voltage reference parameters
- 格式:pdf
- 大小:80.05 KB
- 文档页数:2
电力电子-专业词汇中英文对照(一)AbsorberCircuit 吸收电路AC/ACFrequencyConverter 交交变频电路ACpowercontrol交流电力控制ACPowerController交流调功电路ACPowerElectronicSwitch交流电力电子开关AcVoltageController交流调压电路AsynchronousModulation异步调制BakerClampingCircuit贝克箝位电路Bi-directionalTriodeThyristor双向晶闸管BipolarJunctionTransistor--BJT双极结型晶体管Boost-BuckChopper升降压斩波电路Boost Chopper升压斩波电路BoostConverter升压变换器BridgeReversibleChopper桥式可逆斩波电路BuckChopper降压斩波电路BuckConverter降压变换器Commutation 换流Conduction Angle 导通角ConstantVoltageConstantFrequency--CVCF 恒压恒频ContinuousConduction--CCM (电流)连续模式ControlCircuit 控制电路CukCircuit CUK斩波电路CurrentReversible Chopper 电流可逆斩波电路CurrentSourceTypeInverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DCChopping 直流斩波DCChoppingCircuit 直流斩波电路DC-DCConverter 直流-直流变换器DeviceCommutation 器件换流DirectCurrentControl 直接电流控制DiscontinuousConductionmode (电流)断续模式displacementfactor 位移因数distortionpower 畸变功率doubleendconverter 双端电路drivingcircuit 驱动电路electricalisolation 电气隔离fastactingfuse 快速熔断器fastrecoverydiode 快恢复二极管fastrevcoveryepitaxialdiodes 快恢复外延二极管fastswitchingthyristor 快速晶闸管fieldcontrolled thyristor 场控晶闸管flybackconverter 反激电流forcedcommutation 强迫换流forwardconverter 正激电路frequencyconverter 变频器fullbridgeconverter 全桥电路fullbridgerectifier 全桥整流电路fullwaverectifier 全波整流电路fundamentalfactor 基波因数gate turn-offthyristor——GTO 可关断晶闸管generalpurposediode 普通二极管gianttransistor——GTR 电力晶体管halfbridgeconverter 半桥电路hardswitching 硬开关highvoltageIC 高压集成电路hysteresiscomparison 带环比较方式indirectcurrentcontrol 间接电流控制indirectDC-DCconverter 直接电流变换电路insulated-gatebipolartransistor---IGBT 绝缘栅双极晶体管intelligentpowermodule---IPM 智能功率模块integratedgate-commutatedthyristor---IGCT 集成门极换流晶闸管inversion 逆变latchingeffect 擎住效应leakageinductance 漏感lighttriggeredthyristor---LTT 光控晶闸管linecommutation 电网换流loadcommutation 负载换流loopcurrent 环流电力电子-专业词汇中英文对照(二)1backplane背板2Bandgapvoltagereference带隙电压参考3benchtopsupply工作台电源4BlockDiagram方块图5BodePlot波特图6Bootstrap自举7BottomFETBottomFET8bucketcapacitor桶形电容9chassis机架11constantcurrentsource恒流源12CoreSaturation铁芯饱和13crossoverfrequency交叉频率14currentripple纹波电流15CyclebyCycle逐周期16cycleskipping周期跳步17DeadTime死区时间18DIETemperature核心温度19Disable非使能,无效,禁用,关断20dominantpole主极点21Enable使能,有效,启用22ESDRatingESD额定值23EvaluationBoard评估板24Exceedingthespecificationsbelowmayresultinpermanentdamagetothedevice,ord evicemalfunction.OperationoutsideoftheparametersspecifiedintheElectricalChar acteristicssectionisnotimplied.超过下面的规格使用可能引起永久的设备损害或设备故障。
Precision voltage referencesIntroductionOne reason why designing a data conversion system is such a challenge is the fact that the system accuracy very much depends on the accuracy of the voltage established by the internal or external DC voltage reference. The voltage reference is used to produce a precise value of output voltage for setting the full-scale input of the data conversion system. In an analog-to-digital converter(ADC), the DC voltage reference together with the analog input signal is used to generate the digitized output signal.And in a digital-to-analog converter (DAC), the DACselects and produces an analog output from the DC refer-ence voltage according to the digital input signal presented at the input of the DAC. Any errors in the reference volt-age over the operating temperature range will adversely affect the linearity and spurious free dynamic range (SFDR) of the ADC/DAC. Practically all voltage refer-ences vary with time or environmental factors such as humidity, pressure, and temperature. As a result most CMOS ADCs/DACs have internal references suitable only for applications demanding ≤12-bit resolution eventhough the converter may be capable of higher resolution.Modern CMOS converters operate from 3.3-V or 5-V sup-plies, which limits the on-chip voltage reference to aband-gap reference. By way of the external reference pins provided on the chip, an external precision reference can also be connected to a CMOS ADC or DAC. A precision external voltage reference has a much lower temperature coefficient, thermal hysteresis, and long-term drift than an on-chip band-gap voltage reference; therefore, in applications demanding high accuracy (14-bit or 16-bit ADCs/DACs), an external precision voltage reference is often required.Precision voltage references are available with varying degrees of precision and initial accuracy over someoperating temperature range. But often what is not obvi-ous when reading a manufacturer’s data sheet is how theinitial accuracy of the device is affected by other key device parameters such as line regulation, load regulation, initial voltage error, output voltage temperature coefficient (TC),output voltage noise, turn-on settling time, thermal hyste-resis, quiescent supply current, and long-term stability.The design originsModern voltage references are constructed using the energy-band-gap voltage of integrated transistors, buried zener diodes, and junction field-effect transistors. Each technology offers inherent performance characteristics that can be enhanced with compensation networks or additional active circuitry. The basis topologies for the band-gap, buried zener, and XFET references are shown in Figures 1, 2, and 3, respectively.Texas Instruments Incorporated Data AcquisitionBy Perry Miller, Application Specialist—Data Converters, Texas Instruments, Dallas,and Doug Moore, Managing Director, Thaler Corp., Tucson, Arizona Continued on