|21x x x ∴---+-,即2|23|1x x x --+,当32x时,不等式化为:2231x x x --+,即2340x x -+,解得x ∈R ,即32x ;当32x <时,不等式化为:2321x x x --+,即220x x +-,解得2x -或1x ,即2x -或312x <;综上,2(22)(2)f x f x x --+时,实数x 的取值范围是(-∞,2][1-,)+∞. 故选:D .例6 已知函数,,则t 的取值范围是 . 【答案】[1,)+∞【分析】将已知按照“左右形式相当,一边一个变量”的原则,移项变形为3133(3log 1)log (12log )f t t f t -≥--,易知是奇函数,故进一步变为3333(3log 1)(3log 1)(2log 1)(2log 1)f t t f t t -+-≥-+-(#),故下一步需构造函数()()F x f x x =+,转化为研究()()F x f x x =+的单调性,而()()F x f x x =+单增,故(#)可化为3log 0t ≥,即333log 12log 1t t -≥-,解之得1t ≥.例7 (2022·江苏南通期末·8)已知函数()422xf x x =-+,()3log 2a f =,()4log 3b f =,43c f ⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b c a <<C. c a b <<D.c b a <<【答案】B【分析】分析可知函数()f x 在()1,+∞上为增函数,推导出函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数,可得出23c f ⎛⎫= ⎪⎝⎭,利用函数()f x 在(),1-∞上()33x xf x -=-3313(12log )(3log 1)log f t f t t -+-≥3313(12log )(3log 1)log f t f t t -+-≥()33x xf x -=-的单调性可得出a 、b 、c 的大小关系.【解析】令()422xg x x =-+,其中x ∈R ,则()10g =, 因为函数y x =、422x y =-+均为R 上的增函数,故函数()g x 也为R 上的增函数,当1x >时,()()10g x g >=,此时()442222x x f x x x =-=-++,故函数()f x 在()1,+∞上为增函数,因为()()2322222244222222222x xxx x f x x x x -----+--=--=-=-+++ ()()3222442222222xxx x x x x x x f x --⋅=-=-=-=+++故函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数, 所以,4233c f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 3223<,则3lg 22lg3<,即3lg 22log 2lg 33=<, 2343<,则2lg 43lg3<,则4lg 32log 3lg 43=>,即342log 2log 313<<<, 因此,b c a <<. 故选:B.【巩固训练】1.若函数(()=ln f x x x +为偶函数,则实数a = 2.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-3.已知函数1()22x x f x =-,则满足2(5)(6)0f x x f -+>的实数x 的取值范围是 .4. 已知函数()||31f x x x x =⋅++,若()2()22f a f a +-<,则实数a 的取值范围__________.5.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,若()()22f a f a ->,则实数a 的取值范围是__________.6.已知函数()x xg x e e -=-,()()f x xg x =,若1ln 3a f ⎛⎫= ⎪⎝⎭,140.2b f ⎛⎫= ⎪⎝⎭,()1.25c f =,则a 、b 、c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<7. (多选题)关于函数12()11xf x x e ⎛⎫=+ ⎪-⎝⎭下列结论正确的是( ) A .图像关于y 轴对称 B .图像关于原点对称 C .在(),0-∞上单调递增D .()f x 恒大于08.已知函数())20202020log 20201xx f x x -=+-+,则关于x 的不等式()()21120f x f x +++->的解集为( ).A .1,2020⎛⎫-+∞ ⎪⎝⎭B .()2020,-+∞C .2,3⎛⎫-+∞ ⎪⎝⎭D .2,3⎛⎫-∞-⎪⎝⎭9.已知函数222()131x x f x x =-++.若存在m ∈(1,4)使得不等式(4)f ma -+2(3)2f m m +>成立,则实数a 的取值范围是A . (),7-∞B . (],7-∞C . (),8-∞D . (],8-∞ 10. 已知函数()e e 2sin xxf x x -=--,则关于x不等式()()2320f x f x -+<的解集为( ) A. ()3,1-B. ()1,3-C. ()(),31,-∞-⋃+∞D. []1,3-11. 已知()sin xxf x e e x x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围___.12.已知()sin xxf x e ex x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围_ __. 13. 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是( ) A .(]0,eB .[]0,eC .(]0,1D .[]0,114.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x xf f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为( )A .(),1-∞B .(),1-∞-C .()1-D .()1,-+∞【答案或提示】1.【答案】1【解析】(g()=ln x x +奇函数,g(0)=0=,1a =.2. 【答案】B【解析】()f x 偶函数,且在(0,)+∞单增,()()1f x f >转化为1x >,解得1x >或1x <-. 3.【答案】(2,3)【解析】()f x 奇函数,且单减,2(5)(6)0f x x f -+>转化为2560x x -+<,解得23x <<.4. 