2010届高三物理带电粒子在电场中的运动复习题
- 格式:doc
- 大小:353.00 KB
- 文档页数:4
高三物理电场的性质及带电粒子在电场中的运动复习题(含答案)电场是电荷及变化磁场周围空间里存在的一种特殊物质,以下是电场的性质及带电粒子在电场中的运动温习题,请考生练习。
一、选择题(共10小题,每题4分,共40分。
在每题给出的四个选项中,第1~5题只要一项契合标题要求,第6~10题有多项契合标题要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1. (2021新课标全国卷,15)如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势区分为MN、P、Q。
一电子由M点区分运动到N点和P点的进程中,电场力所做的负功相等。
那么()A.直线a位于某一等势面内,QB.直线c位于某一等势面内,NC.假定电子由M点运动到Q点,电场力做正功D.假定电子由P点运动到Q点,电场力做负功2.(2021新课标全国卷,14)如图,两平行的带电金属板水平放置。
假定在两板中间a点从运动释放一带电微粒,微粒恰恰坚持运动形状,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45,再由a点从运动释放一异样的微粒,该微粒将() A.坚持运动形状B.向左上方做匀减速运动C.向正下方做匀减速运动D.向左下方做匀减速运动3.(2021山东理综,18)直角坐标系xOy中,M、N两点位于x 轴上,G、H两点坐标如图。
M、N两点各固定一负点电荷,一电荷量为Q的误点电荷置于O点时,G点处的电场强度恰恰为零。
静电力常量用k表示。
假定将该误点电荷移到G点,那么H点处场强的大小和方向区分为()A.,沿y轴正向B.,沿y轴负向C.,沿y轴正向D.,沿y轴负向4(2021安徽理综,20)平均带电的无量大平面在真空中激起电场的场弱小小为,其中为平面上单位面积所带的电荷量,0为常量。
如下图的平行板电容器,极板正对面积为S,其间为真空,带电量为Q。
不计边缘效应时,极板可看作无量大导体板,那么极板间的电场强度大小和两极板间相互的静电引力大小区分为()A.和B.和C.和D.和5.(2021海南单科,5)如图,一充电后的平行板电容器的两极板相距l。
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
高三专题:带电粒子在电场中的运动轨迹问题【规律总结】①两个切线方向电场线的切线方向:____________________________轨迹的切线方向:______________________________②判断电性应根据:________________________________③判断a、E、F根据:______________________________④判断v、E K的大小根据:___________________________⑤判断E p的大小根据:______________________________⑥判断电势的高低根据:______________________________【典型题目】1、某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N,以下说法正确的是()A.粒子必定带正电荷B.粒子在M点的加速度大于它在N点的加速度C.粒子在M点的加速度小于它在N点的加速度D.粒子在M点的动能小于它在N点的动能2、实线为三条未知方向的电场线,从电场中的M点以相同的速度飞出a、b两个带电粒子,a、b的运动轨迹如右图中的虚线所示(a、b只受电场力作用),则()A.a一定带正电,b一定带负电B.电场力对a做正功,对b做负功C.a的速度将减小,b的速度将增大D.a的加速度将减小,b的加速度将增大3、如右图所示,实线表示匀强电场中的电场线,一带电粒子(不计重力)经过电场区域后的轨迹如图中虚线所示,a、b是轨迹上的两点,关于粒子的运动情况,下列说法中可能正确的是()A.该粒子带正电荷,运动方向为由a至bB.该粒子带负电荷,运动方向为由a至bC.该粒子带正电荷,运动方向为由b至aD.该粒子带负电荷,运动方向为由b至a4、如图所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动中只受电场力作用,根据此图能做出正确判断的是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的速度何处较大D.带电粒子在a、b两点的电势能何处较大5、如右图所示,实线是匀强电场的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上两点,若带电粒子在运动中只受电场力作用,则由此图可作出正确判断的是()A.带电粒子带负电荷B.带电粒子带正电荷C.带电粒子所受电场力的方向向左D.带电粒子做匀变速运动6、一带电粒子沿着右图中曲线JK穿过一匀强电场,a、b、c、d为该电场的电势面,其中φa<φb<φc<φd,若不计粒子受的重力,可以确定()A.