最新高考物理牛顿运动定律练习题
- 格式:doc
- 大小:579.00 KB
- 文档页数:10
最新精选高考物理复习题库牛顿运动定律专题(150
题)
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、单选题
1.如下图所示,将一台电视机静止放在水平桌面上,则以下说法中正确的是()
A.桌面对它支持力的大小等于它所受的重力,这两个力是一对平衡力
B.它所受的重力和桌面对它的支持力是一对作用力与反作用力
C.它对桌面的压力就是它所受的重力,这两个力是同一种性质的力
D.它对桌面的压力和桌面对它的支持力是一对平衡力
2.如下图所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()。
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
高考物理一轮复习牛顿运动定律专项训练(附答案)牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克牛顿在1687年于«自然哲学的物理原理»一书中总结提出。
以下是力的分解与分解专项训练,请考生仔细练习。
一、选择题(此题共10小题,每题6分,共60分)1. [2021衡水中学调研]以下说法中正确的选项是()A. 牛顿第一定律提醒了一切物体都具有惯性B. 速度大的物体惯性大,速度小的物体惯性小C. 力是维持物体运动的缘由D. 做曲线运动的质点,假定将一切外力都撤去,那么该质点仍能够做曲线运动解析:牛顿第一定律提醒了一切物体都具有惯性,质量是惯性大小的量度,惯性与速度有关,选项A正确,选项B错误;力不是维持物体运动的缘由,力是发生减速度的缘由,选项C错误;做曲线运动的质点,假定将一切外力都撤去,那么该质点将做匀速直线运动,选项D错误。
答案:A2. 关于惯性,以下说法中正确的选项是()A. 磁悬浮列车能高速行驶是由于列车浮起后惯性小了B. 卫星内的仪器由于完全失重惯性消逝了C. 铁饼运发动在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远D. 月球上物体的重力只要在空中上的1/6,但是惯性没有变化解析:惯性只与质量有关,与速度有关,A、C错误;失重或重力减速度发作变化时,物体质量不变,惯性不变,所以B 错误D正确。
答案:D3. 关于力和运动的关系,以下说法正确的选项是()A. 物体受力才会运动B. 力使物体的运动形状发作改动C. 中止用力,运动的物体就会中止D. 力是物体坚持运动或匀速直线运动形状的缘由解析:由牛顿第一定律可知,力的作用不是使物体运动,而是使物体的运动形状改动。
假设物体原来的形状是运动的,不受力仍将永远运动下去,即物体的运动不需求力来维持,因此A、C错误,B正确。
物体坚持运动或匀速直线运动形状,是物体不受力时的运动规律,并不是力作用的结果,因此D 错误。
最新高中物理牛顿运动定律的应用专项训练100( 附答案 )一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m=0.5 kg、长L=1 m的平板车 B 静止在圆滑水平面上,某时辰质量M=l kg 的物体 A(视为质点)以v0=4 m/s 向右的初速度滑上平板车 B 的上表面,在 A 滑上 B 的同时,给 B 施加一个水平向右的拉力.已知 A 与 B 之间的动摩擦因数μ=0.2,重力加快度 g 取 10 m/s 2.试求:(1)假如要使 A 不至于从 B 上滑落,拉力 F 大小应知足的条件;(2)若 F=5 N,物体 A 在平板车上运动时相对平板车滑行的最大距离.【答案】 (1) 1N F 3N(2)x0.5m【分析】【剖析】物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度,联合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界状况是A、 B 速度同样后,一同做匀加快直线运动,依据牛顿第二定律求出拉力的最大值,进而得出拉力 F 的大小范围.【详解】(1)物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度v1,则:v02 -v12v12+L2a A2a B又:v-v1 =v1 a A a B解得: a B=6m/s 2再代入 F+μMg=ma B得: F=1N若 F<1N,则 A 滑到 B 的右端时,速度仍大于 B 的速度,于是将从 B 上滑落,因此 F 一定大于等于 1N当 F 较大时,在 A 抵达 B 的右端以前,就与 B 拥有同样的速度,以后, A 一定相对 B 静止,才不会从 B 的左端滑落,则由牛顿第二定律得:对整体: F=(m+ M)a对物体 A:μMg=Ma解得: F=3N若F 大于 3N, A 就会相对 B 向左滑下综上所述,力 F 应知足的条件是 1N≤F≤3N(2)物体 A 滑上平板车 B 此后,做匀减速运动,由牛顿第二定律得:μ Mg=Ma A解得: a A=μg=2m/s 2平板车 B 做匀加快直线运动,由牛顿第二定律得:F+μMg=ma B解得: a B=14m/s2二者速度同样时物体相对小车滑行最远,有:v 0- a A t=a B t解得: t=0.25s1 215 A 滑行距离 x A =v 0t -a A t =m216B 滑行距离: x B = 1 a B t 2= 7m216最大距离: Δx =x A - x B =0.5m【点睛】解决此题的重点理清物块在小车上的运动状况,抓住临界状态,联合牛顿第二定律和运动学公式进行求解.2. 