【答案】(2,1)-【解析】设()||3g x x x x =⋅+,则()g x 奇函数,且单增,而()()1f x g x =+,由()2()22f a f a +-<得()2211()f a f a --<-即()22()()g a g a g a -<-=-,故22a a -<-,解之得21a -<<.5.【答案】(2,1)-【解析】22y x x =+在[0,)+∞上单调递增,22y x x =-在(,0)-∞上单调递增,且220+20=200⨯⨯-,()f x ∴在R 上单调递增,因此由()()22f a f a ->得2221aa a ->∴-<<,,故答案为:()2,1-6. 【答案】A 【解析】()()()x x f x xg x x e e -==-,该函数的定义域为R ,()()()x x x x f x x e e x e e ---=--=-,所以,函数()y f x =为偶函数,当0x >时,()0xxg x e e-=->,任取120x x >>,12x x -<-,则12x xe e >,12x x e e --<,所以,1122x x x x e e e e --->-,()()120g x g x ∴>>,()()1122x g x x g x ∴>,即()()12f x f x >,所以,函数()y f x =在()0,∞+上单调递增,()11ln lnln333a f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 10 1.2400.20.21ln355<<=<<<,则()()1 1.240.2ln 35f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A. 7.【答案】ACD 8. 【答案】C【解析】构造函数()())202012020log 2020xx F x fx x -=-=+-,x>=0x>,所以()F x 的定义域为R .())20202020log 2020x xF x x --=+-20202020log 2020x x xx -⎡⎤=+-20202020log 2020x x-⎡⎤=+-)()20202020log 2020x x x F x -=--=-,所以()F x 为奇函数, ()00F =.当0x >时,)20202020,2020,log x xy y y x -==-=都为增函数,所以当0x >时,()F x 递增,所以()F x 在R 上为增函数.由()()21120f x f x +++->,得()()211110f x f x +-++->, 即()()2110F x F x +++>,所以2110x x +++>,解得23x >-. 所以不等式的解集为2,3⎛⎫-+∞ ⎪⎝⎭.故选:C 9. 【答案】C【解析】22222231()1111313131xx x x x f x x x x -⎛⎫=-+=-+=⋅+ ⎪+++⎝⎭设231()()131x x g x f x x -=-=⋅+,则()g x 为定义在R 的奇函数所以()f x 关于点()0,1对称又2223131312ln 33()231313131x x x xx x x x x g x x x x '⎡⎤---⋅⋅''⎡⎤=⋅+⋅=⋅+⎢⎥⎣⎦++++⎣⎦所以当0x >时,()0g x '>,()g x 在()0,+∞上单增 故()g x 在(),-∞+∞上也单增因为2(4)(3)2f ma f m m -++>可化为2(4)1(3)1f ma f m m -->-++所以2(4)(3)g ma g m m ->-+因为()g x 为R 的奇函数,22(4)(3)(3)g ma g m m g m m ->-+=--所以243ma m m ->--又因为存在m ∈(1,4)使得不等式243ma m m ->--成立,分参得43a m m<++ 易得[)437,8m m++∈,所以8a <,故选C . 10.【答案】A【分析】根据题意可判断函数()e e 2sin xxf x x -=--为奇函数且在R 上单调递增,进而根据奇偶性与单调性解不等式即可.【解析】函数()e e 2sin xxf x x -=--的定义域为R ,()()()e e 2sin e e 2sin x x x x f x x x f x ---=---=-+=-,所以函数()e e 2sin xxf x x -=--为奇函数,因为()'e e 2cos 22cos 0xxf x x x -=+-≥-≥,所以函数()e e 2sin xxf x x -=--在R 上单调递增,所以()()()()()22320322f x f x f x f x f x -+<⇔-<-=-,所以232x x -<-,即2230x x +-<,解得31x -<< 所以不等式()()2320f x f x -+<的解集为()3,1-故选:A11.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解【解析】因为()()sin xx f x ee x xf x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x xf x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x f f ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭,所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥, 因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++, 则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 12.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解 【解析】因为()()sin x x f x e e x x f x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x x f x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x ff ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭, 所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++, 令2()2ln(1)2x g x x =-++,则max ()a g x ≥,因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数,所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++,则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 13.