该粒子带正电B.该粒子带负电C.从J到K粒子的电势能增加D.粒子从J到K运动过程中的动能与电势能之和不变7、如下图所示,实线为方向未知的三条电场线,虚线分别为等势线1、2、3,已知MN=NQ,a、b两带电粒子从等势线2上的O点以相同的初速度飞出.仅在电场力作用下,两粒子的运动轨迹如下图所示,则()A.a一定带正电,b一定带负电B.a加速度减小,b加速度增大C.MN电势差|U MN|等于NQ两点电势差|U NQ|D.a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小8、如下图,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹.M和N是轨迹上的两点,其中M点在轨迹的最右点.不计重力,下列表述正确的是()A.粒子在M点的速率最大B.粒子所受电场力沿电场方向C.粒子在电场中的加速度不变D.粒子在电场中的电势能始终在增加9、如下图为一匀强电场,某带电粒子从A点运动到B点.在这一运动过程中克服重力做的功为2.0 J,电场力做的功为1.5 J.则下列说法正确的是()A.粒子带负电B.粒子在A点的电势能比在B点少1.5 JC.粒子在A点的动能比在B点多0.5 JD.粒子在A点的机械能比在B点少1.5 J10、如下图所示,图中实线表示一匀强电场的电场线,一带负电荷的粒子射入电场,虚线是它的运动轨迹,a、b是轨迹上的两点,若粒子所受重力不计,则下列判断正确的是()A.电场线方向向下B.粒子一定从a点运动到b点C.a点电势比b点电势高D.粒子在a点的电势能大于在b点的电势能11、下图中虚线为匀强电场中与场强方向垂直的等间距平行直线,两粒子M、N质量相等,所带电荷的绝对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如右图中两条实线所示.点a、b、c为实线与虚线的交点.已知O点电势高于c点,若不计重力,则()A.M带负电荷,N带正电荷B.N在a点的速度与M在c点的速度大小相同C.N在从O点运动至a点的过程中克服电场力做功D.M在从O点运动至b点的过程中,电场力对它做的功等于零12.如图所示,虚线a、b、c表示电场中的三个等势面与纸平面的交线,且相邻等势面之间的电势差相等.实线为一带正电荷粒子仅在电场力作用下通过该区域时的运动轨迹,M、N是这条轨迹上的两点,则下列说法中正确的是()A.三个等势面中,a的电势最高B.对于M、N两点,带电粒子通过M点时电势能较大C.对于M、N两点,带电粒子通过M点时动能较大D.带电粒子由M运动到N,加速度增大13、如图,虚线a、b和c是静电场中的三个等势面,它们的电势分别为φa、φb、和φc,φa﹥φb﹥φc。
高中物理带电粒子在电场中的运动题20套(带答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图甲所示,粗糙水平轨道与半径为R 的竖直光滑、绝缘的半圆轨道在B 点平滑连接,过半圆轨道圆心0的水平界面MN 的下方分布有水平向右的匀强电场E ,质量为m 的带正电小滑块从水平轨道上A 点由静止释放,运动中由于摩擦起电滑块电量会增加,过B 点后电量保持不变,小滑块在AB 段加速度随位移变化图像如图乙.已知A 、B 间距离为4R ,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g ,不计空气阻力,求(1)小滑块释放后运动至B 点过程中电荷量的变化量 (2)滑块对半圆轨道的最大压力大小(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B 的距离 【答案】(1)mgq E∆=(2)(635N F mg =+(3)425v gR =夹角为11arctan 2β=斜向左下方,位置在A 点左侧6R 处. 【解析】 【分析】 【详解】试题分析:根据在A 、B 两点的加速度结合牛顿第二定律即可求解小滑块释放后运动至B 点过程中电荷量的变化量;利用“等效重力”的思想找到新的重力场中的电低点即压力最大点; 解:(1)A 点:01·2q E mg m g μ-= B 点13·2q E mg m g μ-= 联立以上两式解得10mgq q q E∆=-=; (2) 从A 到B 过程:2113122··4022g gm R mv +=- 将电场力与重力等效为“重力G ',与竖直方向的夹角设为α,在“等效最低点”对轨道压力最大,则:'G =cos mgG α='从B 到“等效最低点”过程:222111(cos )22G R R mv mv α--'=22N v F G m R-='由以上各式解得:(6N F mg =+由牛顿第三定律得轨道所受最大压力为:(6N F mg =+;(3) 从B 到C 过程:2213111·2?22mg R q E R mv mv --=- 从C 点到再次进入电场做平抛运动:13x v t =212R gt =y gt =v13tan y v v β=21tan mgq Eβ=由以上各式解得:12ββ=则进入电场后合力与速度共线,做匀加速直线运动 12tan R x β=从C 点到水平轨道:22124311·2?22mg R q E x mv mv +=-由以上各式解得:4v =126x x x R ∆=+=因此滑块再次到达水平轨道的速度为4V =方向与水平方向夹角为11arctan 2β=,斜向左下方,位置在A 点左侧6R 处.2.