公倍数和公因数
- 格式:doc
- 大小:96.00 KB
- 文档页数:12
公倍数和公因数基础知识回顾1、公倍数和最小公倍数的意义:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做它们的最小公倍数。
2、公倍数的特征:一个数的倍数的个数是无限的,因此两个数的公倍数的个数也是无限的。
只有最小公倍数,没有最大公倍数。
3、求两个数的最小公倍数的两种特殊情况:1)如果两个数中较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
(2)如果两个数只有公因数1,那么这两个数的最小公倍数就是它们的乘积。
4、公因数和最大公因数的意义:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做它们的最大公因数。
5、公因数的特征:一个数的因数的个数是有限的,因此两个数的公因数的个数也是有限的。
最小的公因数是1.6、求两个数的最大公因数的特殊情形:1)当两个数成倍数关系时,较小数就是这两个数的最大公因数;较大数就是这两个数的最小公倍数。
2)如果两个数只有公因数1,那么这两个数的最大的公因数是1;最小公倍数是它们的乘积。
3)假如两个数都是质数或者两个数是继续的天然数,那末这两个数的乘积就是它们的最小公倍数。
7、公倍数是最小公倍数的倍数,最小公倍数是公倍数的因数。
8、素数:一个数,如果只有1和它本身两个因数的数叫做素数。
合数:除了1和它本身外另有别的的因数叫做合数。
9、公有的质因数和各自独有的质因数的乘积就是它们的最小公倍数。
例如:6和8都是合数,6的质因数有2、3;8的质因数有:2、2、2;6和8的最小公倍数是2*3*2*2=2424是它们的最小公倍数。
10、两个合数,如果它们只有公因数1,那么最大公因数也是1.11、1与任意非零天然数的公因数只要1个,就是1.12、用短除法求两个数的最大公因数和最小公倍数时,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数乘起来,就得到这两个数的最大公因数。
而把所有的除数与它们只有公因数1时的数相乘就是它们的公倍数。
公因数和公倍数知识点公因数和公倍数公因数是指两个或多个数公有的因数,而公倍数是指两个或多个数公有的倍数。
在数学中,我们常常需要求两个数的最大公因数和最小公倍数。
首先,我们需要了解一些基本知识。
两个自然数如果公因数只有1,那么它们就是互素数。
而分子、分母是互素数的分数则被称为简分数。
求最大公因数的方法有分解素因数法和短除法。
最小公倍数的求法有分解素因数和短除法,即用最大公因数乘以各自独有的因数。
对于两个数的最大公因数和最小公倍数,有三种基本情况:特殊互素、较大数是较小数的倍数、一般关系。
对于特殊情况,我们可以直接求解,而对于一般情况,我们可以使用列举法、单列举法、分解质因数法、短除法、除法算式法等方法来求解最大公因数。
对于最小公倍数的求解,我们可以使用列举法、单列举法、大数翻倍法、分解质因数法或短除法等方法。
最后,我们需要记住,当两个数是倍数关系时,最大公因数是较小的数,最小公倍数是较大的数;当两个数是互质关系时,最大公因数是1,最小公倍数是它们的乘积。
12的倍数为12、24、36、48.一种方法是单列举法,比如求18和12的最小公倍数,先找出18的倍数:18、36、54、72,再从小到大找这些倍数中哪个同时也是另一个数的倍数,最小公倍数为36.另一种方法是大数翻倍法,将较大的数翻倍,每次翻倍后检查结果是否也是另一个数的倍数,直到找到最小公倍数为止。
比如求18和12的最小公倍数,可以将18翻倍,得到36,而36又是12的倍数,因此36是18和12的最小公倍数。
还有一种方法是短除法,先用两个数同时除以一个质数(要能整除),再同时除以另一个质数,直到得到两个互质的商为止,最后将所有的除数和商相乘即可得到最小公倍数。