【答案】D【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【解析】()1e e 21x x x f x -=+-+, ()()1111e e e e 121212121x x x x x x x x f x f x ----∴+-=+-+-+=++=+++令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x x x x x x x g x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e x x ≥当且仅当1e ex x =,即0x =时等号成立; ln 2ln 214222x x ≤++当且仅当122x x =,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g ax g ax g ax ≥--=-,即2210ax ax -+≥对x ∀∈R 恒成立. 当0a =时显然成立;当0a ≠时,需20440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.14.【答案】A【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围.【解析】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-,∴()g x 为奇函数,又()2cos 0g x x '=++>,即()g x 为增函数,∴()()39334x x x f f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--, ∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113x x +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈(),1-∞.故选:A。
芯衣州星海市涌泉学校赣榆县智贤中学高三数学总复习专题二第1讲三角函数〔1〕教学案教学内容:三角函数的图象与性质〔1〕教学目的:1三角函数的图象与解析式2.利用三角函数的图象与解析式教学重点:1.求三角函数的解析式;教学难点:三角函数的图象与解析式教学过程:一、知识点复习:1.必记的概念与定理(1)同角关系:sin2α+cos2α=1,=tanα.(2)诱导公式:在+α,k∈Z的诱导公式中“奇变偶不变,符号看象限〞.(3)三角函数的图象及常用性质函数y=sinx y=cosx y=tanx图象单调性在[-+2kπ,+2kπ](k∈Z)上单调递增;在[+2kπ,+2kπ](k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在(-+kπ,+kπ)(k∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:(+kπ,0)(k∈Z);对称轴:x=kπ(k∈Z)对称中心:(,0)(k∈Z)2.记住几个常用的公式与结论对于函数y=Asin(ωx+φ)(A>0,ω>0)要记住下面几个常用结论:(1)定义域:R.(2)值域:[-A,A].当x=(k∈Z)时,y取最大值A;当x=(k∈Z)时,y取最小值-A.(3)周期性:周期函数,周期为.(4)单调性:单调递增区间是(k∈Z);单调递减区间是(k∈Z).(5)对称性:函数图象与x轴的交点是对称中心,即对称中心是(,0),对称轴与函数图象的交点纵坐标是函数的最值,即对称轴是直线x=,其中k∈Z.(6)函数y=Asin(ωx+φ)(A>0,ω>0)中,A影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;φ影响函数的初相.(7)对于函数y=Asin(ωx+φ)(A>0,ω>0)的图象,相邻的两个对称中心或者者两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一.复备栏3.需要关注的易错易混点三角函数图象平移问题(1)看平移要求:拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断挪动方向的关键点.(2)看挪动方向:在学习中,挪动的方向一般我们会记为“正向左,负向右〞,其实,这样不理解的记忆是很危险的.上述规那么不是简单地看y=Asin(ωx+φ)中φ的正负,而是和它的平移要求有关.正确地理解应该是:平移变换中,将x变换为x+φ,这时才是“正向左,负向右〞.(3)看挪动单位:在函数y=Asin(ωx+φ)中,周期变换和相位变换都是沿x轴方向的,所以ω和φ之间有一定的关系,φ是初相位,再经过ω的压缩,最后挪动的单位是||.二、根底训练:1.函数y=tan的定义域是________.解析:∵x-≠kπ+,∴x≠kπ+,k∈Z.答案:2.(2021·模拟)函数f(x)=sinxcosx的最小正周期是________.解析:由题知f(x)=sin2x,所以T==π.答案:π3.将函数y=2sinx的图象上每一点向右平移1个单位长度,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,那么f(x)的解析式为________.解析:函数y=2sinx向右平移1个单位得y=2sin(x-1)=2sin,将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),那么y=2sin,即y=2sin.答案:y=2sin4.(2021·模拟)函数f(x)=2sin,x∈[-π,0]的单调增区间为________.解析:当x-∈,k∈Z时,f(x)单调递增,又因为x∈[-π,0],故取k=0得x∈.答案:1三、例题教学:例1、(2021·模拟)假设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如下列图,这个函数的解析式为________.[解析]由题意知:周期T=2(-)=π,ω==2,设f(x)=Asin(2x+φ),点(,0)为五点作图中的第三点,所以2×+φ=π,即φ=.设f(x)=Asin(2x+),因为点(0,)在原函数的图象上,故Asin=,所以A=,综上知:f(x)=sin(2x+).[答案]f(x)=sin(2x+)变式训练:1.(2021·高考卷)函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,那么φ的值是________.解析:由题意,得sin=cos,因为0≤φ<π,所以φ=.