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bht E= (2)2222225m g m g x q B q B ≤≤ (3)22211528m g y x q B =-+【解析】(1)粒子恰能在xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv =洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y 轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg =+,()()2252qE mg mg v qB+==则v 在y 方向上分量大小sin 2y qE E mgv v vBqv B qBθ==== 因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x 轴为h 处所用的时间2y h Bh qhB t v E mg===; (2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgE q=,则电场力''F qE mg ==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin2m qE mg mE m g x RB q q BqE mgθ+==⨯⨯==+当改变电场时粒子所在处于粒子第一次打在x轴上的位置之间的距离为2R时,第一次打在x轴上的横坐标最大,()()()()()()22222222222222[]25sinm qE mgm qE mgR m gxqE B q E q BqE mgθ++====+所以从O点射出的所有粒子第一次打在x轴上的坐标范围为12x x x≤≤,即2222225m g m gxq B q B≤≤(3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x,y)满足速率'v v=,则根据动能定理有()2211222qEx mgy mv m v--=--,3222231528m gqEx mgy mvq B--=-=-,所以22211528m gy xq B=-+点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.5.如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场,一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动,当电子第一次穿越x轴时,恰好到达C点,当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点,C、D两点均未在图中标出.已知A、C点到坐标原点的距离分别为d、2d.不计电子的重力.求(1)电场强度E的大小.(2)磁感应强度B的大小.(3)电子从A运动到D经历的时间t.【答案】(1);(2);(3).【解析】试题分析:(1)电子在电场中做类平抛运动设电子从A到C的时间为t11分1分1分求出 E =1分(2)设电子进入磁场时速度为v,v与x轴的夹角为θ,则θ = 45° 1分电子进入磁场后做匀速圆周运动,洛仑兹力提供向心力1分由图可知1分得1分(3)由抛物线的对称关系,电子在电场中运动的时间为 3t1=1分电子在磁场中运动的时间 t2 =2分电子从A运动到D的时间 t=3t1+ t2=1分考点:带电粒子在电场中做类平抛运动匀速圆周运动牛顿第二定律6.如图所示,AB是一段长为s的光滑绝缘水平轨道,BC是一段竖直墙面。
高三物理电荷在交变电场中运动试题答案及解析1.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初动能均为Ek0。
已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场。