next pageTexas Instruments IncorporatedData AcquisitionBand-gap referenceAt its simplest, a band-gap reference is simply two tran-sistors with different emitter areas used for generating a voltage proportional to absolute temperature. V BE1and V BE2have opposite temperature coefficients. The voltage V CC is converted to a current I 1and I 2that are mirrored to the output branch. The output equation is(1)where λis the scale factor, V BE1is the base-emitter volt-age of the larger of the two transistors, and V BE2is thebase-emitter voltage of the second transistor.The band-gap references are widely used in ADC/DAC converters as well as for external reference source because they are fairly inexpensive. Generally, they are used in system designs where a maximum accuracy of 10 bits is required. Band-gap references typically have an initial error of 0.5–1.0% and a TC of 25–50 ppm/°C. The output voltage noise is typically 15–30 µV p-p (0.1–10 Hz) with a long-term stability of 20–30 ppm/1000 hrs.Zener referenceThe zener voltage reference and feedback amplifier shown in Figure 2 are used to provide a very stable output. A current source is used to bias a 6.3-V zener diode. The zener voltage is divided by the resistor network R1 and R2.This voltage is applied to the non-inverting input of the operational amplifier, which amplifies the voltage to the required output voltage. The amplifier gain is determined by the resistor networks R3 and R4, where G = 1 + R4/R3.A 6.3-V zener diode is used because it is the most stable zener diode over time and temperature.The output equation is(2)Buried zener diode references are more expensive than band-gap references but provide a higher performance level. They typically have an initial error of 0.01–0.04%, a TC of 1–10 ppm/°C, and less than 10-µV p-p (0.1- to 10-Hz)),V V (V V BE2BE1BE1O −λ+=noise. The long-term stability is typically 6–15 ppm/1000hrs. Buried zener-based references are frequently used for 12-bit, 14-bit, and higher resolution systems because the performance of the buried zener-based references can be extended by incorporating nonlinear temperature com-pensation networks into the design. The compensation network is trimmed at several temperatures to optimize the electrical performance over the operating tempera-ture range.XFET referenceThe XFET reference is a new reference technique that consists of two junction field-effect transistors, one of which has an extra channel implant to raise the pinch-off voltage. The two JFETs are run at the same drain current.The difference in pinch-off voltage is amplified and used to form a voltage reference. The general equation is(3)where ∆V P is the difference in pinch-off voltage betweenthe two FETs and I PTAT is the positive temperature coefficient correction current.The simplified schematic for the XFET reference is shown in Figure 3.The XFET references are relatively new and provide a performance level between band-gap and zener refer-ences.The initial error is typically 0.06%, a TC of 10 ppm/°C,and 15-µV p-p (0.1- to 10-Hz) noise. The long-term stability is 0.2 ppm/1000 hrs.Reference selection for a 14-bit converterSpecified parameters for voltage references include line regulation, load regulation, initial voltage error, output voltage temperature coefficient (TC), output voltage noise, turn-on settling time, thermal hysterisis, quiescent supply current, and long term stability.The most important parameters for data acquisition systems design are initial error, output voltage tempera-ture coefficient (TC), thermal hysteresis, noise, and long-term stability of the voltage reference device.Table 1 summarizes the major error sources for the three references that are compared in this application note. The data represents the highest grade for each)(R3),(I R1R3R2R1V V PTAT P O +++∆=Table 1. Voltage reference major error sources (all information is based on published data sheets)Continued from previous page× V . ZR3R41R2R1R2V O++=Texas Instruments Incorporated Data Acquisitionrespective model in the 8-pin plastic DIP package over the industrial temperature range (–40°C to +85°C). The poorest-performing references are band-gap type and are not included in this summary. Buried zener diodes have better overall performance than band-gap devices and the XFET references. The buried zener reference with a third-order temperature compensation network (VRE3050) is the best performer with respect to initial error, TC, and thermal hysteresis.Explanation of parametersInitial error—The output voltage tolerance of a refer-ence after the device is turned on and warmed up. It is usually measured without a load applied. In many applica-tions, initial error is the most important specification.Often instrument manufacturers will specify a reference with a tight initial error so they do not have to perform room-temperature systems calibration after assembly.Temperature coefficient (TC)—A change in output voltage due to change in temperature usually expressed in ppm/°C. It is the second most important specification after initial accuracy. For many instrument manufacturers,a voltage reference with a temperature coefficient less than 1 ppm/°C makes it possible not to have to perform a system temperature calibration, a slow and costly process.Of the three TC specification methods (slope, butterfly,and box), the box method is most commonly used. A box is formed by the min/max limits for the nominal output voltage over the operating temperature range. The equa-tion follows.