答案:例2、2021·模拟)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象如下列图,直线x=,x =是其两条对称轴.(1)求函数f(x)的解析式并写出函数的单调增区间;(2)假设f(α)=,且<α<,求f(+α)的值.[解](1)由题意,=-=,∴T=π,又ω>0,故ω=2,∴f(x)=2sin(2x+φ),由f()=2sin(+φ)=2,解得φ=2kπ-(k∈Z),又-<φ<,∴φ=-,∴f(x)=2sin(2x-),由2kπ-≤2x-≤2kπ+(k∈Z)知,kπ-≤x≤kπ+,(k∈Z),∴函数f(x)的单调增区间为[kπ-,kπ+](k∈Z).(2)依题意得:2sin(2α-)=,即sin(2α-)=,∵<α<,∴0<2α-<,∴cos(2α-)===,f(+α)=2sin[(2α-)+],∵sin[(2α-)+]=sin(2α-)cos+cos(2α-)sin=(+)=,∴f(+α)=.稳固练习:完成专题强化训练。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
x2- 1 f 2=________.1.已知函数 f(x)=x2+1,则 1f 22.已知 f 知足 f(ab) =f(a)+ f(b),且 f(2) =p, f(3)= q,则 f(72)=------------ .一、选择题3x21.函数 f(x)=+lg(3 x+1)的定义域是()1- xA. -1,+∞ B. -1,1 3 3C. -1,1D.-∞,-1 3 3 322.已知 f 1- x =1-x2,则 f( x)的分析式可取为 ()1+ x 1+xx 2xA. 1+x2 B.-1+x2C. 2x 2 D.-x 21+ x 1+ x3.汽车经过启动、加快行驶、匀速行驶、减速行驶以后泊车,若把这一过程中汽车的行驶行程s 看作时间 t 的函数,其图象可能是()1- x2,x≤ 1, 1)4.设函数 f(x)=则 f 的值为 (x2+ x- 2, x>1, f 215 27A. 16 B.-168C.9 D. 181, x<0x则不等式 |f(x)|≥1的解集为 ( )5.若函数 f(x)=1 x 33, x≥ 0A .(- 3,1)B . [- 1,3]C.(-1,3] D . [- 3,1]二、填空题6.已知函数f(x)=x2- 2ax+ a2- 1的定义域为A,2?A,则 a 的取值范围是____________.7.假如f[f(x)] = 2x -1, 一次函数f(x) =_____________.三、解答9.如右 所示,在4 的正方形 ABCD 上有一点 P ,沿着折BCDA 由B 点(起点 )向A点 ( 点 )移 ,P 点移 的行程x ,△ ABP 的面y = f(x).(1)求△ ABP 的面 与P 移 的行程 的函数关系式;(2)作出函数的 象,并依据 象求y 的最大 .2不等式 f(x)>- 2x 的解集 (1,3) . 10.已知二次函数 f(x)= ax +bx + c , (a<0) (1) 若方程 f(x)+ 6a = 0 有两个相等的 根,求f(x)的分析式;(2) 若 f(x)的最大 正数,求 数 a 的取 范 .第三部分函数的值域与最值一、1.函数 y = x 2- 2x 的定 域 {0,1,2,3} ,那么其 域 ( )A .{ - 1,0,3}B . {0,1,2,3}C .{ y|- 1≤ y ≤ 3}D . { y|0≤ y ≤ 3}2.函数 y = log 2x + log x (2x)的 域是 ( )A .(-∞,- 1]B . [3,+∞ )C .[-1,3]D . (-∞,- 1]∪ [3,+∞ )x 2, |x |≥ 1, g(x)是二次函数,若f(g(x))的 域是 [0,+∞ ), g(x)的 域是 () 3. f(x)=x x ,| |<1A. (-∞,- 1 ]∪ [1,+∞ ) B.(]∪ [ 0,+∞ )-∞,- 1C .[0,+∞ )D.[1,+∞ )- 1, x>0-a -b f a - b(a ≠ b)的 是 (4. 函数 f(x)=, a +b)1, x<02A .aB . bC . a ,b 中 小的数D . a ,b 中 大的数5.函数 y = a x 在 [0,1] 上的最大 与最小 的和3, a = ________.1+ x+ f 1-x= 2 随意的非 数x 建立, 123 2009=6.若 f 2 2f2010+ f2010+f2010+⋯+ f2010 ________.7. a ,b ∈ R , max{ a ,b} =a , a ≥ b,函数 f(x)= max{| x + 1|,|x - 2|}( x ∈ R )的最小 是 ________.b , a < b12的定 域、 域都是 区[2,2 b],求 b 的 .8.若函数 y = f(x) = x- 2x + 42函数的单一性一、选择题3- a x- 4a, x< 1,1.已知 f(x)=log a x,x≥ 1,是 (-∞,+∞ )上的增函数,那么 a 的取值范围是 ( )A .(1,+∞ ) B. (-∞, 3) C. 3, 3D. (1,3) 53.设 f(x)是连续的偶函数,且当x+ 3 的全部 x 之和为 ( ) x>0 时 f(x)是单一函数,则知足 f(x) =f x+4A.-3 B. 3 C.- 8 D .84.若不等式 x2+ ax+1≥ 0 对于全部 x∈0,1建立,则 a 的取值范围是 ( ) 2A .(0,+∞ ) B.[-2,+∞ ) C. -5,+∞D. (- 3,+∞ ) 25.若函数 f(x)=x 2+a(a∈R ),则以下结论正确的选项是 ( ) xA .? a∈R, f(x)在(0 ,+∞ )上是增函数B. ? a∈R, f(x)在 (0,+∞ )上是减函数C.? a∈R, f(x)是偶函数D. ? a∈R, f(x)是奇函数二、填空题6.函数 y= x2+ 2x- 3的递减区间是 ________.1, f 2,f(1) 从小7.假如函数 f(x)在R上为奇函数,在 (- 1,0)上是增函数,且 f(x+ 2)=- f( x),则 f 3 3 到大的摆列是 ________.3- ax8.已知函数 f(x)=a-1 (a≠ 1).(1)若 a> 0,则 f(x)的定义域是 ________;(2)若 f(x)在区间( 0, 1a 的取值范围是 ________.]上是减函数,则实数三、解答题9.已知函数f(x)在 ( -1,1)上有定义,当且仅当0<x<1 时 f(x)<0 ,且对随意x、 y∈ (- 1,1)都有 f(x)+ f(y)=f x+y,试证明:1+xy(1)f(x)为奇函数; (2) f(x)在 (- 1,1)上单一递减.一、选择题1. f(x), g(x)是定义在R 上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的 ()A .