则()A.所有粒子最终都垂直电场方向射出电场B.t=0之后射入电场的粒子有可能会打到极板上C.所有粒子在经过电场过程中最大动能都不可能超过2Ek0D.若入射速度加倍成2v0,则粒子从电场出射时的侧向位移与v相比必定减半【答案】AC【解析】时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,根据动量定理,竖直方向电场力的冲量的矢量和为零,故运动时间为周期的整数倍;故所有粒子最终都垂直电场方向射出电场,A正确;由于t=0时刻射入的粒子始终做单向直线运动,竖直方向的分位移最大,故所有粒子最终都不会打到极板上,B错误;t=0时刻射入的粒子竖直方向的分位移最大,为;根据分位移公式,有:,由于,故:,故,故C正确;加倍前运动时间为周期的整数倍,当运动时间为周期的偶数倍时,入射速度加倍成2v0,侧向位移与v一样,D错误;【考点】考查了带电粒子在交变电场中的运动2.如图甲所示,在平行板电容器A、B两极板间加上如图乙所示的交变电压,t=0时A板电势比B板高,两板中间静止一电子,设电子在运动过程中不与两板相碰撞,而且电子只受电场力作用,规定向左为正方向,则下列叙述正确的是()A、若t=0时刻释放电子,则电子运动的v-t图线如图一所示,该电子一直向B板做匀加速直线运动,B、若t=时刻释放电子,则电子运动的v-t图线如图二所示,该电子一直向着B板匀加速直线运动C、若t=时刻释放电子,则电子运动的v-t图如图三所示,该电子在2T时刻在出发点左边D、若t=时刻释放电子,在2T时刻电子在出发点的右边【答案】CD【解析】t=0时刻,A板电势高,电子释放后向左运动,电子先向左加速运动,然后向左减速运动,重复该过程,一直向左运动,A错误;t=T/8时刻释放电子,电子先向左加速运动,再向左减速运动,然后向右加速运动,再向右减速匀速,一个周期时总位移向左,B错误;t=T/4时刻,电子先向左加速,然后向左减速,再向右加速,然后向右减速,做周期性往复运动,在t=2T时刻位于出发点左侧,C正确;t=3T/8时刻释放电子,作出其v-t图像,由图像知,在2T时刻电子在出发点右侧,D正确。
高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cos x v v α=1cos 2α=060α∴=2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E2后,将速度方向反向延长交于E2场的中点O′.由几何关系知:tanθ=2xLL+解得:x=3L.3.在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y轴上(0,d/2)处有一粒子源,垂直于y轴连续不断向x轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C/kg,速度为v0=8×105m/s.t=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U0的大小;(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为(0.12m,0),磁场的磁感应强度大小B=23T,方向垂直于坐标平面向里.求粒子出磁场后与x轴交点坐标的范围.【答案】(1)42.1610VU=⨯ (2)0.04mx∆= (3)0.1425mx≥【解析】【分析】【详解】(1)对于t=0时刻射入极板间的粒子:l v T=7110T s-=⨯211()22Ty a=2yTv a=22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥4.两平行的带电金属板水平放置,板间电场可视为匀强电场.带电量相等粒子a ,b 分别以相同初速度水平射入匀强电场,粒子a 飞离电场时水平方向分位移与竖直方向分位移大小相等,粒子b 飞离电场时水平方向速度与竖直方向速度大小相等.忽略粒子间相互作用力及重力影响,求粒子a 、b 质量之比. 【答案】1:2 【解析】 【详解】假设极板长度为l ,粒子a 的质量为m a ,离开电场时竖直位移为y ,粒子b 的质量为m b ,离开电场时竖直分速度为v y ,两粒子初速度均为v 0,在极板间运动时间均为t 对粒子a :l =v 0t …① y =12a 1t 2…② 1aqEa m =…③ y =l …④①②③④联立解得:202a qEl m v = 对粒子b :v y =a 2t …⑤ v y =v 0…⑥2bqEa m =…⑦ ①⑤⑥⑦联立解得:20b qEl m v =则12a b m m =.5.如图,以竖直向上为y 轴正方向建立直角坐标系;该真空中存在方向沿x 轴正向、场强为E 的匀强电场和方向垂直xoy 平面向外、磁感应强度为B 的匀强磁场;原点O 处的离子源连续不断地发射速度大小和方向一定、质量为m 、电荷量为-q (q>0)的粒子束,粒子恰能在xoy 平面内做直线运动,重力加速度为g,不计粒子间的相互作用; (1)求粒子运动到距x 轴为h 所用的时间;(2)若在粒子束运动过程中,突然将电场变为竖直向下、场强大小变为'mgE q=,求从O 点射出的所有粒子第一次打在x 轴上的坐标范围(不考虑电场变化产生的影响); (3)若保持EB 初始状态不变,仅将粒子束的初速度变为原来的2倍,求运动过程中,粒子速度大小等于初速度λ倍(0<λ<2)的点所在的直线方程.