(4)6MIN MAX nominal MIN MAX 10)T (T V V V TC ×−×−=This method corresponds more accurately to the method of test and provides a closer estimate of actual error than the other methods. The box method guarantees limits for the temperature error but does not specify the exact shape and slope of the device under test. Assuming a 5-V reference with a 0.6-ppm/°C TC over the industrial tem-perature range, a plot of the box calculation method would appear as in Figure 4.A designer who needs a 14-bit accurate data acquisition system over the industrial temperature range (–40°C to +85°C) will need a voltage reference with a TC of 1.0 ppm/°C if the reference is allowed to contribute an error equivalent to 1 LSB. For 1/2 LSB equivalent error from the reference, a voltage reference with a tempera-ture coefficient of 0.5 ppm/°C would be needed. Figure 5shows the required reference TC vs. ∆T change from25°C for resolution rang-ing from 8 bits to 20 bits.Thermal hysteresis—A change in output voltage as a result of a tempera-ture change. When references experience a temperature change and return to the initial tem-perature, they do not always have the same initial output voltage.Thermal hysteresis is dif-ficult to correct and is a major error source in sys-tems that experience tem-perature changes of 25°C or more. Voltage refer-ence manufacturers are starting to include this important specification in their datasheets.Continued on next pageTexas Instruments IncorporatedData AcquisitionNoise (1/f and broadband)—Electrical noise on the output of a voltage reference. It can include wideband ther-mal noise and narrowband 1/f noise.Wideband noise can be effectively filtered with a simple RC network. 1/f noise is inherent in the reference and cannot be filtered. It is specified in the 0.1- to 10-Hz range. Low 1/f noise refer-ences are important in precision designs.Long-term drift—A slow change inoutput voltage that occurs over months of operation. Long-term drift is usually expressed in ppm/1000 hrs. In zener references, the long-term drift is typi-cally 6 ppm/1000 hrs. and decreases atan exponential rate over time. Additional temperature burn-in of the reference can accelerate the stability of a zener reference. The XFET reference has excellent long-term stability—0.2 ppm/1000 hrs.Turn-on settling time—A change in voltage over a specified time interval after the power is applied. Most references settle to 0.1% in less than 10 µs. Turn-on settling time is important for portable battery systems that conserve energy by powering the circuitry only for short periods of time.Line regulation—An error produced by a change in the input voltage. This dc specification does not include the effects of ripple voltage or line transients.Load regulation—An error produced by a change in load current. Like line regulation, this dc specification does not include the effects of load transients.PCB layout—Poor printed circuit board layout can adversely affect the performance of the reference. Poor layout can affect the output voltage, noise, and thermal performance of the device. Inherent stress in the PCB can also be transferred to the reference and can shift the out-put voltage.ConclusionIt has been shown that a number of key parameters must be evaluated before selecting an external reference for a high-resolution data acquisition system. The XFET refer-ence is suitable for systems that will be held at a constant temperature and where good long-term stability of the reference is important. In 14-bit conversion systems that are designed for the industrial operating temperature range, the VRE3050 is the preferred device because of its better initial error, TC, and thermal hysteresis performance.References1.Analog Devices Inc., Low Noise, Micropower,Precision Reference ADR293 Datasheet.2.Paul R. Gray and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits ,3rd ed. (John Wiley & Sons, Inc., 1992).3.Maxim Corp., MAX6250, Low Noise Precision,+2.5 V +4.096 V +5 V Voltage Reference Datasheet.4.Texas Instruments, THS1265, 12-bit, 65 MSPS,IF Sampling Communications A/D converter.5.Texas Instruments, THS1470, 14-bit, 70 MSPS,IF Sampling Communications A/D converter.6.Thaler Corp., Precision Reference VRE3050Datasheet.Continued from previous pageIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: TI Worldwide Technical Support InternetTI Semiconductor Product Information Center Home PageTI Semiconductor KnowledgeBase Home Page/sc/knowledgebaseProduct Information CentersAmericasPhone+1(972) 644-5580Fax+1(972) 927-6377 Internet/Email /sc/pic/americas.htmEurope, Middle East, and AfricaPhoneBelgium (English)+32 (0) 27 45 54 32Netherlands (English)+31 (0) 546 87 95 45 Finland (English)+358 (0) 9 25173948Russia+7 (0) 95 7850415 France+33 (0) 1 30 70 11 64Spain+34 902 35 40 28 Germany+49 (0) 8161 80 33 11Sweden (English)+46 (0) 8587 555 22 Israel (English)1800 949 0107United Kingdom+44 (0) 1604 66 33 99 Italy800 79 11 37Fax+(49) (0) 8161 80 2045Internet /sc/pic/euro.htmJapanFaxInternational+81-3-3344-5317Domestic0120-81-0036 Internet/EmailInternational /sc/pic/japan.htmDomestic www.tij.co.jp/picAsiaPhoneInternational+886-2-23786800Domestic Toll-Free Number Toll-Free Number Australia1-800-999-084New Zealand0800-446-934China800-820-8682Philippines1-800-765-7404 Hong Kong800-96-5941Singapore800-886-1028Indonesia001-803-8861-1006Taiwan0800-006800Korea080-551-2804Thailand001-800-886-0010 Malaysia1-800-80-3973Fax886-2-2378-6808Email tiasia@ Internet /sc/pic/asia.htm ti-china@C011905 Safe Harbor Statement:This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,”“foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.Trademarks: All trademarks are the property of theirrespective owners.Mailing Address: Texas InstrumentsPost Office Box 655303Dallas, Texas 75265© 2005 Texas Instruments IncorporatedSLYT183。