充要条件B .充足而不用要的条件C.必需而不充足的条件D .既不充足也不用要的条件2.若函数 f(x),g(x)分是R上的奇函数、偶函数,且足f( x)- g(x)= e x,有 ( )A .f(2)< f(3)< g(0) B. g(0)< f(3)< f(2)C.f(2)< g(0)< f(3) D. g(0)< f(2)< f(3)x2+ 4x, x≥0,若 f(2-a2)> f(a),数 a 的取范是 ( ) 4.已知函数 f(x)=4x-x2,x< 0A .(-∞,- 1)∪(2,+∞ )B .(- 1,2)C.(-2,1) D . (-∞,- 2)∪ (1,+∞ )二、填空5.函数 f(x)= x3+ sin x+ 1(x∈R),若 f(a)= 2, f(- a)的 ________.6 奇函数 f( x)的定域 [ - 5,5] .若当 x∈[0,5] , f(x)的象如右所示,不等式f(x)<0 的解是________.17.若 f(x)=2x-1+ a 是奇函数,a= ____________.三、解答8.已知函数 f(x)和 g(x)的象对于原点称,且f(x)= x2+2x.求函数 g(x)的分析式;10. f(x)是定在R 上的奇函数,且随意数x 恒足 f(x+2)=- f( x),当 x∈ [0,2] , f(x)= 2x-x2 .(1)求: f(x)是周期函数.(2)当 x∈ [2,4] ,求 f(x)的分析式.(3)算 f(0) + f(1)+ f(2) +⋯+ f(2013) .函数的图象一、1.函数 y= f(x) 的象与函数g(x) =log 2x(x> 0)的象对于原点称,f( x)的表达式 ()1A.f(x)=log2x(x> 0) C.f(x)=- log2x(x> 0) B. f(x)= log2 (- x)(x< 0) D . f(x)=- log2(-x)( x< 0)|ln x|2.函数 y= e-|x-1|的图象大概是()3.四位好朋友在一次聚会上,他们依据各自的喜好选择了形状不一样、内空高度相等、杯口半径相等的圆口酒杯,以以下图所示.盛满酒后他们商定:先各自饮杯中酒的一半.设节余酒的高度从左到右挨次为h1,h2,h3, h4,则它们的大小关系正确的选项是()A .h2> h1> h4 B. h1> h2> h3C.h3> h2> h4 D. h2> h4> h14.函数 f(x)= 2|log2x|-x-1 的图象为 ()x二、填空题6 . f( x)是定义域为R的偶函数,其图象对于直线x= 2 对称,当 x∈ (- 2,2)时,f(x)=- x2+1,则 x∈ (-4,-2)时, f(x)的表达式为 ________.7.已知定义在区间[0,1] 上的函数y= f(x)的图象如右图所示,对于知足0<x1<x2<1 的随意 x1、x2,给出下列结论:①f(x2 )- f(x1)> x2- x1;②x2f( x1)>x1f(x2);③f x1+ f x2<fx1+ x2.2 2此中正确结论的序号是________. ( 把全部正确结论的序号都填上 )8.定义在 R 上的函数 f(x)知足 f x +5+ f(x)= 0,且函数 f x + 5 为奇函数,给出以下结论:2 4①函数 f(x)的最小正周期是 5;2②函数 f(x)的图象对于点5, 0 对称;4③函数 f(x)的图象对于直线 x = 5对称;2④函数 f(x)的最大值为 f 52 .此中正确结论的序号是________.( 写出全部你以为正确的结论的符号)第九部分 一次函数与二次函数一、选择题1.一元二次方程 ax 2+ 2x + 1=0(a ≠ 0)有一个正根和一个负根的充足不用要条件是( )A .a<0B .a>0C . a<- 1D . a>12.设 b>0,二次函数22的图象为以下之一,则 a 的值为 ()y = ax +bx + a - 1A .1B .- 1 C.-1- 5D.-1+ 5223.已知函数 f(x)= ax 2- 2ax + 1(a>1) ,若 x 1<x 2,且 x 1+ x 2= 1+ a ,则 ( )A .f(x 1)>f(x 2)B .f(x 1)<f(x 2)C .f(x 1)= f(x 2)D .f(x 1)与 f(x 2)的大小不可以确立4. 右图所示为二次函数 y = ax 2+ bx + c 的图象,则 |OA| |OB|·等于 ()c cA. aB .- a c D .没法确立C .±a5.对于 x 的方程 (x 2- 1)2- |x 2- 1|+k = 0,给出以下四个命题:①存在实数 k,使得方程恰有2 个不一样的实根;②存在实数 k,使得方程恰有4 个不一样的实根;③存在实数 k,使得方程恰有5 个不一样的实根;④存在实数 k,使得方程恰有8 个不一样的实根.此中假命题的个数是( )A .0 B. 1 C. 2 D. 3二、填空题6.若方程4(2-3x)+ k- 3= 0, x∈[ 0, 1]没有实数根,求 k 的取值范围 ________.x7.假如方程 x2+ 2ax+ a+ 1= 0 的两个根中,一个比 2 大,另一个比 2 小,则实数 a 的取值范围是________.8.已知 f(x)= x 2, g(x)是一次函数且为增函数,若 f[g(x)] = 4x2- 20x+25, 则 g(x)= ____________.三、解答题9.设二次函数 f(x)= x2+ ax+ a,方程 f(x) -x= 0 的两根 x1和 x2知足 0<x1<x2<1.(1)务实数 a 的取值范围;(2)试比较 f(0) f(1)· - f(0) 与1 的大小,并说明原因.1610.设函数f(x) =x2+|x- 2|- 1,x∈R .(1)判断函数f(x)的奇偶性;(2)求函数 f(x)的最小值.单元测试一、选择题 (本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的 )1.设会合 A 和会合 B 都是实数集R,映照 f: A→ B 是把会合 A 中的元素 x 对应到会合 B 中的元素3 x- x+ 1,则在映照 f 下象 1 的原象所构成的会合是( )A .{1} B. {0}C.{0 ,- 1,1} D. {0,1,2}2.若不等式 x2- x≤0 的解集为M,函数 f(x)= ln(1 - |x|)的定义域为 N,则 M∩N 为 ()A .[0,1) B. (0,1)C.[0,1] D. (- 1,0]3.函数 y= log a(|x|+ 1)( a>1) 的大概图象是( )- 1 - 114 .已知函数 f(x)= log a x ,其反函数为 f (x),若 f (2)= 9,则 f(2)+ f(6) 的值为()A .2B . 11 1 C.2D.35 .函数 f(x)= ( 1)x 与函数 g(x)= log 1|x|在区间 (-∞, 0)上的单一性为22( )A .