【答案】(1)Bh tE =(2)2222225m g m gxq B q B≤≤(3)22211528m gy xq B=-+【解析】(1)粒子恰能在xoy平面内做直线运动,则粒子在垂直速度方向上所受合外力一定为零,又有电场力和重力为恒力,其在垂直速度方向上的分量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F Bqv=洛,所以受到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的合力为零,设重力与电场力合力与-y轴夹角为θ,粒子受力如图所示,()()()222Bqv qE mg=+,()()225qE mg mgv+==则v在y方向上分量大小sin2yqE E mgv v vBqv B qBθ====因为粒子做匀速直线运动,根据运动的分解可得,粒子运动到距x轴为h处所用的时间2yh Bh qhBtv E mg===;(2)若在粒子束运动过程中,突然将电场变为竖直向下,电场强度大小变为'mgEq=,则电场力''F qE mg==电,电场力方向竖直向上;所以粒子所受合外力就是洛伦兹力,则有,洛伦兹力充当向心力,即2v qvB m r =,()()22mqE mg mv R Bq+==如图所示,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最小,()()()()22212222222sin 2mqE mg mE m gx R B q q BqE mg θ+====+ 当改变电场时粒子所在处于粒子第一次打在x 轴上的位置之间的距离为2R 时,第一次打在x 轴上的横坐标最大,()()()()()()22222222222222[]25sin mqE mg m qE mg Rm g x qEB q Eq BqE mg θ++====+ 所以从O 点射出的所有粒子第一次打在x 轴上的坐标范围为12x x x ≤≤,即2222225m g m gx q B q B≤≤ (3)粒子束的初速度变为原来的2倍,则粒子不能做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到位置坐标(x ,y )满足速率'v v =,则根据动能定理有()2211222qEx mgy mv m v --=--,3222231528m g qEx mgy mv q B --=-=-,所以22211528m gy x q B =-+点睛:此题考查带电粒子在复合场中的运动问题;关键是分析受力情况及运动情况,画出受力图及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变引起的运动变化进行分析,从变化的地方开始进行求解.6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中0 yU e vtdm=又:1mvRBe=解得:00U tBdL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO′的最大距离和最小距离的差值为△y1,所以垂直打在荧光屏上的电子束的宽度为:210U ey y tdm∆=∆=7.如图所示,在xOy平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y轴向下.一电子以速度v0从y轴上的P点垂直于y轴向右飞入电场,经过x轴上M点进入磁场区域,又恰能从y轴上的Q点垂直于y轴向左飞出磁场已知P点坐标为(0,-L),M点的坐标为(233L,0).求(1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t【答案】(1)02v v=;(2)249Ltvπ=【解析】【详解】(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x轴夹角为θ,(1)在电场中x 轴方向:0123Lv t =,y 轴方向12y v L t =:,0tan 3y v v θ== 得60θ=o ,002cos v v v θ== (2)在磁场中,2343L r L == 磁场中的偏转角度为23απ=202439rL t v v ππ==8.如图所示,在y >0的区域内有沿y 轴正方向的匀强电场,在y <0的区域内有垂直坐标平面向里的匀强磁场,一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度v 0开始运动,当电子第一次穿越x 轴时,恰好到达C 点,当电子第二次穿越x 轴时,恰好到达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点,C 、D 两点均未在图中标出.已知A 、C 点到坐标原点的距离分别为d 、2d .不计电子的重力.求(1)电场强度E 的大小. (2)磁感应强度B 的大小. (3)电子从A 运动到D 经历的时间t . 【答案】(1);(2);(3).【解析】试题分析:(1)电子在电场中做类平抛运动 设电子从A 到C 的时间为t 11分 1分 1分 求出 E =1分(2)设电子进入磁场时速度为v ,v 与x 轴的夹角为θ,则θ = 45° 1分电子进入磁场后做匀速圆周运动,洛仑兹力提供向心力1分由图可知1分得1分(3)由抛物线的对称关系,电子在电场中运动的时间为 3t1=1分电子在磁场中运动的时间 t2 =2分电子从A运动到D的时间 t=3t1+ t2=1分考点:带电粒子在电场中做类平抛运动匀速圆周运动牛顿第二定律9.水平面上有一个竖直放置的部分圆弧轨道,A为轨道的最低点,半径OA竖直,圆心角AOB为60°,半径R=0.8m,空间有竖直向下的匀强电场,场强E=1×104N/C。