电路原理及电⼯学常⽤专业英⽂词汇电路原理专业词汇表Glossary of “Principles of Electric Circuits”Chapter 1 Elements and Laws of Electrical Circuits 电路electrical circuit电流current电荷electric charge电压voltage电位potential电位差potential difference电动势electromotive force功率power能量energy电阻resistor / resistance电导conductor / conductance电感inductor / inductance电容capacitor / capacitance欧姆定律Ohm’s Law⼴义欧姆定律generalized Ohm’s Law参考⽅向reference direction电压极性voltage polarity正极positive polarity负极negative polarity理想独⽴电压源ideal independent voltage source理想独⽴电流源ideal independent current source理想受控源ideal dependent / controlled source压控电压源voltage controlled voltage source(VCVS)压控电流源voltage controlled current source(VCCS)流控电压源current controlled voltage source(CCVS)流控电流源current controlled current source(CCCS)节点node⽀路branch回路loop基尔霍夫定律Kirchhoff’s Law基尔霍夫电流定律Kirchhoff’s Current Law(KCL)基尔霍夫电压定律Kirchhoff’s Voltage Law(KVL)闭合⾯closed boundary集总参数lumped parameter集总参数电路lumped circuit集总参数元件lumped element分布参数distributed parameter分布参数电路distributed circuit直流direct current(DC)交流alternating current(AC)有源器件active element⽆源器件passive element⽆损电路lossless circuitChapter 2 Analysis methods to simple resistor circuits串联series connection分压voltage division并联parallel connection分流current division等效电阻equivalent resistanceY-Δ变换Wye-Delta transformation⼊端电阻input resistanceChapter 3 Methods of Analysis⽀路电流法method of branch current节点法Nodal Analysis回路电流法loop current method⽹孔电流法mesh current method外⽹孔outer mesh⾃导纳self-admittance互导纳mutual-admittance矩阵matrix⾏row列column参考节点reference node平⾯电路planar circuit⽅程equation消去法elimination technique克莱姆法则Cr amer’s rule代⼊法substitution method运算放⼤器operational amplifier(op amp)同向输⼊端noninverting input反向输⼊端inverting input输出端output等效电路模型equivalent circuit model开环放⼤倍数open-loop gain闭环放⼤倍数closed-loop gain⼊端电阻input resistance输出电阻output resistance线性⼯作区linear region正向饱和区positive saturation反向饱和区negative saturation同向放⼤noninverting amplifier反向放⼤inverting amplifier加法器summing amplifier积分器integrator微分器differentiator⾃激振荡self-sustained oscillation Chapter 4 Circuit Theorems叠加原理superposition principle输⼊/激励input / excitation输出/响应output / response线性电路linear circuit代数和algebraic sum替代定理substitution principle戴维南定理Thevenin’s Theorem诺顿定理Norton’s Theorem⼆端⽹络two-terminal circuit开路电压open-circuit voltage短路电流short-circuit current特勒根定理Tellegen Theorem功率平衡定理Power-balancing Theorem互易定理reciprocal theorem对偶原理principle of duality对偶元件dual element对偶图dual graphChapter 5 Nonlinear Circuit⾮线性电路nonlinear circuit⾮线性元件nonlinear element压控电阻voltage-controlled resistor流控电阻current-controlled resistor静态电阻static resistance动态电阻dynamic resistance⼩信号分析small-signal analysis⼩信号模型small-signal modal分段线性化法piece-wise linear mthod数值解法numerical analysisChapter 6 First-order Circuit⼀阶电路first-order circuit⼀阶微分⽅程first-order differential equation 过渡过程transient process线性时不变电路linear time-invariable circuit 单位阶跃函数unit step function 单位脉冲函数unit pulse function单位斜坡函数unit ramp function起始条件initial condition起始值initial value零输⼊响应zero-input response零状态响应zero-state response稳态响应steady-state response暂态响应transient response时间常数time constant指数函数exponential function阶跃响应step response冲激响应impulse response⾃由响应natural response强迫响应forced response全响应complete response稳态值final value卷积积分convolution integration时域延迟time delay换路switching跳变现象jump phenomenon脉冲持续时间pulse duration脉冲重复周期repeating period of pulseChapter 7 Second-order Circuit⼆阶电路second-order circuit齐次微分⽅程homogeneous differential equation常系数微分⽅程constant coefficients equation特征⽅程characteristic equation特征根characteristic root特征值eigenvalue特征向量eigenvector特解particular solution通解general solution⾃然频率natural frequency衰减系数damping factor谐振⾓频率resonant frequency / undamped natural frequency 过阻尼情况overdamped case ⽋阻尼情况underdamped case临界情况critically damped case固有振荡⾓频率damping frequency / damped natural frequency 衰减振荡damped oscillation ⽆损lossless正弦响应sinusoidal response波形waveform实数real复数complex衰减attenuationChapter 8 Sinusoidal Steady-State Analysis 幅值amplitude / magnitude相位phase相位差phase difference⾓频率angular frequency周期period频率cyclic frequency正弦sinusoidal余弦cosine初相⾓initial phase angle瞬时值instantaneous value最⼤值maximum有效值effective valueroot-mean-square valueu 领先i φu leads i by φu 落后i φu lags i by φ同相in phase反相opposite in phase实部real part虚部imaginary part直⾓坐标形式rectangular form极坐标形式polar form指数形式exponential form相量phasor参考相量reference phasor电压三⾓形voltage triangle瞬时功率instantaneous power平均功率average power阻抗impedance导纳admittance电抗reactance电纳susceptance感性inductive容性capacitive正弦稳态响应sinusoidal steady-state response时域time-domain相量域phasor-domain视在功率apparent power功率因数power factor (pf)复功率complex power功率三⾓形power triangle复共轭complex conjugate有功功率active power⽆功功率reactive power最⼤功率传输定理Maximum Power Transfer Theorem功率守恒定理Theorem of conservation of power阻抗匹配impedance matching共轭匹配conjugate matchingChapter 9 Magnetically