都是增函数B .都是减函数C .f(x)是增函数, g(x)是减函数D .f(x)是减函数, g(x)是增函数log 2x , x>0,6.已知函数 f(x)=若 f(a)=1,则 a =2x , x ≤ 0.2()A .-1B. 2C .-1 或 2D .1 或- 27.设函数 f(x)=- x 2+4x 在 [m , n]上的值域是 [- 5,4] ,则 m + n 的取值所构成的会合为A .[0,6]B . [- 1,1]()C .[1,5]D . [1,7]8.方程 (1)|x|- m = 0 有解,则 m 的取值范围为2()A .0< m ≤ 1B . m ≥ 1C .m ≤- 1D . 0≤m <19.定义在 R 上的偶函数 f(x)的部分图象如右图所示,则在 (- 2,0)上,以下函数中与f(x)的单一性不一样的是( )A .y = x 2+ 1B . y = |x|+12x+1, x≥ 0,e x, x≥0,C.y=D. y=-x, x<0x3+ 1,x<0, e,那么10.设 a= log , b=log , c=( )A .a<b<c B. a<c<bC.b<a<c D. c<a<b11.中国政府正式加入世贸组织后,从2000 年开始,汽车入口关税将大幅度降落.若入口一辆汽车2001 年售价为 30 万元,五年后 (2006 年 )售价为 y 万元,每年下调率均匀为x%,那么 y 和 x 的函数关系式为A .y= 30(1- x%) 6 B. y= 30(1+ x%) 6( )5D. y=5C.y= 30(1- x%) 30(1+ x%)12.定义在R上的偶函数f(x)知足:对随意的 x1, x2∈ (-∞, 0]( x1≠ x2),有 (x2-x1 )(f(x2)- f(x1))>0 ,则当 n∈N*时,有( ) A.f(- n)< f(n- 1)<f(n+ 1)B.f(n- 1)< f(- n)<f(n+1)C.f(n+ 1)< f(- n)<f(n-1)D.f(n+1)< f(n- 1)< f(- n)第Ⅱ卷(非选择题共 90分)题号第Ⅰ卷第Ⅱ卷总分17 18 19 20 21二22得分二、填空题 (本大题共 4 小题,每题 5 分,共 20 分,把答案填在题中横线上 )1的定义域是 ________.13.函数 f( x)=1- e x14.若 x≥ 0,则函数 y= x 2+ 2x+3 的值域是 ________.15.设函数 y= f(x)是最小正周期为 2 的偶函数,它在区间[0,1] 上的图象为以下图的线段AB,则在区间 [1,2] 上 f(x)= ______.1, x>016.设函数 f(x) = 0, x= 0 ,g(x)= x2f(x- 1),- 1, x<0则函数 g(x) 的递减区间是 ________.三、解答题 (本大题共 6 小题,共70 分,解答应写出文字说明,证明过程或演算步骤)a·2x- 117. (本小题满分10 分 )设 f(x) =2x+1是R上的奇函数.(1)求 a 的值;- 1(2)求 f(x)的反函数 f (x).18. (本小题满分2 m 7 12 分 )已知函数 f(x)=-x ,且 f(4)=- .x 2(1)求 m 的值;(2)判断 f( x)在 (0,+∞ )上的单一性,并赐予证明.19.(本小题满分12 分 )已知函数f(x)= 3x,且 f( a+ 2)= 18, g(x)= 3ax- 4x的定义域为区间[ - 1,1] .(1)求 g(x) 的分析式;(2)判断 g(x)的单一性.2 121.(本小题满分 12 分 )设函数 f(x)= x +x-4.(1) 若函数的定义域为 [0,3] ,求 f(x)的值域;1, 1(2) 若定义域为 [a, a+ 1]时, f(x)的值域是 [ -],求 a 的值.2 161 x22. (本小题满分12 分 )已知函数 f(x)= (3),-1函数 y= f(x) 是函数 y= f(x)的反函数.- 1 2(1)若函数 y= f (mx + mx+ 1)的定义域为R,务实数m 的取值范围;(2)当 x∈ [ - 1,1] 时,求函数y= [f( x)] 2- 2af(x)+ 3 的最小值g(a).。
高三理科数学二轮复习最值专题(2)三角函数篇类型一:形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)。
例1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0 D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 例2.已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期T =2π2=π. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0.类型二:形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)。
例3、求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. [思路点拨] 利用换元法求解,令t =sin x .转化为二次函数最值问题.[解]:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 类型三:形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).例4、求函数y =sin x +cos x +3cos x sin x 的最值.[解] 令t =sin x +cos x ,∴t ∈[-2, 2 ].又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12, ∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2. 类型四:“逆向题”,即已知函数的最值去求某参数的值。
高三数学第二轮数学专题复习全套教案目标为高三学生提供一套完整的数学专题复教案,帮助他们加深对数学知识的理解和掌握,为高考做好准备。
复内容1. 函数与方程- 函数的概念和性质- 一次函数和二次函数的图像、性质及应用- 方程的根与解的判定- 一元一次方程组和一元二次方程的求解方法- 函数方程的解法和应用2. 三角函数- 三角函数的概念和性质- 常用三角函数的图像、性质及应用- 三角函数的基本关系式和恒等变换- 解三角函数方程和不等式的方法3. 数列与数学归纳法- 数列的概念和性质- 等差数列和等比数列的推导和应用- 数学归纳法的基本原理和应用- 常见数列问题的解法4. 三角比例和相似- 三角比例的性质和应用- 直角三角形和一般三角形的相似性质- 解三角形的基本方法和应用- 四边形的性质和计算教学安排1. 每个教题讲解时长约为30分钟,包括概念讲解和示例演练。