对于问题1,(1)既是30的因数又是45的因数的数共有4个,其中最大的是15;(2)既是30的倍数又是45的倍数的数最小是90.对于问题2,将168分解质因数得到2×2×2×3×7,其中一个因数必为7,因此这三个连续自然数只有6、7、8和7、8、9两种可能,而7、8、9这三个数任意两个数的公因数都是1,因此这三个连续自然数只能是6、7和8,它们的和为21.随堂练:1、既是30的倍数又是45的倍数还是75的倍数的数最小是450;2、三个连续自然数的最小公倍数是660,这三个连续自然数分别是220、221和222.最小公倍数和最大公因数在数学中有着广泛的应用。
求解公因数、公倍数的步骤求解公因数、公倍数是数学中常见的问题。
公因数指的是能够整除给定两个或多个数的公共因数,而公倍数则是给定两个或多个数的倍数中共同存在的数。
本文将介绍求解公因数、公倍数的具体步骤。
求解公因数的步骤以下是求解公因数的步骤:1. 列举所有的因数:列举所有的因数:对于给定的两个或多个数,我们首先需要列举出它们分别的所有因数。
因数是能够整除一个数的数值,比如对于数值12来说,它的因数包括1、2、3、4、6和12。
2. 找出公共因数:找出公共因数:在列举出所有因数的基础上,我们找出这些数中的公共因数。
公共因数即能够整除所有给定数的因数,比如对于数值16和24来说,它们的公共因数是1、2、4和8。
3. 确定最大公因数:确定最大公因数:在找出公共因数后,我们需要确定其中最大的公因数。
最大公因数是能够整除所有给定数的最大的因数,比如对于数值16和24来说,它们的最大公因数是8。
求解公倍数的步骤以下是求解公倍数的步骤:1. 找出给定数的倍数:找出给定数的倍数:对于给定的两个或多个数,我们首先需要找出它们分别的倍数。
倍数是给定数乘以任意正整数得到的数值,比如对于数值3来说,它的倍数包括3、6、9、12、15等。
2. 找出共同的倍数:找出共同的倍数:在找出倍数的基础上,我们找出这些数中的共同倍数。
共同倍数即为给定数的倍数中共同存在的数,比如对于数值4和6来说,它们的共同倍数是12、24、36等。
3. 确定最小公倍数:确定最小公倍数:在找出共同倍数后,我们需要确定其中最小的公倍数。
最小公倍数是能够同时被所有给定数整除的最小的倍数,比如对于数值4和6来说,它们的最小公倍数是12。
以上就是求解公因数、公倍数的具体步骤。
通过按照以上步骤进行操作,我们可以快速准确地求解出任意两个或多个数的公因数和公倍数。
第3讲 公因数和公倍数1.定义:如果一个数同时是几个数的因数,那么我们就称它为这几个数的公因数。
几个数的公因数中最大的一个,称为这几个数的最大公因数。
如果一个数同时是几个数的倍数,那么我们就称它是这几个数的公倍数。
几个数的公倍数中最小的一个,称为这几个数的最小公倍数。
2.求最大公约数和最小公倍数一般有以下几种方法。
1.短除法:例 求8,12的最大公因数和最小公倍数。
求9,36,48的最大公因数和最小公倍数。
2.分解质因数法:分解质因数是求最大公因数的最直接的方法。
求最大公因数是求所有数公有质因数的积,而且取相同质因数的最低次方。
求最小公倍数是求所有数只要出现质因数的积,而且取相同质因数的最高次方。
例如:36=2232⨯240=324⨯×5【36,48】=72053224=⨯⨯(36,48)=12322=⨯3.辗转相除法:例 从一张长2002毫米、宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程不断地重复,最后剪得的正方形的边长是______毫米。
第一、二次剪下847×847平方毫米的正方形。
第三、四次剪下边长308毫米的正方形。
第五次剪下边长231毫米的正方形。
第六、七,八次剪下边长77毫米的正方形。
以上的解题过程,实际上给出了求最大公约数的另一个办法——辗转相除法。
以上过程可用算式表示如下:2002=847×2+308847=308×2+231308=231×1+77231=77×3由以上算式可以看出;这种方法就是用大数除以小数,再用上次运算中的除数除以余数,如此反复除,直至余数为零。