如下图,质量为 M =10kg 的小车停放在圆滑水平面上.在小车右端施加一个F=10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量 m=2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数 μ 0.20.假设小 = 车足够长.( 1)求经过多长时间煤块与小车保持相对静止 ( 2) 求 3s 内煤块行进的位移( 3)煤块最后在小车上留下的印迹长度【答案】 (1) 2s (2) 8.4m (3) 2.8m【分析】【剖析】分别对滑块和平板车进行受力剖析,依据牛顿第二定律求出各自加快度,物块在小车上停止相对滑动时,速度同样,依据运动学基本公式即能够求出时间.经过运动学公式求出位移.【详解】(1)依据牛顿第二定律,刚开始运动时对小黑煤块有:F Nma 1F N -mg =0代入数据解得: a 1=2m/s 2刚开始运动时对小车有:FF NMa 2解得: a 2=0.6m/s 2经过时间 t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v+a 2 t解得: t=2s;(2)在 2s 内小黑煤块行进的位移为:x11a1t 24m22s 时的速度为:v1 a1t1 2 2m/s 4m/s今后加快运动的加快度为:a F 5m/s23M m6而后和小车共同运动t 2=1s 时间,此 1s 时间内位移为:x2v1t21a3t22 4.4m 2因此煤块的总位移为:x1x28.4m (3)在 2s 内小黑煤块行进的位移为:x11a1t 24m2小车行进的位移为:x v1t 1a1t2 6.8m 2二者的相对位移为:x x x1 2.8m即煤块最后在小车上留下的印迹长度 2.8m.【点睛】该题是相对运动的典型例题,要仔细剖析两个物体的受力状况,正确判断两物体的运动状况,再依据运动学基本公式求解.3.如图,质量M=4kg 的长木板静止处于粗拙水平川面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v0=14m/s 的速度从一端滑上木板,恰巧未从木板上滑下,滑块与长木板的动摩擦因数μ2,求:2=0.5,g取10m/s(1)木块刚滑上木板时,木块和木板的加快度大小;(2)木板长度;(3)木板在地面上运动的最大位移。
最新高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+=滑块m1在传送带上加速阶段产生的热量Q1=μ1m1g(vt1-x1)=10 J滑块m2在传送带上减速的加速大小413vat'∆'=='∆m/s2滑块m2受到的滑动摩擦力大小f = m2a′滑块m2在传送带上减速阶段产生的热量Q2 = f(L BC-vt) = 6 J系统因摩擦产生的热量Q = Q1 + Q2 =16 J.5.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
专题三牛顿运动定律专题检测题组1.(2022新疆昌吉州一诊,5)如图甲,一个静止在水平地面上的物体,质量为0.1 kg,受到竖直向上的拉力F作用,F随时间t的变化情况如图乙所示。
若g取10 m/s2,则下列说法正确的是( )甲乙A.0~3 s内,物体的速度逐渐增大B.3 s时物体的速度最大C.第5 s末和第9 s末物体的速度相等D.第7 s末物体离地面的高度最大答案 C 物体重力mg=1 N,0~1 s内F<1 N,物体静止,A错误;由牛顿第二定律可得F-mg=ma,1 s~7 s时间段,物体加速度一直向上,物体一直加速,B错误;5 s~7 s速度的增加量与7 s~9 s速度的减少量相等,故5 s~9 s速度的变化量为零,v9=v5,C正确。
第7 s末物体的加速度为零,速度最大,即使7 s后加速度向下,物体仍会向上运动一段时间,D错误。
2.(2023届宁夏石嘴山平罗中学月考,12)(多选)如图所示,质量为4 kg的物体A 静止在竖直的轻弹簧上,质量为1 kg的物体B用细线悬挂在天花板上,B与A刚好接触但不挤压,现将细线剪断,则剪断后瞬间,下列结果正确的是(g取10 m/s2)( )A.A加速度的大小为零B.B加速度的大小为2 m/s2C.弹簧的弹力大小为40 ND.A、B间相互作用力的大小为10 N答案BC 细线剪断之前,对A分析,弹簧的弹力F k=m A g=40 N,弹簧的弹力不会发生突变,故细线剪断后瞬间,弹簧弹力的大小仍为40 N,C正确;细线剪断后瞬=2 m/s2,A错误,B正确;对B 间,对A、B整体受力分析可得,a A=a B=m A g+m B g−F km A+m B分析,m B g-F=m B a B,可得A、B间的相互作用力大小F=8 N,D错误。
3.(2023届四川成都七中阶段考,20)(多选)如图所示,质量为m的小球A和质量为2m的物块B用跨过光滑定滑轮的细绳连接,物块B放在倾角为θ=37°的斜面体C上,刚开始都处于静止状态,现用水平外力F将A小球缓慢拉至细绳与竖直方向夹角β=60°,该过程物块B和斜面体C始终静止不动,最大静摩擦力等于滑动摩擦力(已知sin 37°=0.6,cos 37°=0.8)。
高考物理牛顿运动定律专项训练100(附答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为s 0=10m ,传送带与行李箱间的动摩擦因数μ=0.2,当质量为m=5kg 的行李箱无初速度地放上传送带A 端后,传送到B 端,重力加速度g 取10m/2;求:(1)行李箱开始运动时的加速度大小a ; (2)行李箱从A 端传送到B 端所用时间t ; (3)整个过程行李对传送带的摩擦力做功W 。