2. 每个专题分为3节课,共计9节课。
3. 每节课后设置10道练题,供学生完成并检查答案。
4. 每周安排一次模拟考试,让学生检验自己的研究成果。
教案编写原则1. 教案内容简明扼要,重点突出,不涉及复杂的法律问题。
2. 尽可能使用清晰简单的语言,避免使用过多的专业术语。
3. 引用的内容必须能够得到确认,并标明出处。
4. 鼓励学生积极参与讨论和解决问题,培养他们的思考能力和解决问题的能力。
结语这份高三数学第二轮数学专题复全套教案旨在帮助学生复数学知识,强化概念和技巧的掌握。
教案内容简明扼要,注重培养学生的思考能力和解决问题的能力。
希望学生能够利用这份教案,全面提升数学水平,为高考取得好成绩做好准备。
> 注意:该文档的内容是根据提供的信息创作的,内容的准确性和可行性需要进一步核实确认。
高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。
三角函数(2)解斜三角形(正余弦定理应用)1.正弦定理:A a sin =B b sin =Ccsin =2R.(关键点“比”,用法:边角转化) 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2.余弦定理:a 2=b 2+c 2-2bccosA ; cos B =cab ac 2222-+;在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来理解”.题型一、判断三角形的形状:1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) 答案:CA.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形2.下列条件中,△ABC 是锐角三角形的是( ) A.sin A +cos A =51B.AB ·BC >0C.tan A +tan B +tan C >0D.b =3,c =33,B =30° 答案:C解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角.由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角.由B b sin =C c sin ,得sin C =23,∴C =3π或3π2.3.在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.解:△ABC 是直角三角形. 题型二、解斜三角形(求角度和长度)4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______. 解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 答案:3π5.在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1 sin A >21;sin A >21⇒30°<A <150°⇒A >30°答案:B6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45° 7.△ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B . 证明:用正弦定理,a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b (b +c )中,得sin 2A =sin B (sin B +sin C )⇒sin 2A -sin 2B =sin B sin C ⇒22cos 1A --22cos 1B- =sin B sin (A +B )⇒21(cos2B -cos2A )=sin B sin (A +B ) ⇒sin (A +B )sin (A -B )=sin B sin (A +B ), 因为A 、B 、C 为三角形的三内角,所以sin (A +B )≠0.所以sin (A -B )=sin B .所以只能有A -B =B ,即A =2B .该题若用余弦定理如何解决?解:利用余弦定理,由a 2=b (b +c ),得cos A =bc a c b 2222-+=bc c b b c b 222)()(+-+=b bc 2-,cos2B =2cos 2B -1=2(ac b c a 2222-+)2-1=2222cc b b c c b )()(++-1=b b c 2-. 所以cos A =cos2B .因为A 、B 是△ABC 的内角,所以A =2B .评述:高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.8.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于( )A.231+ B.1+3 C.232+ D.2+3答案:B9.已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高. (1)证明:∵sin (A +B )=53,sin (A -B )=51,∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即BA BA tan tan 1tan tan -+=-43.将tan A =2tanB 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.10.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 解cBb sin =sin A =23.11.在△ABC 中,若∠C =60°,则ca bc b a +++=_______. 解析:c a bc b a +++=))((c a c b bc b ac a +++++22 =222c bc ac ab bc ac b a ++++++. (*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab . ∴a 2+b 2=ab +c 2. 代入(*)式得222cbc ac ab bc ac b a ++++++=1. 答案:1题型三、取值范围题目12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB Bcos sin 2sin 1++的取值范围.解:∵b2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21. ∴0<B ≤3π,y =BB B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7, ∴22<sin (B +4π)≤1. 