最后一个除数就是两数的最大公因数。
这是因为;两个数的最大公因数,同时是两个数的因数,也就是余数的因数。
拿这道题来说,2002和847的公因数,也就是847与308的公因数,也就是308与231的公因数,也就是231与77的公因数。
最小公倍数与最大公因数的求法最小公倍数和最大公因数,听起来像是数学课上那些让人头疼的概念,不过别担心,咱们轻松点儿聊聊。
最小公倍数,简称最小公倍数,其实就是找到几个数共同的倍数,越小越好。
就像找个大家都能接受的时间,约个饭局,大家都好安排。
比如,咱们找 4 和 6 的最小公倍数,4 的倍数有 4、8、12、16,6 的倍数有 6、12、18,嘿,12 是个大家都能接受的选择,最小公倍数就定了。
说到最大公因数,咱们就像在找一群人里能一起干活的那几个,大家干得最起劲儿。
最大公因数,就是能同时整除几个数的最大数。
比如说,8 和 12,这俩数的公因数有 1、2、4,4 就是最大的一个。
想象一下,四个人一起去旅行,大家都能住的地方,就是最大公因数,能同时容得下所有人的那个地方。
找最小公倍数的时候,最简单的办法就是把数列写出来,然后找出最小的那个。
不过,咱们也可以用一种更聪明的方法,叫做“分解质因数”。
这就像拆家,把数拆成最基本的元素。
比如,4 可以拆成2 × 2,6 拆成2 × 3,然后把所有质因数取个最大次数,比如这里的 2 最大出现 2 次,3 最大出现 1 次,最后把它们乘在一起,结果就是 12,哎,这方法简单又高效。
说到最大公因数,咱们同样可以用分解质因数的办法,先把每个数拆解成质因数,然后找出相同的部分。
就像寻找团队里最能干的那几个人,留住最牛的,最终把他们的力量汇聚起来。
比如 8 拆成2 × 2 × 2,12 拆成2 × 2 × 3,嘿,能一起干活的就是2 × 2,最后最大公因数就是 4,找个合适的地方,大家一起把事情做好。
当你在生活中碰到这些数学问题时,别觉得这难上加难。
找最小公倍数和最大公因数其实就像在生活中寻求平衡。
像朋友间的关系,偶尔得妥协,找到一个大家都满意的折中点,才能继续走得更远。
用数学的眼光来看,生活的方方面面都有这些公因数和倍数在潜藏,只是我们未必注意到罢了。
第三单元:公倍数和公因数目标导航1、 认识公倍数和最小公倍数、公因数和最大公因数,会在集合图中分别表示两个数的倍数和它们的公倍数、因数和它们的公因数。
2、 学会用列举的方法找到10以内两个数的最小公倍数和100以内两个数的最大公因数,并能在解决问题的过程中主动探索简捷的方法,发现求两个数的最大公因数和最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最大公因数和最小公倍数。
3、 自主探索求三个数的最小公倍数的方法,在解决实际问题的过程中提高学习数学的能力. 基础巩固题1、2、6的倍数有:( );8的倍数有:( );6和8的公倍数有:( );6和8的最小公倍数是:( ).3、填空(1)48既能被8整除,又能被6整除,所以48是8和6的最小公倍数。
( )(2)先将18和24分解质因数,再求出它们的最小公倍数. 18=( ) 24=( ) 18和24的最小公倍数( ).(分解质因数只针对于合数,质数指除了1和它本身之外的数,如:2、3、5、7等)(3)4和5的最小公倍数是( ),16和24的最小公倍数是( ).(4)下面这些图形,如果这样排列下去,在第( )个时都是有颜色的图形呢。
4、求下列各组数的最小公倍数。
7和9 15和45 12和1824和16 11和6 4、5和65、1路和2路公共汽车早上6时同时从起始站发车,1路车每5分钟发一辆车,2路车第4分钟发一辆车。
完4的倍数 5的倍数4和5的公倍数(1)(2)解决这个问题就是求().6、一个汽车总站有甲、乙两路车。
甲路车每3分钟发一次车;乙路车每5分钟发一次车。
甲、乙两路车第二次同时发车的时间与第一次同时发车的时间至少间隔多少分钟?8、18的因数有:( );24的因数有:( );18和24的公因数有:();18和24的最大公因数有:()。
