公因数与公倍数知识点+练习
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
最大公因数和最小公倍数练习姓名: 学号 分数一、填空1、分母是10的最简真分数的和是( )。
2、一个最简真分数,分子和分母的积是8,这个分数是( )。
3、 自然数a 和自然数b 的最大公因数是1,这两个数是( )关系,它们的最小公倍数是( )。
自然数x 和y 的最小公倍数是y ,y 是x 的( ),它们的最大公因数是( )。
4、把 的分子乘4,要使分数的大小不变,分母应( ) 。
5、按要求写出两个数,使它们的最大公因数是1.(1)两个数都是质数:( )和( )(2)两个数都是合数:( )和( )(3)一个奇数,一个偶数:( )和( )(4)一个质数,一个合数:( )和( )(5)一个质数,一个偶数:( )和( )(6)一个奇数,一个合数:( )和( )6、 7、一块花布长7米,正好可以做6条同样大小的童裤,每条童裤用了这块布的,用布( )米。
8、分数单位是 的最简真分数有( );分子是12的假分数有 ( )。
9、在 中,与 相等的数是( )。
10、填上恰当的最简分数3520=4==÷=÷245( )60( ) (最后一空填小数)( )( )( )( )1654107691512,,,236dm=( )m 36秒=( )分 60dm ²=( )㎡300mL=( )L 25cm=( )m 50公顷=( )平方千米二、选择1、18和54的最大公因数是( )A.3B.6C.9D. 182、5和15的最大公因数是( )。
A. 1B.3C. 5D. 73、甲、乙两数是两个相邻的自然数,甲、乙两数的最大公因数是( )A.1B.甲数C.乙数D. 甲、乙两数的乘积4、一个分数,分子不变,分母扩大到原来的4倍,这个分数值就会( )A.不变 B . 扩大 C .缩小 D .无法确定5、如果a 除以b 的商是3,余数是0,那么a 和b 的最大公因数是( )A. 1B. 3C. aD.b三、计算。
求最大公因数、最小公倍数、约分、通分练习题一、求几个数的最大公因数12和30 24和36 39和78 72和84 36和6045和60 45和75 45和60 42、105和56 24、36和48 二、给下面的分数约分3624754527182416 20358016 5117 108三、求几个数的最小公倍数。
25和30 24和30 39和78 60和84 18和20126和60 45和75 12和24 12和14 45和60 76和8036和60 27和72 42、105和56 24、36和48 四、将下列各组分数通分。
12785和352143和六、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80 6、12和24 7、21和49 8、12和36七. 填空题。
1. 都是自然数,如果ba=10 , 的最大公约数是( ),最小公倍数是( )。
2. 甲=2×3×3 ,乙=2×3×5 ,甲和乙的最大公约数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。
3. 所有自然数的公约数为( )。
4. 如果m 和n 是互质数,那么它们的最大公约数是( ),最小公倍数是( )。
277185和6597和95153913和3310229和15752和21472和5110172和5432和3241和97103和5432和5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是()。
7. 两个连续自然数的和是21,这两个数的最大公约数是(),最小公倍数是()。
8. 两个相邻奇数的和是16,它们的最大公约数是(),最小公倍数是()。
9. 某数除以3、5、7时都余1,这个数最小是()。
最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
五年级(公因数、公倍数)专项练习题五年级(公因数、公倍数)专项练习题例题:1、一个房间长450厘米,宽330厘米,现在计划用方砖铺地,问:需要边长最大为多少厘米的方砖多少块(整块)正好将房间的地面铺满?2、两个自然数的最小公倍数是180,最大公因数是12,并且小数不能整除大数,求这两个数各是多少?3、有一个数在700—800之间,用15、18和24去除,都不能整除。
如果在这个数上加1,就能同时倍15,18和24整除.这个数是多少?提高拔尖:1、三个连续自然数的最小公倍数是168,那么这三个自然数的和是多少?2、有一个四位数,千位上的数字和百位上的数字都被擦掉了,只知道十位上的数字是1,个位上的数字是2。
如果这个数减去7就能被7整除,减去8就能被8整除,减去9就能被9整除,那么这个四位数是多少?3、一个数乘2是4的倍数,乘3是9的倍数,乘4是16的倍数,乘5是25的倍数,乘6是36的倍数,乘7是49的倍数,乘8是64的倍数,乘9是81的倍数。
这个数最小是多少?4、三个连续的自然数的最小公倍数是9828,这三个自然数的和是多少?5、从运动场一端到另一端全长96米,从一端起到另一端每隔4米插一面小旗。