高考物理最新力学知识点之牛顿运动定律技巧及练习题含答案一、选择题1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A 点为最高位置,B 点为最低位置,不计空气阻力,下列说法正确的是( )A .在A 点时,人所受的合力为零B .在B 点时,人处于失重状态C .从A 点运动到B 点的过程中,人的角速度不变D .从A 点运动到B 点的过程中,人所受的向心力逐渐增大2.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )A .可能落在A 处B .一定落在B 处C .可能落在C 处D .以上都有可能3.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A.甲球质量大于乙球B.m1/m2=v2/v1C.释放瞬间甲球的加速度较大D.t0时间内,两球下落的高度相等5.关于一对平衡力、作用力和反作用力,下列叙述正确的是()A.平衡力应是分别作用在两个不同物体上的力B.平衡力可以是同一种性质的力,也可以是不同性质的力C.作用力和反作用力可以不是同一种性质的力D.作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些t 时刻起,用一水平向右的拉力F 6.一物体放置在粗糙水平面上,处于静止状态,从0作用在物块上,且F的大小随时间从零均匀增大,则下列关于物块的加速度a、摩擦力F、速度v随F的变化图象正确的是()fA.B.C.D.7.如图所示,质量为1.5kg的物体A静止在竖直固定的轻弹簧上,质量为0.5kg的物体B 由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断细线瞬间A、B间的作用力大小为(g取210m/s)()A.0B.2.5N C.5N D.3.75N8.如图所示,一个箱子中放有一个物体,已知静止时物体对箱子的下底面压力大小等于物体的重力大小,且物体与箱子上底面刚好接触现将箱子以初速度v0竖直向上抛出,已知运动时箱子所受空气阻力大小不变,且箱子运动过程中始终保持图示姿态,重力加速度为g。
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高中物理牛顿运动定律专项训练100(附答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=2.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能;(3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.3.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1397/c v m s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:213/c v m s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+ 解得:133397/22max c v v m s == 同理得:313/2min v m s = 所以03313/397/22m s v m s ≤≤4.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
高考物理最新力学知识点之牛顿运动定律难题汇编附答案一、选择题1.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( )A .上升过程处于超重状态,下落过程处于失重状态B .上升过程处于失重状态,下落过程处于超重状态C .上升过程和下落过程均处于超重状态D .上升过程和下落过程均处于完全失重状态2.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )A .可能落在A 处B .一定落在B 处C .可能落在C 处D .以上都有可能3.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( )A .0m mmg m + B .00m mF m + C .00m mmg m + D .000m mF m + 4.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接.当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的A .圆环不一定加速下滑B .圆环可能匀速下滑C .圆环与杆之间一定没有摩擦D .圆环与杆之间一定存在摩擦5.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力6.如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小7.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( )A .伸长量为 1tan m gkθ B .压缩量为1tan m gk θ C .伸长量为1m gk tan θD .压缩量为1m gk tan θ8.如图,物块a 、b 和c 的质量相同,a 和b 、b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O ;整个系统处于静止状态;现将细绳剪断,将物块a 的加速度记为a 1,S 1和S 2相对原长的伸长分别为∆x 1和∆x 2,重力加速度大小为g ,在剪断瞬间( )A .a 1=gB .a 1=3gC .