波函数,薛方程,势阱
- 格式:ppt
- 大小:4.58 MB
- 文档页数:64
第二章 波函数和薛定谔方程§2.1 学习指导本章主要介绍微观粒子运动状态的描述方法、演化规律以及由此带来的新特点,并以一维情况作例子进行具体说明。
根据实验,微观粒子具有波粒二象性。
经典波一般用振幅(,)A r t v 与位相(,)r t ϕv来描述,它们可以统一写为(,)(,)(,)i rt r t A r t e ϕψ=v v v ,在量子力学中沿用坐标与时间的复值函数(,)r t ψv 来描述微观粒子的运动状态,称为波函数。
经典情况下,模方2|(,)|r t ψv表示波的强度;量子情况下,2|(,)|r t ψv表示粒子出现的概率密度,因此需要把波函数归一化。
波函数随时间的变化由薛定谔方程确定。
按照波函数的演化形式,粒子运动可以分为定态和非定态。
在定态中,粒子的概率密度不随时间变化。
按照定态波函数的空间形式,粒子运动可以分为束缚态和非束缚态。
在束缚态中,粒子的能量取离散值,形成能级,可以很好地说明原子光谱。
散射态是典型的非束缚态,可以用来描述粒子之间的碰撞,解释微观粒子的隧道贯穿现象。
真实的物理空间是三维的,但是当系统具有某些对称性时,可以约化为一维问题,例如中心势场中粒子的径向运动。
近来,实验中也制备出了某些类型的一维量子力学系统。
一维薛定谔方程容易求解,便于初学者理解量子力学的基本概念、熟悉常用方法和领会核心思想。
本章的主要知识点有 1. 微观粒子运动状态的描述 1)波函数波函数(,)r t ψv是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性。
实际体系波函数满足平方可积条件,即22(,)r t d N τψ=<∞⎰⎰⎰v 。
2)波函数的意义波函数的模方2(,)(,)w r t r t =ψv v (2-1)给出t 时刻粒子出现在位置r v邻域单位体积内的概率,即概率密度。
因此,标准的波函数应该是归一化的,即满足归一化条件2(,)1r t d τψ=⎰⎰⎰v (2-2)未归一化的波函数可以通过乘以一个归一化因子来实现归一化。
波函数和薛定谔方程波函数和薛定谔方程是量子力学中两个重要的概念。
波函数是用来描述量子系统状态的数学函数,而薛定谔方程则是描述波函数随时间演化的微分方程。
本文将介绍波函数和薛定谔方程的基本原理和应用,并探讨它们对量子力学的重要性。
一、波函数的概念和性质1. 波函数的定义波函数是量子力学中用来描述量子系统的数学函数。
它通常用符号ψ来表示,且是复数函数。
波函数的模的平方表示了找到该系统处于某个状态的概率。
2. 波函数的物理意义波函数的物理意义是描述了量子系统的可能状态和其对应的概率分布。
通过对波函数的求模平方,我们可以得到量子系统在不同状态的概率分布图。
3. 波函数的归一化条件波函数必须满足归一化条件,即在整个空间内积分后等于1。
归一化条件保证了系统一定会处于某个状态,并且概率总和为1。
二、薛定谔方程的基本形式和解析解1. 薛定谔方程的基本形式薛定谔方程是描述量子系统波函数在时间上演化的基本方程。
一维情况下,薛定谔方程可以写为:iħ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ式中符号的含义为ħ为约化普朗克常数,m为粒子的质量,V(x)为势能函数。
2. 薛定谔方程的解析解对于某些特定的势能函数,薛定谔方程存在解析解。
比如自由粒子情况下的薛定谔方程的解为平面波,简谐振子情况下的薛定谔方程的解为倒谐波。
三、波函数和薛定谔方程的应用1. 粒子在势阱中的行为波函数和薛定谔方程被广泛应用于研究粒子在势阱中的行为。
通过对势能函数和初始条件的设定,可以计算出粒子的波函数演化,并分析粒子的行为,比如能量谱和态密度等。
2. 电子在固体中的行为波函数和薛定谔方程在固体物理学中有着重要的应用。
通过求解薛定谔方程,可以得到电子在晶体中的波函数,从而研究电子的能带结构、载流子运动以及材料的电导性等性质。
3. 分子和化学反应波函数和薛定谔方程在化学领域中也有广泛的应用。
通过求解薛定谔方程,可以得到分子的波函数,从而研究化学反应的动力学过程、反应速率以及分子能谱等性质。