9、填空(1)60的因数有( ),能整除45的数有(),既是60的因数,又能整除45的数有( ),60和45的最大公因数是( )。
最大公因数和最小公倍数总结一、最大公因数(GCD)1.定义:最大公因数,也被称为最大公约数,是指一组数中能够同时整除所有这些数的最大的正整数。
2.求解方法:-因数分解法:将各个数进行因数分解后,最大公因数是所有数的因数中的最小公因数。
-辗转相除法:将两个数进行相除,余数为0时,被除数即为最大公因数;余数不为0时,将除数作为被除数,余数作为除数进行下一次相除,直到余数为0为止。
二、最小公倍数(LCM)1.定义:最小公倍数是指能够同时整除一组数的最小的正整数。
2.求解方法:-因数分解法:将各个数进行因数分解后,最小公倍数是所有数的因数的最大公倍数。
-辗转相乘法:将两个数进行相乘,再除以它们的最大公因数,得到的商即为最小公倍数。
三、最大公因数和最小公倍数的性质1.互质关系:如果两个数的最大公因数是1,则它们被称为互质数或互质的。
互质数的最小公倍数等于它们的乘积。
2.二者关系:两个数的乘积等于它们的最大公因数与最小公倍数的乘积。
3.分数化简:当分数的分子和分母有相同的因数时,可以将分子和分母都除以最大公因数,使分数化简为最简形式。
4.方程求解:在求解含有多个未知数的方程时,可以通过求解各个未知数的最大公因数来减少未知数的个数,进而简化方程。
四、应用举例1.分数化简:将分数4/8化简为最简形式。
首先可以找到4和8的最大公因数为4,然后将分子和分母都除以4,得到1/2,即为最简形式。
2.方程求解:解方程2x+3y=10。
首先可以观察到2和3的最大公因数为1,因此可以将方程同时除以最大公因数1,得到2x+3y=10。
这样一来,只剩下两个未知数x和y,方程的求解就更加简化了。
通过对最大公因数和最小公倍数的学习和理解,我们可以更加灵活地运用它们解决实际问题。
在数学中,最大公因数和最小公倍数是数论的基础,更是数学计算的重要工具。
掌握了最大公因数和最小公倍数的求解方法和应用技巧,对数学学科的理解和运用都将得到很大的提升。
求公因数和公倍数的简便方法嘿,咱来说说求公因数和公倍数的简便方法哈。
有一回啊,我家小侄子拿着数学作业来问我咋求公因数和公倍数。
我一看,嘿,这还不简单嘛。
咱先说求公因数吧。
比如说有两个数,12 和18。
咱可以先把它们的因数都找出来。
12 的因数有1、2、3、4、6、12。
18 的因数呢,有1、2、3、6、9、18。
然后咱就看哪些数是它们都有的,那这些数就是它们的公因数啦。
这里面1、2、3、6 就是12 和18 的公因数。
我就这么跟小侄子讲,小侄子听得还挺认真。
还有一种方法呢,就是用短除法。
就拿刚才那两个数来说,咱先用 2 去除,12 除以 2 等于6,18 除以 2 等于9。
然后再用3 去除,6 除以3 等于2,9 除以3 等于3。
这时候就不能再除了。
那 2 和 3 的乘积就是它们的最大公因数啦。
小侄子试了试,觉得这个方法还挺好玩。
再说说求公倍数。
还是那两个数,12 和18。
咱可以先把它们的倍数都写出来。
12 的倍数有12、24、36、48……18 的倍数有18、36、54……这时候你就会发现,36 是它们第一个相同的倍数,那36 就是12 和18 的最小公倍数。
我跟小侄子说,你就这么找,肯定能找到公倍数。
还有一种方法呢,就是用最大公因数来求。
先求出它们的最大公因数是6,然后用12 乘以18 等于216,再用216 除以最大公因数6,就得到36,这也是它们的最小公倍数。
小侄子听得眼睛都亮了,说:“原来这么简单啊。
”其实啊,求公因数和公倍数并不难,只要掌握了方法,就很容易啦。
倍数与因数公因数与公倍数——基本知识点1.倍数与因数1.1倍数:一个数a如果能够被另一个数b整除,那么a就是b的倍数。
例如,6是2的倍数,因为6能够被2整除。
1.2因数:对于一个数a来说,如果存在一些数b使得a能够被b整除,那么b就是a的因数。