Coupled Circuits 耦合couple互感mutual inductance⾃感self-inductance磁通magnetic flux互感电压mutual / induced voltage线圈coil铁⼼线圈coil with iron core匝数turn耦合系数coupling coefficient变压器transformer空⼼变压器air-core transformer原边primary coils / windings副边secondary coils / windings引⼊阻抗reflected impendence理想变压器ideal transformer全耦合变压器unity-coupled transformer 变⽐turns ratio / transformation ratio⾃耦合变压器auto-transformer多绕组变压器multiple-winding transformer 右螺旋定则right-handed screw rule 同名端dotted terminalterminals of same magnetic polarity 漏感leakage inductanceChapter 10 Resonance串联谐振series resonance并联谐振parallel resonance谐振频率resonant frequency特性阻抗characteristic impedance品质因数quality factor频率响应frequency response选择性selectivity选频特性frequency-selection characteristic Chapter 11 Frequency Response复频率complex frequency⽹络函数network function转移函数transfer function多项式polynomial极点pole零点zero波特图Bode plot分贝decibel增益gain对数logarithm半对数semilog转折频率corner / break frequency截⽌频率cut-off frequency带宽bandwidth⽆源滤波器passive filter有源滤波器active filter低通滤波器low-pass filter⾼通滤波器high-pass filter带通滤波器band-pass filter带阻滤波器band-stop / band-reject / notch filter Chapter 12 Three-phase Circuits 对称三相电源balanced three-phase sources 对称三相电路symmetrical three-phase circuit中线neutral line中性点neutral point三相四线制three-phase four-wire system相电压phase voltage线电压line voltage相序phase sequence正序positive / abc sequence负序negative / acb sequence相电流phase current线电流line currentChapter 13 Steady-State Response of Periodic Excitation周期性⾮正弦激励nonsinusoidal periodic excitation三⾓形式的付⾥叶级数trigonometric Fourier series指数形式的付⾥叶级数exponential Fourier series付⾥叶系数Fourier coefficient基波fundamental harmonic基波频率fundamental frequency谐波harmonic wave⾼次谐波higher harmonic频谱frequency spectrum谱线spectrum line线状频谱line spectrum奇次odd偶次even奇对称odd symmetry偶对称even symmetry半波对称half-wave symmetry帕斯⽡尔定理Parseval’s theoremChapter 14 Fourier Transformation and Laplace Transformation付⾥叶变换Fourier transformation拉普拉斯变换Laplace transformation原函数original function象函数transform function积分变换integral transformation频域frequency domain幅度谱amplitude spectrum相位谱phase spectrum矩形脉冲rectangular pulse线性性质linearity时域微分time differentiation时域积分time integration时域平移time shift频域平移frequency shift拉普拉斯反变换inverse Laplace transformation 拉普拉斯变换对Laplace pairs Chapter 15 Two-port Networks端⼝port⼆端⼝⽹络two-port network四端⽹络four-terminal network / quadripole Z参数impedance parametersY参数admittance parametersH参数Hybrid parametersT参数Transmission parameters策动点driving point(⼆端⼝)级联cascade connection传播常数transmission constantChapter 16 Basis of Network Graph Theory 图graph拓扑图topological graph⼦图subgraph连通图connected graph有向图oriented graph树tree树⽀tree branch连⽀link割集cut set降阶关联矩阵reduced incidence matrix增⼴矩阵augmented matrix基本回路矩阵fundamental loop matrix基本割集矩阵fundamental cut set matrix单位阵unit matrix转置阵transposed matrix正定矩阵positive definite matrix⾮奇异矩阵nonsingular matrix逆矩阵inverse matrix⽅阵square matrix零矩阵zero matrix⾏列式determinantChapter 17 State Variables Approach 状态变量state variable状态⽅程state equation状态空间state space列向量column vector特征值characteristic value特征向量characteristic vector特征⽅程characteristic equation相似矩阵similar matrixChapter 18 Nonlinear Dynamic Circuits ⾮线性时变电路nonlinear time-varying circuit⾃治电路⾮⾃治电路前向欧拉法forward Eular’s method后向欧拉法backward Eular’s method相平⾯状态平⾯state planar相轨线中⼼点焦点节点平衡点稳定性stability渐近稳定asymptotic stabilityChapter 19 Distributed Circuits分布参数电路distributed circuit传输线transmission line均匀传输线uniform transmission line 反射reflection透射transmission波长wave length波速wave speed⾏波traveling wave驻波standing wave正向⾏波direct wave反向⾏波returning wave波阻抗wave impedance波前wave front传播常数propagation constant Appendix Magnetic Circuit磁路magnetic circuit铁磁物质ferromagnetic substance磁导率magnetic permeability磁感应强度magnetic induction磁通magnetic flux磁链magnetic linkage磁通势magnetomotive force磁通密度magnetic flux density磁通连续性定理principle of continuity of magnetic flux 磁场强度magnetic flux intensity 磁阻reluctance磁导permeance安培环路定理principle of Ampere loop circuit磁化曲线magnetization curve磁滞回线hysteresis loop磁滞hysteresis涡流eddy current涡流损失eddy current loss集肤效应skin effect漏磁通leakage flux磁饱和magnetic saturation电磁感应定律law of electromagnetic induction励磁电流exciting current《电⼯学上》中英名词对照表⼀阶电路first-order circuitV形曲线V curve三相电路three-phase circuit三相功率three-phase power三相三线制three-phase three-wire system三相四线制three-phase four-wire system三相变压器three-phase transformer三⾓形联接trianular connection三⾓波triangular wave三相异步电动机three-phase induction motor ⽀路branch⽀路电流法branch current method中性点neutral point中性线neutral conductor中央处理器centre processing unit(CPU)互感mutual inductance 介电常数permittivity of the dielectric⽡特Watt功率表powermeter⽆功功率reactive power韦伯Weber反电动势counter emf反相opposite in phase反馈控制feedback control⽅框图block diagram开路open circuit开关switch⽔轮发电机water-wheel generator功work功率power功率因数power factor功率三⾓形power triangle功率⾓power angle电能electric energy 电荷electric charge电场electric field电场强度electric field intensity电位electric potential电位差electric potential difference 电位升potential rise 电位降potential drop电位计potentiometer电压voltage电压三⾓形voltage triangle电动势electromotive force(emf)电源source电压源voltage source电流源current source电路circuit电路分析circuit analysis电路元件circuit element电路模型circuit model电流current电流密度current density电流互感器current transformer电阻resistance电阻器resistor电阻性电路resistive circuit电阻率resistivity电导conductance电导率conductivity电容capacitance电容器capacitor电容性电路capacitive circuit电感inductance电感器inductor电感性电路inductive circuit电桥bridge电机electric machine电磁转矩electromagnetic torque电⾓度electrical