∆x 1=3∆x 2D . ∆x 1=∆x 29.关于一对平衡力、作用力和反作用力,下列叙述正确的是( ) A .平衡力应是分别作用在两个不同物体上的力B .平衡力可以是同一种性质的力,也可以是不同性质的力C .作用力和反作用力可以不是同一种性质的力D .作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些10.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( )A .0B .2m/s 2,水平向右C .4m/s 2,水平向右D .2m/s 2,水平向左11.滑雪运动员由斜坡高速向下滑行过程中其速度—时间图象如图乙所示,则由图象中AB段曲线可知,运动员在此过程中A .做匀变速曲线运动B .做变加速运动C .所受力的合力不断增大D .机械能守恒12.起重机通过一绳子将货物向上吊起的过程中(忽略绳子的重力和空气阻力),以下说法正确的是( )A .当货物匀速上升时,绳子对货物的拉力与货物对绳子的拉力是一对平衡力B .无论货物怎么上升,绳子对货物的拉力大小都等于货物对绳子的拉力大小C .无论货物怎么上升,绳子对货物的拉力大小总大于货物的重力大小D .若绳子质量不能忽略且货物匀速上升时,绳子对货物的拉力大小一定大于货物的重力 13.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高考物理牛顿运动定律的应用题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。
最新高考物理牛顿运动定律练习题一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
【点睛】本题考查了牛顿第二定律的应用,分析清楚小滑块与木板的运动过程和受力情况是解题的前提,应用牛顿第二定律与运动学公式即可解题。
2.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s =【解析】 【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==>则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at =解得 1t s = 【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.3.质量9kg M =、长1m L =的木板在动摩擦因数10.1μ=的水平地面上向右滑行,当速度02m/s v =时,在木板的右端轻放一质量1kg m =的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取210m/s g =,求:(1)从木块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数2μ. 【答案】(1)1s (2)0.08 【解析】 【分析】 【详解】(1)设木板在时间t 内的位移为x 1;铁块的加速度大小为a 2,时间t 内的位移为x 2 则有210112x v t a t =-22212x a t =12x L x =+又012v a t a t -=代入数据得t =1s(2)根据牛顿第二定律,有121()M m g mg Ma μμ++=22mg ma μ=解得20.08μ=4.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线?(2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a == 甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.5.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径; (2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间. 【答案】(1)0.1m (2)1m/s ;(3)4.25s 【解析】 【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间. 【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2= 代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得2v mg m R=,代入数据得R =0.1m (2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度,故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s 煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s6.如图所示,斜面体ABC 放在粗糙的水平地面上,滑块在斜面地端以初速度0υ,沿斜面上滑。
斜面倾角037θ=,滑块与斜面的动摩擦因数μ。
整个过程斜面体保持静止不动,已知小滑块的质量m=1kg ,sin37°=0.6,cos37°=0.8,g 取10 m /s 2。
试求:(1)若0.8μ=,012.4/m s υ=,求滑块从C 点开始在2s 内的位移。
(2)若0.45μ=,09.6/m s υ=,求滑块回到出发点时的速度大小。