故1<y ≤2.13.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. (1)求∠C ; (2)求△ABC 面积的最大值.解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224R a -224R c )=(a -b )Rb2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c2=ab . ∴cos C =ab c b a 2222-+=21.又∵0°<C<180°,∴C =60°. (2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A )=23sin A(sin120°cos A -cos120°sin A )=3sin A cos A +3sin 2A =23sin2A -23sin2A cos2A +23=3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233. 14.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1, ∴1<c <5.●思悟小结1.在△ABC 中,∵A +B +C =π,∴sin2B A +=cos 2C ,cos 2B A +=sin 2C2.∠A 、∠B 、∠C 成等差数列的充分必要条件是∠B =60°.3.在非直角三角形中,tan A +tan B +tan C =tan A ·tan B ·tan C .。
高三数学专题复习-----函数(二)
一 基础知识
(1)函数单调性(2)函数奇偶性(3)函数周期性 二 例题
1、
若函数f(x)= 1
a m
1x -+
是奇函数,则m 的值是( ) (A )0 (B )1 (C )2 (D )4
2、
若函数f(x)= ()011x log a ,-在区间+上有f(x)>0,则f(x)的递增区间是
( )
(A )()1,∞- (B )()+∞,1 (C )()1,-∞- (D )()+∞-,1
3、 已知y=f(2x+1)为偶函数,则函数y=f(2x)的图像的对称轴是( )
(A )x=-1 (B )x=1 (C )x=
21 (D )x=-2
1
4、
如果奇函数f(x)在区间[]7,3上是增函数,且最小值是5,那么f(x)在区间
[]3,7--上是( )
(A) 增函数且最小值为-5 (B )增函数且最大值为-5 (C )减函数且最小值为-5 (D )减函数且最大值为-5
5、
设f(x)为定义在R 上的偶函数,且f(x)在[)+∞,0上为增函数,则f(-π) ,
f(-2) ,f(3)的大小顺序是( )
(A )f(3)< f(-2) <f(-π) (B )f(-π)< f(-2)< f(3)
(C )f(-2)< f(3) <f(-π) (D )f(-π)< f(3)< f(-2)
6、
已知)ax 2(log y a -=在区间[]1,0上是x 的减函数,则a 的取值范围是( )
(A )()1,0 (B )()2,1 (C )()2,0 (D )[)+∞,2
7、
已知函数f(x)在()2,0上是增函数,函数f(x+2)是偶函数,则下列结论中
正确的是( ) (A )f(1)< f(
25) <f(27) (B )f(27)< f(1)< f(2
5
) (C )f(
27)< f(25) <f(1) (D )f(25)< f(1)< f(2
7) 8、
已知f(x)是定义在R 上的偶函数,且是周期为2的周期函数,当x ∈[]
3,2时,f(x)=x 则f(2
3
)的值为( ) (A )
211 (B )25 (C )-25
(D )-2
11 9、
已知定义在R 上的奇函数f(x)在()+∞,0上是增函数,且f(
3
1
)=0,则不等式f(x
8log )>0的解集是( )
(A )),2(+∞ (B ))21,0( (C )()2,1)21,0( (D )()+∞,2)1,2
1(
10、已知y=f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-2x,则在R 上 f(x)的表达式为( )
(A )-x(x-2) (B ))2x (x - (C ))2x (x - (D ))2x (x -
11、设),R b ,a (4x b x sin a )x (f 3∈++=若f(3
1
lg
)=5,则f(lg3)= 12、已知y=f(x)是定义在R 上的偶函数,且)
x (f 1
)2x (f -=+若当x ∈[]3,2时,f(x)=x 则f(5.5)=
13、已知y=f(x)是定义在R 上的奇函数,且f(x -2)=-f(x),给出下列四个结论: ①f(2)=0; ② f(x)是以4为周期的函数; ③f(x)的图象关于直线x=0对称; ⑷f(x+2)=f(-x) .其中所有正确结论的序号是
14、关于函数),0x (x
1
x lg )x (f 2≠+=有下列命题:
①其图像关于y 轴对称 ② 当x>0时,f(x)是增函数;当x<0时,f(x)是减函数 ③f(x)的最小值是lg2; ⑷当-1<x<0或x>2时,f(x)是增函数 ⑤ f(x)无最大值,也无最小值。
其中所有正确结论的序号是 15、已知函数f(x)=6x 2-mx +5在区间[-2,+∞)上是增函数,则f(1)的取值范围是
16、已知)1a ,0a (x
1x
1log y a
≠>-+= (I)求f(x)的定义域;
(II)判断f(x)的奇偶性并予以证明; (III)求使f(x)>0的x 的取值范围。
17、设函数),0b a (b
x a
x y >>++=求f(x)的单调区间,并证明f(x)在其单调区间上的单调性
18、函数a 321)x (f x x ⋅++=在(-∞,1]上有意义,求实数a 的取值范围。
19、设函数),0a (ax 1x )x (f 2>-+=求a 的取值范围使函数f(x)在区间[0,+∞)上是单调函数
20、定义在[-2,2]上的偶函数g(x),当0x ≥时g(x)单调递减,若g(1-m)< g(m),求m 的取值范围。
21、已知函数)1a ,0a )(a a (2
a a
)x (f x x ≠>--=-是R 上的增函数,求a 的取值范围。
22、若函数c
+bx 1+x )1+a (=)x (f 2(a ,b ,c ∈Z +
)是奇函数,又f(1)=3,f(3)<7.
(I)求a,b,c 的值;
(II)用函数单调性定义判定x<0时,f(x)的增减性;并写出x>0时的增减区间.
23、已知f (x)=a
a x x -+-2
1 (a ∈R), (I) 求函数y=f (x)的定义域;(II) 判断函数
y=f (x) 的奇偶性;(III) 当a 为何值时,f (x)为奇函数?当y= f (x)为奇函数时,确定其单调性。