degree电枢armature电枢反应armature reaction电⼯测量electrical measurement电磁式仪表electromagnetic instrument电动式仪表electrodynamic instrument平均值average value平均功率average power正极positive pole正⽅向positive direction正弦量sinusoid正弦电流sinusoidal current结点node结点电压法node voltage method对称三相电路symmetrical three-phase circuit 主磁通main flux外特性external characteristic发送机transmitter他励发电机separately excited generator可编程控制器programmable controller(PLC)安培Ampere电流表currenter安匝ampere-turns伏特V olt电压表valeage伏安特性曲线volt-ampere characteristic有效值effective value有功功率active power交流电路alternating current circuit (a-ccircuit) 交流电机alternating-current machine ⾃感self-inductance⾃感电动势self-induced emf⾃耦变压器autotransformer⾃励发电机self-excited generator⾃整⾓机selsyns ⾃动控制automatic control⾃动调节automatic regulation⾃锁self-locking负极negative pole负载load负载线load line负反馈negative feedback动态电阻dynamic resistance并联parallel connection并联谐振parallel resonance并励发电机shunt d-c generator并励电动机shunt d-c motor并励绕组shunt field vending同步发电机synchronous generator同步电动机synchronous motor同步转速synchronous speed同相in phase机械特性torque-speed characteristic过励overexcitation执⾏元件servo-unit传递函数transfer function传感器transducer闭环控制closed loop control回路loop⽹络network导体conductor导纳admittance阶跃电压step voltage全电流定律law of total current全响应complete response麦克斯韦Maxwell基尔霍失电流定律Kirchhof f’s current law (KCL)基尔霍失电压定律Kirchhof’s voltage law(KVL)库仑Coulomb 亨利Henry⾓频率angular frequency串联series connection串联谐振series resonance串励绕组series field winding阻抗impedance阻抗三⾓形impedance triangle阻转矩counter torque初相位initial phase时间常数time constant时域分析time domain analysis时间继电器time-delay relay励磁电流exciting current励磁机exciter励磁绕组field winding励磁电流exciting current励磁变阻器field rheostat两相异步电动机two-phase induction motor 两功率表法two-powermeter method 伺服电动机servomotor步进电动机stepping motor步距⾓stepangle汽轮发电机turboalternator直流电路direct current circuit (d-c cir-cuit) 直流电机direct-current machine法拉Farad空载no-load空载特性open-circuit characteristic空⽓隙air gap⾮线性电阻nonlinear resistance⾮正弦周期电流nonsinusoidal periodic受控电源controlled source变压器transformer变⽐ration of transformation变阻器rheostat线电压line voltage线电流line current线圈coil线性电阻linear resistance 周期period参考电位reference potential参数parameter视在功率apparent power定⼦stator转⼦rotor转⼦电流rotor current转差率slip转速speed转矩torque组合开关switchgroup制动braking单相异步电动机single-phase induction motor 相phase 相电压phase voltage相电流phase current相位差phase difference相位⾓phase angle相序phase sequence相量phasor相量图phasor diagram响应response星形联接star connection复数complex number阻抗impedance导纳admittance复励发电机compound d-c generator欧姆Ohm欧姆定律Ohm's law等效电路equivalent circuit品质因数quality factor绝缘insulation绝缘体insulator显极转⼦salient poles rotor测速发电机tachometer generator绕组winding绕线式转⼦wound rotor起动starting起动电流starting current起动转矩starting torque起动按钮start button容抗capacitive reactance容纳capacitive susceptance诺顿定理Norton's theorem⾼斯Gauss原动机prime mover原绕组primary winding铁⼼core铁损core loss矩形波rectangular wave特征⽅程characteristic equation积分电路integrating circuit效率efficiency振荡放电oscill tory discharge继电器relay热继电器thermal overload relay(OLR)换向器commutator调节特性regulating characteristic调速speed regulation继电接触器控制relay-contactor control 副绕组secondary winding 铜损copper loss基波fundamental harmonic谐波harmonic谐振频率resonant frequency通频带bandwidth理想电压源ideal voltage source理想电流源ideal current source减幅振荡attenuated oscillation常开触点normally open contact常闭触点normally closed contact停⽌stopping停⽌按钮stop button接收机receiver 接触器contactor控制电动机control motor控制电路control circuit旋转磁场rotating magnetic field隐极转⼦nonsalient poles rotor涡流eddy current涡流损耗eddy-current loss焦⽿Joule奥斯特Oersted短路short circuit锯齿波sawtooth wave幅值amplitude最⼤值maximum value最⼤转矩maximum(breakdown)torque 滞后lag 超前lead傅⾥叶级数Fourier series暂态transient state暂态分量transient component等幅振荡unattenuated oscillation联锁interlocking感抗inductive reactance感纳inductive susceptance感应电动势induced emf楞次定则Lenz's law频率frequency频域分析frequency domain analysis频谱spectrum输⼊input输出output微法microfarad微分电路differentiating circuit叠加原理superposition theorem零状态响应zero-state response零输⼊响应zero-input response罩极式电动机shaded-pole motor滑环slip ring⿏笼式转⼦squirrel-cage rotor截⽌⾓频率cutoff angular frequency 滤波器filters磁场magnetic field磁场强度magnetizing farce磁路magnetic circuit磁通flux磁感应强度flux density磁通势magnetomotive force(mmf)磁阻reluctance磁导率permeability磁化magnetization磁化曲线magnetization curve磁滞hysteresis磁滞回线hysteresis loop磁滞损耗hysteresis loss磁极pol磁电式仪表magnetoelectric instrument 漏磁通leakage flux 漏磁电感leakage inductance漏磁电动势leakage emf赫兹Hertz稳态steady state稳态分量steady state component静态电阻static resistance碳刷carbon brush额定值rated value额定rated voltage额定功率rated power额定转矩tated torque瞬时值instantaneous value戴维宁定理Thevenin's theorem激励excitation满载full load槽fuse熔断器fuse《电⼯学下》中英名词对照表⼆画PN结PN junctionP型半导体P-type semiconductorJK触发器JK flip-flopD触发器 D flip-flop⼆极管diode⼆进制binary system⼆进制计数器binary counter⼗进制decimal system⼗进制计数器decimal counter⼆—⼗进制binary coded decimal system(BCD)三画RC选频⽹络RC selection frequency networkRS触发器RS flip-flopN型半导体N-type semiconductorN沟道N-channel门电路gate circuit三态逻辑门tri-state logic gate三相整流器three-phase rectifier⼯作点operating point⼲扰interference上升沿rise edge下降沿fall edge四画⽅框图block diagram双稳态触发器bistable flip-flop⽆稳态触发器astable flip-flop⽆输出变压器功率放⼤器output transformerless(OTL)power amplifier ⽆输出电容器功率放⼤器output capacitorless(OCL)power amplifier反向电阻backward resistance反向偏置backward bias反向击穿reverse breakdown反相器inverter反馈feedback反馈系数feedback coefficient互补对称功率放⼤器complementary symmetry power amplifier少数载流⼦minority carrier 分⽴电路discrete circuit分贝decibel(DB)分频frequency division分辨率resolution开启电压threshold voltage开关型直流电源switching