现在要改成每隔6米插一面小旗,问:可以不拔出来的小旗有多少面?6、两个数的最大公因数是21,最小公倍数是126。
这两个数的和是多少?7、今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆。
每堆中这三种课本的数量分别相等,那么最多可分成多少堆?8、有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃。
中午12点整,电子钟响铃又亮灯,问:下一次响铃又亮灯是几点钟?9、有一些小朋友排成一行,从左面第一个人开始每隔2人发一个苹果,从右面第一个人开始每隔4人发一个橘子,结果有10个小朋友苹果和橘子都拿到。
那么这些小朋友最多有多少人?10、有一个大于1的整数,除300,262,205,得到相同的余数,这个数是多少?11、两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公因数,得到两个商的和是16。
公倍数、公因数的应用题讲解和练习有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。
如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。
即:(325、175、75)=25(厘米)因为325÷25=13175÷25=775÷25=3所以13×7×3=273(个)答:能分为小立方体273个,小立方体的每条棱长为25厘米。
2、有一个两位数,除50余2,除60余3,除73余1。
求这个两位数是多少?解:这个两位数除50余2,则用他除48(52-2)恰好整除。
也就是说,这个两位数是48的约数。
同理,这个两位数也是60、72的约数。
所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。
答:这个两位数是12。
3、张老师利用晚上时间给甲、乙、丙三个学生补课,至少经过多少天又在一起补课?分析:经过多少天三人又一起补课?这个天数一定是4的倍数、5的倍数和8的倍数,即4、5和8的公倍数。
因为问至少经过多少天,所以应经过4、5和8的最小公倍数。
解:(4、5、8)=40(天)答:经过40天三人又在一起补课。
1、有一堆西瓜与一堆木瓜,分别为24个与36个,将其各分成若干小堆,各小堆的个数要相等,则每小堆最多几个?这时候西瓜分成多少小堆?木瓜分成多少小堆?2、甲、乙两队学生,甲队有121人,乙队有143人,各分成若干组,各组人数要相等,则每组最多有几人?这时候甲队可分成多少组?乙队可分成多少组?3、今有梨320个、糖果240个、饼干200个,将这些东西分成相同的礼品包送给儿童,但包数要最多,则每包有多少个梨?有多少个糖果?有多少个饼干?4、把一张长30厘米,宽24厘米的长方形纸裁成同样大小的正方形,且没有剩余,裁成的正方形的边长最大是几厘米?一共可以裁成多少个?5、有两根同样长的铁丝,第一根长15厘米,第二根长18厘米,要把它们截成同样长的小段,而且不能有剩余,每小段最长是多少?一共能截成多少段?6、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。
一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),最小公倍数()(2)(25,15)最大公因数(),最小公倍数()(3)(140,35)最大公因数()最小公倍数()(4)(24,36)最大公因数()最小公倍数()(5)(3,4,5)最大公因数()最小公倍数()(6)(4,8,16)最大公因数()最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
17、已知(A,40)=8,[A,40]=80,那么A=()。
公因数、公倍数综合练习题
1、a与b是互质数,它们的最大公约数是1,它们的最小公倍数是ab。
2、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有24个。
3、a=2ab,b=2bc,a、b两数的最大公约数是2b,最小公倍数是4abc。
4、一个数的最大因数是13,这个数的最小倍数是13.
5、连续两个偶数之和是30,它们的最大公因数是2.
6、两个数的最大公因数是12,最小公倍数是60,这两个数分别是24和30.
7、两个数的最大公因数是3,最小公倍数是30,其中一个数是6,另一个数是15.
8、两个自然数的最大公约数是5,最小公倍数是300,其中一个数是75,另一个数是200.
三、选择填空
1.两个不同质数的最大公约数是1.
五、求下列每组数的最大公因数(每题2分,共12分)
22和99的最大公因数是11;
34和51的最大公因数是17;
14和25的最大公因数是1;
16和28的最大公因数是4;
18和20的最大公因数是2.
应用题(共12分)
1、这两个数可能是8和6,12和4,16和3,24和2,48和1.