9.3 带电粒子在电场中的运动1. 一负电荷从电场中A 点由静止释放,只受电场力作用,沿电场线运动到B 点,它运动的v -t 图象如图9-3-1甲所示.则A 、B 两点所在区域的电场线分布情况可能是图乙中的2.如图9-3-2所示,MN 是一负点电荷产生的电场中的一条电场线。
一个带正电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示。
下列结论正确的是A .负点电荷一定位于M 点左侧B .带电粒子在a 点的加速度大于在b 点的加速度C .带电粒子在a 点时的电势能小于在b 点时的电势能D .带电粒子从a 到b 过程中动量大小逐渐减小3.如图9-3-3所示,一带负电的油滴,从坐标原点O 以速率v 0射入水平向右的匀强电场,v 0的方向与电场方向成θ角,已知油滴质量为m ,测得它在电场中运动到最高点P 时的速率恰为v 0,设P 点的坐标为(x P ,y P ),则应有 A.x P >0 B.x P <0 C.x P =0 D. x P 的正负与v 0有关4. 如图9-3-4所示,带有等量异种电荷的两块很大的平行金属板M 、N 水平正对放置,两板间有一带电微粒以速度v 0沿直线运动,当微粒运动到P 点时,迅速将M 板上移一小段距离,则此后微粒的可能运动情况是 A .沿轨迹①做曲线运动 B .方向改变沿轨迹②做直线运动 C .方向不变沿轨迹③做直线运动D .沿轨迹④做曲线运动5. 如图9-3-5所示,带正电的点电荷固定于Q 点,电子在库仑力作用下,沿顺时针方向做以Q 为一个焦点的椭圆运动。
O 为椭圆的中心,M 、P 、N 为椭圆上的三个点,M 和N 分别是椭圆上离Q 最近和最远的点。
则以下说法正确的是 A .电子在M 点的速率最大 B .电子在N 点的电势能最小 C .电子在P 点受到的库仑力的方向指向O 点D .椭圆上N 点的电势最低 6.如图9-3-6,P 是静止在水平放置的平行板电容器内部的一个带电微粒,现用外力将P 点和电容器与电源线的两个接点固定,使两板转过α角,再撤去外力,则P 将A .保持静止B .水平向右作直线运动C .向右下方运动D .无法判断 7. 示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图9-3-7所示.如果在荧光屏上P 点出现亮斑,那么示波管中的A .极板X 应带正电B .极板X '应带正电C .极板Y 应带正电D .极板Y '应带正电图 甲 图 乙 图9-3-1图9-3-5图9-3-6图9-3-7MN ④ 图9-3-4 图9-3-2 图9-3-38. 如图9-3-8所示,质量分别为m 1和m 2的两个小球A 、B ,带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上,且弹簧处于原长状态.当突然加一个水平向右的匀强电场后,两小球A 、B 将由静止开始运动,则在以后弹簧第一次伸长到最长的运动过程中,对两小球和弹簧组成的系统(设整个过程中不考虑电荷之间的库仑力作用且弹簧不超过弹性限度),以下说法正确的是A.系统动量守恒B.因电场力分别对球A 和B 做正功,故系统的机械能不断增加C.当小球所受电场力与弹簧的弹力相等时,系统动能最大D.当弹簧长度达到最大值时,系统机械能最小9. 如图9-3-9所示一带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直。
粒子从Q 点射出电场时,其速度方向与电场线成300角。
已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,不计重力作用。
求此匀强电场的场强大小。
10. 如图9-3-10所示,一带电平行板电容器水平放置,金属板M 上开有一小孔。
有A 、B 、C 三个质量均为m 、电荷量均为+q 的带电小球(可视为质点),其间用长为L 的绝缘轻杆相连,处于竖直状态。
已知M 、N 两板间距为3L ,现使A 小球恰好位于小孔中,由静止释放并让三个带电小球保持竖直下落,当A 球到达N 极板时速度刚好为零,求:(1)三个小球从静止开始运动到A 球刚好到达N 板的过程中,重力势能的减少量;(2)两极板间的电压;(3)小球在运动过程中的最大速率。
11. 如图9-3-11(a )所示,A 、B 为两块平行金属板,极板间电压为1125AB U V =,板中央有小孔O 和O '。
现有足够多的电子源源不断地从小孔O 由静止进入A 、B 之间。
在B 板右侧,平行金属板M 、N 长L 1=4×10-2m ,板间距离d =4×10-3m ,在距离M 、N 右侧边缘L 2=0.1m 处有一荧光屏P ,当M 、N 之间未加电压时电子沿M 板的下边沿穿过,打在荧光屏上的''O 并发出荧光。