mode direct power supply计数器counter与门AND gate与⾮门NAND gate与或⾮门and-or-invert(AOI)gate卡诺图Karnaugh map五画电感滤波器inductance filter电容滤波器capacitor filter电流放⼤系数current amplification coefficient电压放⼤器voltage amplifier电压放⼤倍数voltage gain电压⽐较器voltage comparator主从型触发器master-slave flip-flop失真distortion只读存储器read only memory(ROM)可编程逻辑器件programmable logic device(PLD)可关断晶闸管gate turn-off thyristor (GTO)功率放⼤器power amplifier功率晶体管giant transistor(GTR)正向电阻forward resistance正向偏置forward bias正反馈positive feedback正弦波振荡器sinusoidal oscillator正逻辑positive logic击穿breakdown占空⽐duty ratio加法器adder发射极emitter发光⼆极管light- emitting diode(LED)布尔代数Boolean algebra半波可控整流half -wave controlled rectifier半波整流器half -wave rectifier半加器half-adder半导体semiconductor本征半导体intrinsic semiconductor失调电压offset voltage失调电流offset current平均延迟时间average delay time六画共模信号common-mode signal共模输⼊common-mode input共模抑制⽐common-mode rejection ratio (CMRR)共发射极接法common-emitter configuration共价键covalent bond动态dynamics杂质impurity伏安特性volt-ampere characteristics扩散diffusion全波整流器biphase(full –wave)rectifier 全波可控整流biphase controlled rectifier 全加器full adder 全局布线区global routing pool(GRP)负反馈negative feedback负载电阻load resistance负载线load line负电阻negative resistance负逻辑negative logic夹断电压pinch-off voltage多级放⼤器multistage amplifier多数载流⼦majority carrier多谐振荡器astable multivibrator⾃由电⼦free electron⾃激振荡器self-excited oscillator⾃偏压self-bias导通on导电沟道conductive在系统可编程in system programmable (ISP)异或门exclusive-OR gate异步⼆进制计数器asynchronous binary counter同步⼆进制计数器synchronous binary counter同或门exclusive-NOR gate发光⼆极管light- emitting diode(LED)场效晶体管field-effect transistor(FET)光敏电阻photo-sensitive resistor 光电⼆极管photodiode光电晶体管phototransistor 光电藕合器photocoupler传输门transmission gate(TG)传输特性transfer characteristics七画运算放⼤器operational amplifier低频放⼤器low-frequency amplifier时钟脉冲clock pulse时序逻辑电路sequential logic circuit⾕点valley point译码器decipherer阻容—耦合放⼤器resistance-capacitance coupled amplifier阻断interception阻挡层barrier采样保持sample and hold串联型稳压电源series voltage rgulator⼋画空⽳hole空间电荷区space-charge layer固定偏置fixed-bias直接耦合放⼤器direct- coupled amplifier 单稳态触发器monostable flip-flop单结晶体管unijuction transistor(UJT)⾦属—氧化物—半导体metal-oxide-semiconductor(MOS)⾮门NOT gate⾮线性失真nonlinear diatortion或门OR gate或⾮门NOR gate饱和saturation转移特性transfer characteristic定时器timer参数parameter参考电压reference voltage组合逻辑电路combinational logic circuit九画穿透电流penetration current复合recombination复合晶体管Darlington复位reset差放放⼤器differential amplifier差模信号differential-mode signal差模输⼈differential-mode input绝缘栅双极型晶体管insulated gate bipolar transistor(IGBT)绝缘栅场效晶体管isolated-gatefield-effect transistor(IGFET)栅极gate,grid恒流源constant current source通⽤逻辑块generic logic block(GLB)通⽤阵列逻辑generic array logic(GAL)脉冲pulse 脉冲宽度pulse width脉冲幅度pulse amplitude脉冲周期pulse period脉冲前沿pulse leading edge脉冲后沿pulse trailing edge⼗画桥式整流器bridge rectifier旁路电容bypass capacitor射极输出器emitter follower振荡器oscillator振荡频率oscillation frequency耗尽层depletion layer耗尽型MOS场效晶体管depletion mode MOSFET载流⼦carrier硅silicon硅稳压⼆极管Zener diode峰点peak point热敏电阻thermistor⼗⼀画逻辑门1ogic gates逻辑电路1ogic circuit基极base控制极control grid偏流current bias偏置电路biasing circuit接地ground,grounding;earth,earthing 虚地imaginary ground 维持电流holding current基本RS触发器basic RS flip-flop随机存取存储器random access memory (RAM)寄存器register移位寄存器shift register清零clear掺杂半导体doped semiconductor⼗⼆画晶体crstal晶体管transistor晶体管—晶体管逻辑电路transistor- transistor logic (TTL)circuit 编码coding晶闸管thyristor集成电路integrated circuit(IC)集电极collector幅频特性amplitude frequency-response characteristic编码器encoder最⼩项miniterm⼗三画源极sourse滤波器filter数字电路digital circuit数字集成电路digital integrated circuit数码显⽰digital display数—模转换器digital-analog converter (DAC)数据选择器multiplexer数据分配器demultiplexer锗germanium输⼊输出单元input output cell(IOC)输⼊电阻input resistance 输出电阻output resistance输出布线区output routing pool(ORP)输出逻辑宏单元output logic macro cell (OLMC)零点漂移zero drift跨导transconductance触发器flip-flop⼗四画截⽌cut-off漂移drift静态statics静态⼯作点quiescent point漏极drain模—数转换器analog - digital converter (ADC)模拟电路analog circuit稳压⼆极管Zener diode⼗五画整流电路rectifier circuit增强型MOS场效晶体管enhancement mode MOSFET。
C#中的参数传递:值类型(valuetype)和引⽤类型(referencetype)摘要:由于在.NET中存在两种类型,分别是值类型(value type)和引⽤类型(reference type),所以很多关于C#中参数传递的混淆就因此⽽⽣。
本⽂⾸先从值类型和引⽤类型的辨析⼊⼿,然后解释了在C#中的参数传递的四种形式:值传递(默认形式)、ref传递、out传递、params传递。
⾸先要弄清楚的是:值类型是分配在栈(stack)上⾯,⽽引⽤类型分配在堆(heap)上⾯。
栈是⼀种先进后出,并且由系统⾃动操作的存储空间。
⽽堆(在.NET上准确的说是托管堆 Managed Heap)是⼀种⾃由储存区(Free Memory),在该区域中,必须明确的为对象申请存储空间(⼀般在Java和C #中都是使⽤的new关键字),并可以在使⽤完以后释放申请的存储空间(Java和C #都使⽤垃圾回收机制Garbage Collector⾃动释放对象空间)引⽤类型(reference type):它存放的值是指向数据的引⽤(reference),⽽不是数据本⾝。
⽰例:System.Text.StringBuilder sb = new StringBuilder();这⾥,我们声明⼀个变量sb,并通过new StringBuilder()创建了⼀个StringBuilder(与Java中StringBuffer类似)对象,再将对象的引⽤(reference)赋值给变量sb,即变量sb中保存的是StringBuilder对象的引⽤,⽽⾮对象本⾝。
System.Text.StringBuilder first = new StringBuilder();System.Text.StringBuilder second = first;这⾥,我们将变量first的值(对⼀个StringBuilder对象的引⽤)赋值给变量second,即first和second都指向同⼀个StringBuilder对象。