例如,2是6的因数,因为6能够被2整除。
2.公因数与公倍数2.1公因数:对于两个数a和b来说,如果存在一些数c同时是a和b的因数,那么c就是a和b的公因数。
例如,4是8和12的公因数,因为4同时是8和12的因数。
2.2公倍数:对于两个数a和b来说,如果存在一些数c同时是a和b的倍数,那么c就是a和b的公倍数。
例如,24是8和12的公倍数,因为24同时是8和12的倍数。
3.公因数与公倍数的性质3.1公因数的性质:-任何一个数的因数都是它的公因数。
-0的所有因数都是任何一个数的公因数。
-两个数的公因数的集合中一定包含它们的最大公因数。
3.2公倍数的性质:-任何一个数的倍数都是它的公倍数。
-两个数的公倍数的集合中一定包含它们的最小公倍数。
4.最大公因数与最小公倍数4.1 最大公因数:对于两个数a和b来说,它们的最大公因数,记作gcd(a, b),是同时是a和b的因数中最大的一个数。
例如,gcd(8, 12) = 44.2 最小公倍数:对于两个数a和b来说,它们的最小公倍数,记作lcm(a, b),是同时是a和b的倍数中最小的一个数。
例如,lcm(8, 12) = 245.两个数的最大公因数与最小公倍数的关系对于两个数a和b来说,有以下关系成立:a *b = gcd(a, b) * lcm(a, b)6.公因数与公倍数的计算方法6.1公因数的计算方法:-可以将两个数的所有因数列举出来,然后找出它们的公因数。
-使用辗转相除法来计算最大公因数,具体步骤如下:-用较大的数除以较小的数,得到商和余数。
-若余数为0,则较小的数就是最大公因数。
-若余数不为0,则将较小的数作为被除数,余数作为除数,继续进行除法运算,直到余数为0为止。
公因数和公倍数一、本节学习指导本节非常重要,同学们一定要掌握用短除法求最小公倍数和最大公因数的方法,在后面通分中是必用的知识。
本节同学们要多做练习。
二、知识要点1、公因数、最大公因数(1)、几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
例:6的因数有:1,6,2,3; 8的因数有:1,8,2,4,所以6和8个公因数有1、2。
其中2就是6个8的最大公因数。
(2)、用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)例:求24和18的最大公因数注:①几个数的公因数只有1,就说这几个数互质。
②如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
③如果两数互质时,那么1就是它们的最大公因数。
2、公倍数、最小公倍数(1)、几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
例:求3和6的最小公倍数分析:3的倍数有:3×1=1,3×2=6,3×3=9……;6的倍数有:6×1=6,6×2=12……由此发现,3和6的倍数中第一个公共出现的是6,所以6是它们的最小公倍数。
(2)、用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
例:求24和18的最小公倍数分析:先用短除法除到互质为止,然后把所有的除数和商连乘起来,即:2×3×4×3=72,所以24和18的最小公倍数是72。
3、求最大公因数和最小公倍数方法用12和16来举例(1)、求法一:(列举求同法)最大公因数的求法:12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4最小公倍数的求法:12的倍数有:12、24、36、48、…16的倍数有:16、32、48、…最小公倍数是48(2)、求法二:(分解质因数法)12=2×2×316=2×2×2×2最大公因数是:2×2=4 (相同乘)最小公倍数是:2×2 × 3×2×2= 48 (相同乘×不同乘)三、经验之谈:在理解最小公因数和最大公倍数的时候,我们要区分两者的区别与联系。