2、小正方形的边长最大可以是6厘米,至少可以分成24个正方形。
3、至少要用16块这样的砖,才能铺成一块正方形。
4(1)、这个班至少有10人。
4(2)、这个自然数最小是67.
4(3)、五年级至少有158个同学排队做操。
4(4)、六年级共有95个学生。
5、经过两步操作后,仍面向老师的同学有13名。
6、中间挂有23个红气球。
最大公因数和最小公倍数小练习一、写出以下各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) A=2×2×3×5,B=2×3×7,则A、B的最大公因数是;最小公倍数是;(8)A=2×3×5×5,B=3×5×5×11,则A、B的最大公因数是;最小公倍数是。
1.在17、18、15、20和30五个数中,能被2整除的数是〔〕;能被3整除的数是〔〕;能被5整除的数是〔〕;能同时被2、3整除的数是〔〕;能同时被3、5整除的数是〔〕;能同时被2、5整除的数是〔〕;能同时被2、3、5整除的数是〔〕。
2.在20以内的质数中,〔〕加上2还是质数。
3.如果有两个质数的和等于24,可以是〔〕+〔〕,〔〕+〔〕或〔〕+〔〕。
4.把330分解质因数是〔〕。
5.一个能同时被 2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是〔〕。
6.在50以内的自然数中,最大的质数是〔〕,最小的合数是〔〕。
7.既是质数又是奇数的最小的一位数是〔〕。
二、判断题1.两个质数相乘的积还是质数。
〔〕2.成为互质数的两个数,必须都是质数。
〔〕3.任何一个自然数,它的最大约数和最小倍数都是它本身。
〔〕4.一个合数至少得有三个约数。
〔〕5.在自然数列中,除2以外,所有的偶数都是合数。
〔〕6.12是36与48的最大公约数。
〔〕三、选择题1.15的最大约数是〔〕,最小倍数是〔〕。
①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的〔〕。
①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是〔〕。
倍数和因数是不能够单独存在的。
在自然数中,只有1和它本身两个因数的数,我们称为质数,也叫素数;有三个或三个以上因数的数叫做合数;1既不是质数,也不是合数。
公因数
两个数如果是公因数只有1,则它们的最大公因数就是1。
公因数只有1的一般有4种情况:
①两个素数公因数只有1,如3和7;②相邻两个自然数公因数只有1,如15和16;
③1和任何自然数公因数只有1,如1和18;
④其他,如4和15,就需要我们自己判断,看看它们是不是只有公因数1。
两个数如果是倍数关系,它们的最大公因数就是其中较小的数。
公倍数
两个数如果是公因数只有1,则最小公倍数是它们的乘积。
两个数如果是倍数关系,最小公倍数是其中较大的数。
练习题
1、如果a÷b=7,那么a和b的最大公因数是__________。
2、甲数是乙数的8倍,这两个数的最小公倍数是__________。
3、a和b的最大公因数是1,它们的小最公倍数是__________。
4、三个连续自然数的和是18,这三个数的最小公倍数是___________。
5、两个质数的最小公倍数是221,这两个数的和是__________。
6、x、y是自然数,x=7y,x和y的最大公因数是__________,最小公倍数是__________。
7、一个两位数既是3的倍数,也是5的倍数,而且是偶数,这个数最小是_________,最大
是__________。
8、两个合数的最大公因数是1,最小公倍数是144,这两个数是()
和144 和16 和18
9、一块长方形塑料板,长24厘米,宽18厘米,要把它正好分成若干个小正方形,小正方形的边长最大可以是多少厘米?至少可以分成几个这样的正方形?
2、同学们去军训,按12个一组或10人一组排队,都正好,这次军训至少去了多少人?
3、18朵黄花,24朵红花,分别插在花瓶中,要使每个花瓶中黄花的朵数都相等,红花的朵数也都相等且没有剩余,最多需要几个花瓶?每个花瓶中黄花和红花各有多少朵?
4、鲜花店购进一批鲜花,每10朵扎成一束或每14朵扎成一束,都正好少2朵,这个鲜花店至少购进了多少朵鲜花?
5、一个数除以7或者除以5都余2,这个数最小是多少?
6、王叔叔家三个儿子都在城里工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次。
兄弟三人同时在4月20日回家,下一次三人同时在哪一天回家?。