UNISONIC TECHNOLOGIES CO., LTDTL431LINEAR INTEGRATED CIRCUITPROGRAMMABLE PRECISION REFERENCEDESCRIPTIONThe UTC TL431 is a three-terminal adjustable regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between V REF (approximately 2.5V) and 36V with two external resistors. It provides very wide applications, including shunt regulator, series regulator, switching regulator, voltage reference and others.FEATURES* Programmable output Voltage to 36V. * Low dynamic output impedance 0.2Ω. * Sink current capability of 1.0 to 100mA.* Equivalent full-range temperature coefficient of 50ppm/ °Ctypical for operation over full rated operating temperature range.ORDERING INFORMATIONOrdering Number Pin AssignmentNormal Lead Free Halogen Free 12345678 Package PackingTL431-AB3-R TL431K-AB3-R TL431G-AB3-R R A K ----- SOT-89 Tape Reel TL431-AE2-R TL431K-AE2-R TL431G-AE2-R K R A ----- SOT-23-3 Tape Reel TL431-AE3-R TL431K-AE3-R TL431G-AE3-R K R A ----- SOT-23 Tape Reel TL431NS-AE3-R TL431NSL-AE3-R TL431NSG-AE3-R R K A ----- SOT-23 Tape Reel TL431NS-AE2-R TL431NSL-AE2-R TL431NSG-AE2-R R K A ----- SOT-23-3 Tape Reel TL431-AF5-R TL431K-AF5-R TL431G-AF5-R X X K R A --- SOT-25 Tape Reel TL431-S08-R TL431K-S08-R TL431G-S08-R K A A X X A A R SOP-8 Tape Reel TL431-T92-B TL431K-T92-B TL431G-T92-B R A K ----- TO-92 TapeBox TL431-T92-K TL431K-T92-K TL431G-T92-G R A K ----- TO-92 Bulk捷多邦,您值得信赖的PCB打样专家!MARKING431.431N431BLOCK DIAGRAMCATHODE (K)ANODE(A)REFERENCE (R)ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)PARAMETER SYMBOL RATINGS UNITCathode Voltage V KA 37 V Cathode Current Range(Continuous) I KA -100 ~ +150 mA Reference Input Current Range I REF -0.05 ~ +10 mATO-92 770 mWSOT-89 800 mWPower Dissipation SOT-23/SOT-23-3/SOT-25P D 300 mWOperating Junction T J +150 °C Operating Ambient T OPR -40 ~ +85 °C Storage Temperature T STG -65 ~ +150 °CNote: Absolute maximum ratings are those values beyond which the device could be permanently damagedAbsolute maximum ratings are stress ratings only and functional device operation is not implied.RECOMMENDED OPERATING CONDITIONSPARAMETER SYMBOL MIN TYP MAX UNITCathode Voltage V KA V REF 36 V Cathode Current I KA 1 100 mAELECTRICAL CHARACTERISTICS (T C = 25°C, unless otherwise specified.)TEST CIRCUITV KAV KA=V REF×(1+R1/R2)+I REF×R1For V KA=V REFFor V KA≥V REF For I KA(OFF)APPLICATION CIRCUITV OUT=(1+R1/R2)×V REFV OUT=(1+R1/R2)×V REFMinimum V OUT=V REF+5V V OUT=(1+R1/R2)×V REFShutdown Regulator Output Control of a Three-Terminal Fixed RegulatorHigher-current Shunt RegulatorI OUT=V REF/R S I OUT =V REF/R CLConstant-current Sink Current Limiting or Current Source■ TYPICAL CHARACTERISTICS-11023400200600800-2Cathode Voltage (V)C a t h o d e C u r r e n t (μA)123456701234567Time (µs)I n p u t a n d O u t p u t V o l t a g e (V )Pulse ResponseC h a n geI n R e f er e nc e I n p u t V o l t a g e (m V )Change in Reference Input Voltage vs.Cathode Current vs. Cathode Voltage0510********3540-1-1Cathode Voltage (V)-2-1123-75-50-250255075100125Cathode Voltage (V)C a t h o d e C u r r e n t (m A )Cathode Current vs. Cathode Voltage150-5-10-15-20-25-30-35-40Frequency, f (Hz)0204060Frequency Response1K10K100K1M10M103050-40-202550100125150750.81.62.43.0Temperature, ()Deviation of Reference Voltage。
在编程中,参数可以大致分为两类:引用参数(Reference Parameters)和值参数(Value Parameters)。
1. 值参数(Value Parameters):值参数是按值传递的,这意味着当方法被调用时,参数的值会被复制到方法内部的参数变量中。
因此,方法内部对参数变量的修改不会影响到原始变量。
在大多数编程语言中,如果不特别指明参数类型,那么默认就是值参数。
示例(C#):csharpvoid ChangeValue(int x){x = x + 10; // 仅修改方法内部的x变量,原始变量不受影响}int originalValue = 5;ChangeValue(originalValue);Console.WriteLine(originalValue); // 输出:5,原始值未改变2. 引用参数(Reference Parameters):引用参数是按引用传递的,这意味着方法内部和方法调用者共享同一个变量的引用。
因此,对方法内部参数变量的修改会影响到原始变量。
在C#中,使用`ref`关键字来声明引用参数。
示例(C#):csharpvoid ChangeReference(ref int x){x = x + 10; // 修改的是原始变量的引用,因此原始变量会受到影响}int originalValue = 5;ChangeReference(ref originalValue);Console.WriteLine(originalValue); // 输出:15,原始值已被方法修改在Python中,所有参数都是按值传递的,但是对象(如列表、字典等)的传递实际上传递的是对象的引用,因此修改这些对象的内容会影响到原始对象。
在OpenCV的上下文中,当使用傅里叶变换(DFT)和逆变换(IDFT)时,传递的参数通常是图像数据,这些数据在函数内部会被处理并返回处理后的结果。
在这种情况下,这些函数并不直接修改原始图像数据,而是返回新的变换后的图像数据,因此可以视为值参数的使用。
EXPLAIN各个参数详解[object Object]参数是指在进行项操作时,可以通过设定不同的参数来控制操作的方式和结果。
下面将详解各个参数的含义和作用。
1. 必需参数(Required parameters):这些参数是操作所必需的,如果没有提供这些参数,操作将无法执行。
在调用函数或执行命令时,必需参数通常需要在参数列表中明确指定。
2. 默认参数(Default parameters):这些参数在定义时就已经设定了默认值,如果没有显式地提供这些参数的值,操作将使用默认值进行执行。
默认参数可以减少函数或命令调用时的繁琐,提高代码的可读性和可维护性。
3. 可选参数(Optional parameters):这些参数是操作时可以选择提供的,如果不提供这些参数,操作仍然可以执行,但可能会影响结果。
可选参数通常在必需参数之后,使用一些特殊的标记或规则进行指定。
4. 位置参数(Positional parameters):这些参数是根据其在参数列表中的位置来进行匹配的。
在调用函数或执行命令时,位置参数按照声明的顺序依次传递给函数或命令。
5. 关键字参数(Keyword parameters):这些参数是通过名称来进行匹配的,可以不按照声明的顺序进行传递。
在调用函数或执行命令时,关键字参数需要以“参数名=参数值”的形式明确指定。
6. 可变参数(Variable parameters):这些参数允许传入不定数量的值。
在函数定义时,可以使用特殊的语法表示参数为可变参数,这样就可以接收任意数量的值作为参数。
7. 引用参数(Reference parameters):这些参数是通过引用传递的,即在函数或命令中对参数的修改会影响到原始数据。
引用参数可以用于在函数或命令中修改外部变量的值。
8. 值参数(Value parameters):这些参数是通过值传递的,即在函数或命令中对参数的修改不会影响到原始数据。
值参数用于在函数或命令中使用参数的副本,而不会影响到外部变量的值。
电压参考(Voltage reference)主要指标:
(1)灵敏度(Sensitivity)
灵敏度是指在规定电源电压范围内,单位电源电压的变化引起基准电压变化的百分数,也称作线调整率。
它反映的是基准电压变化相对电源变化的直流误差量。
(2)精度(Accuracy)
精度是表征基准电压相对设计标称值的相对误差。
主要由初始精度(Initial Accuracy,不带负载时输出基准电压的容差ΔVrefIA/Vref),线调整率(Line Regulation,电源电压变化引起的输出基准电压的直流误差ΔVrefLNR/Vref。
在规定的输入电源电压变化范围内,输入电压增量引起的基准输出电压的变
化,可用uv/v、%/v、ppm/V为单位来表示)及温度漂移性能(Temperature-drift Performance,反映输出基准电压对温度的漂移误差ΔVrefTC/Vref)决定。
(3)温度系数(Temperature Coefficient,TC)
温度系数表示由温度变化而引起基准电压的漂移量,简称温漂,一般用ppm/℃来表示。
它反映了基准电压在整个工作温度范围[TMIN,TMAX]内的最大变化量与设计标称值的
比值。
式中VMAX,VMIN分别表示在[TMIN,TMAX]温度范围内最大基准电压和最小基准电压。
(4)电源抑制比(Power Supply Rejection Ratio,PSRR)
电源抑制比是表征基准参考源抑制电源噪声能力的重要参数,基准参考源电路的电源抑制比可定义为电源到基准输出端增益的倒数。
与线调整率不同,PSRR测量的是电源电压交流变化引起的基准电压的变化。
(5)噪声(Noise)
噪声是影响基准源稳定性的主要因素之一,通常分为外部噪声和内部噪声。
外部噪声一般来自电源电压的变化以及其它电路的干扰;内部噪声主要包括热噪声和低频1/f噪声。
热噪声可以用简单的RC低通滤波器有效滤除。
1/f噪声是基准源内在固有的噪声,不能被滤除,一般在0.1Hz到10Hz范围内定义。
对高精度系统,低频1/f噪声是一个重要指标。
(6)建立时间
建立时间是指电压基准源从电路电源上电到电路输出电压达到正常工作电压
值所需的时间。