现给金属板M 、N 之间加一个如图(b )所示的变化电压u 1,在t =0时刻,M 板电势低于N 板。
已知电子质量为319.010e m -=⨯kg ,电量为191.610e -=⨯C 。
(1)每个电子从B板上的小孔O '射出时的速度多大?(2)打在荧光屏上的电子范围是多少?(3)打在荧光屏上的电子的最大动能是多少?12.如图所示,在y >0的空间中,存在沿y 轴正方向的匀强电场E ;在y <0的空间中,存在沿y 轴负方向的匀强电场,场强大小也为E ,一电子(电量为-e ,质量为m )在y 轴上的P (0,d )点以沿x 轴正方向的初速度v 0开始运动,不计电子重力,求:(1)电子第一次经过x 轴的坐标值(2)电子在y 方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离.图9-3-9 图9-3-10 图9-3-11图9-3-12图9-3-89-3 带电粒子在电场中的运动1.C 从速度图线中可知“负”电荷受到的电场力从A 到B 是变大的,且做加速运动,故A 点场强小于B 点场强,A 点电势低于B 点电势.2.A 带正电粒子受力指向M ,故场源电荷为负电荷,a 点离场源电荷远,所以a 点场强小于b 点;由于电场力做正功,故a 点电势能大于b 点,速度小于b 点。
3.B 粒子从O 点运动到P 点过程中,重力一定做负功,合力的功为零,故电场力的功为正,又电场力沿-x 方向,所以在水平方向的位移为负。
4.C 由4U Q kQ E d Cd Sπε===可知,两极板带电量、电介质和正对面积不变时,M 板迅速向上平移一小段距离,不影响板间场强,微粒受力情况不变,沿原直线运动.5.AD 电子绕正电荷作椭圆运动的规律和行星绕太阳运动的规律相似,也可以直接利用电场力做功分析。
6. B 旋转后,板间距变为d cos α,场强和电场力都发生变化,但在竖直方向的分量还是等于G7. AC 据荧光屏上电子的坐标可知示波管内电子受力情况:受指向y 方向和指向x 方向电场力。
8. ABC 弹簧第一次伸长到最长的运动过程中系统所受外力之和为零,系统动量守恒;电场力分别对球A 和B 做正功,电势能减小,机械能增加;在小球所受电场力与弹簧的弹力相等时之前电场力总大于弹簧的弹力,两球都在加速,之后电场力要小于弹簧的弹力,两球要减速,所以电场力与弹簧的弹力相等时,系统动能最大;当弹簧长度达到最大值时,系统机械能最大。
9. 设带电粒子在P 点时的速度为0v ,在Q 点建立直角坐标系,垂直于电场线为x 轴,平行于电场线为y 轴,由平抛运动的规律和几何知识求得粒子在y 轴方向的分速度为03v v y =。
粒子在y 方向上的平均速度为230v v y = ;粒子在y 方向上的位移为0y ,粒子在电场中的运动时间为t ,t v y 230= ,t v d 0= 得230d y = ;0y U E = 得:E = 10. (1) 设三个球重力势能减少量为△E p ;△E p = 9mgL(2) 设两极板电压为U ,由动能定理:W 重-W 电=△E k3m g ·3L -L q L U 33⋅-L q L U 23⋅-L q L U ⋅3=0 ;U =qm gL 29 (3) 当小球受到的重力与电场力相等时,小球的速度最大v m , 3mg =nq L U 3 , n=2 小球达到最大速度的位置是B 球进入电场时的位置,由动能定理得:3mg ·L-L q L U ⋅3= 21×3mv m 2 得:v m =gL 11. 解:(1)电子经A 、B 两块金属板加速,有:2012eU mv =得 70/210/v s m s ===⨯(2)电子通过极板的时间为t =L 1/v 0=2×10-9s ,远小于电压变化的周期,故电子通过极板时可认为板间电压不变。
当V u 5.22=时,电子经过MN 极板向下的偏移量最大,为 22193213137011 1.61022.50.0421022910410210eU L y m m md v ----⎛⎫⨯⨯⎛⎫=⋅⋅=⨯⨯=⨯ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭ Y 1<d ,说明所有的电子都可以飞出M 、N.此时电子在竖直方向的速度大小为 1926231370 1.61022.5410/210/910410210y eU L v m s m s md v ----⨯⨯⨯=⋅=⨯=⨯⨯⨯⨯⨯ 电子射出极板MN 后到达荧光屏P 的时间为:922700.1510210L t s s v --===⨯⨯ 电子射出极板MN 后到达荧光屏P 的偏移量为:69222105100.01y y v t m m -==⨯⨯⨯= 电子打在荧光屏P 上的总偏移量为:120.012y y y m =+=,方向竖直向下;(3)当u=22.5V 时,电子飞出电场的动能最大,E K =()])102()102[(1092121262731220⨯+⨯⨯⨯=+-y v v m =1.82×10-16J 12. (1) 由d =12at 2 a =eE m x=v 0tx= v (2) 在y 方向上运动具有对称性,得:T =4t (3)S X =2x =2 v。