【答案】(1) 6.2x m = (2) 4.8 /v m s = 【解析】 【详解】(1)若0.8μ=,滑块上滑过程中,由牛顿第二定律有:0 mgsin mgcos ma θμθ+= , 解得滑块上滑过程的加速度大小2012.4 /,a m s =上滑时间0001 v t s a ==, 上滑位移为2002.162x m a t == (2)若0.45μ=,滑块沿斜面上滑过程,由牛顿第二定律:1 mgsin mgcos ma θμθ+= , 解得219.6 /a m s =设滑块上滑位移大小为L ,则由2012v a L = ,解得 4.8 L m =滑块沿斜面下滑过程,由牛顿第二定律:2 mgsin mgcos ma θμθ-= , 解得22 2.4 /a m s =根据222v a L = ,解得滑块回到出发点处的速度大小为 4.8 /v m s =7.如图甲,圆圈内放大的集成块可以同时自动测量沿手机短边(x 轴)、长边(y 轴)和垂直面板方向(z 轴)的加速度,相当于在三个方向上各有一个如图乙所示的一维加速度计,图中固定在力传感器上的质量块的质量为 m .下面仅研究 x 轴处于水平方向和 y 轴处于竖直方向的加速度情况.(1)沿 x 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+x 轴方向为加速度正方向, 导出手机在水平方向的加速度 x a 的表达式;(2)沿 y 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+y 轴方向为加速度正方向, 导出手机在竖直方向的加速度 y a 的表达式;(3)当手机由竖屏变横屏时,为让手机感知到这种变化,需要通过电信号分别将(1)和(2)中导出的 加速度进行输出,但应统一输出项 a 出,请分别写出水平和竖直方向上输出项 a 出的表达式;(4)当手机由竖屏变横屏时,显示的视频画面会随之由窄变宽,请解释其中的原理.【答案】(1)x F a m =(2)y F mg a m -=(3)=x x F a a m =出=y y F a a g m=+出(4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y Fa a g g m出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽. 【解析】 【分析】 【详解】(1)质量块在+x 轴方向只受力传感器垂直接触面对它的作用力 F ,由牛顿第二定律得:x Fa m=(2)质量块在+y 轴方向受重力(mg )、力传感器垂直接触面对它的作用力 F 两个力的作用,由牛顿第二定律得:y F mga m-=(3)应统一设置水平和竖直方向上通过力传感器电信号输出的加速度的表达式为:a 出 在水平方向的加速度的输出表达式:=x x Fa a m=出 在竖直方向的加速度的输出表达式:=y y Fa a g m=+出 (4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y Fa a g g m出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽.8.如图甲所示,一质量为m 的带电小球,用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线与竖直方向成θ角.小球位于A 点,某时刻突然将细线剪断,经过时间t 小球运动到B 点(图中未画出)已知电场强度大小为E ,重力加速度为g ,求:(1)小球所带的电荷量q ; (2)A 、B 两点间的电势差U . 【答案】(1)tan mg E θ;(2)12Egt 2tanθ. 【解析】试题分析:(1)小球处于静止状态,分析受力,作出受力图,根据平衡条件和电场力公式求解电荷量q ;(2)将细线突然剪断小球将沿细线方向做匀加速直线运动,根据牛顿第二定律求解加速度a ,再根据匀变速直线运动求解位移,再计算A 、B 两点间的电势差U . ①静止时有tan qE mg θ=,解得 tan mg q Eθ=②将细线剪断后,根据牛顿第二定律可得cos mgF ma θ==合,解得 故221tan sin 2cos 2ABg Egt U E t θθθ=-⋅=-9.车站、码头、机场等使用的货物安检装置的示意图如图所示,绷紧的传送带始终保持v=1m/s的恒定速率运行,AB为水平传送带部分且足够长,现有一质量为m=5kg的行李包(可视为质点)无初速度的放在水平传送带的A端,传送到B端时没有被及时取下,行李包从B端沿倾角为37°的斜面滑入储物槽,已知行李包与传送带的动摩擦因数为0.5,行李包与斜面间的动摩擦因数为0.8,g=10m/s2,不计空气阻力(sin37°=0.6,cos37°=0.8).(1)行李包相对于传送带滑动的距离.(2)若行李包滑到储物槽时的速度刚好为零,求斜面的长度.【答案】(1)0.1m(2)1.25m【解析】(1)行李包在传送带上运动过程,由牛顿第二定律得:μ1mg=ma1,解得:a1=5m/s2,行李包加速运动时间:t1=11 5va==0.2s,行李包前进的距离:x1=2211225va=⨯=0.1m,传送带前进的距离:x2=vt1=1×0.2=0.2m,行李包相对于传送带的距离:△x=x2-x1=0.2-0.1=0.1 m;(2)行李包沿斜面下滑过程,由牛顿第二定律得:μ2mgcos37°-mgsin37°=ma2由匀变速直线运动的速度位移公式得:0-v2=-2a2x,代入数据解得:x=1.25m点睛:该题考查牛顿运动定律的综合应用,属于单物体多过程的情况,这一类的问题要理清运动的过程以及各过程中的受力,然后再应用牛顿运动定律解答。