弹塑性力学总复习
- 格式:pdf
- 大小:615.20 KB
- 文档页数:31
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
12345679一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)解:,满足,是应力函数。
相应的应力分量为:,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:,,; ③由本构方程和几何方程得:④积分得:⑤⑥在x=0处u=0,则由式⑤得,f 1(y)= 0; 在y=0处v=0,则由式⑥得,f 2(x)=0;因此,位移解为:附,对比另一方法:例,z 方向(垂直于板面)很长的直角六面体,上边界受均匀压力p 作用,底部放置在绝对刚性与光滑的基础上,如图所示。
不计自重,且 h >>b 。
试选取适当的应力函数解此问题,求出相应的应力分量。
解答:1、确定应力函数分析截面内力:()()()0,0,0===x q x Q x M ,故选取,022=∂∂=xy φσ 积分得:()()y f y xf 21+=φ,代入相容方程,有:()()()()0242414422444=+=∂∂+∂∂∂+∂∂y f y xf yy x x φφφ,要使对任意的 x 、y 成立,有()()()()0,04241==y f y f ,积分,得:()()232231,Ey Dy y f Cy By Ay y f +=++=,2323Ey Dy Cxy Bxy Axy ++++=φ。
2、计算应力分量()E Dy B Ay x y x 262622+++=∂∂=φσ, ,022=∂∂=xy φσC By Ay yx xy---=∂∂∂-=2322φτ3、由边界条件确定常数左右边界(2b y ±=):0=y σ;0=xy τ;0,0432==-±-B C Bb Ab 上边界(h x =):,22pb dy bbx -=⎰-σ,022=⎰-dy b b xy τ,022=⎰-dy y b b x σ2,p E O D C A -==== 4、应力解答为:0,0,==-=xy y x p τσσ10已知一半径为R =50mm ,厚度为t =3mm 的薄壁圆管,承受轴向拉伸和扭转的联合作用。
塑性力学期末复习总结塑性力学—期末复习,,第一章绪论,弹性与弹性变形,塑性与塑性变形,塑性力学的基本假设,弹性区与塑性区,塑性变形的特点,塑性力学的主要研究内容,重点:基本概念简化模型,比例极限,弹性极限,屈服极限,虎克定律,强化阶段,塑性阶段,后继屈服极限,简单拉伸实验,压缩试验,包辛格效应,静水压力试验,简化模型,(1)理想塑性材料①理想弹塑性②理想刚塑性,(2)强化材料①线性强化弹塑性②线性强化刚塑性③幂强化,,第二章应力状态理论,一点的应力状态剪应力互等定理主应力应力张量不变量八面体应力,重点:一点的应力状态、平面应力状态和空间应力状态的基本公式,主应力与主平面,斜截面上的正应力和剪应力:,主应力方程:,应力张量不变量:,由主应力方程可求得三个主应力将求得的任一个主应力代入:,方向余弦满足条件:,即,联立得到,求出主应力所在平面方位,平均应力,应力球张量——不引起塑性变形,应力偏张量——引起塑性变形,,,,应力偏张量不变量,,八面体面(或等倾面),正应力和剪应力,,,,,=,等效应力(或应力强度),,,等效剪应力(或剪应力强度),最大最小剪应力:,,斜面Ⅲ上的剪应力,莫尔应力圆,表示应力状态的Lode参数:,,应力Lode参数的物理意义:,1、与平均应力无关,2、其值确定了应力圆的三个直径之比,3、如果两个应力状态的Lode参数相等,就说明两个应力状态对应的应力圆是相似的,即偏量应力张量的形式相同,Lode参数是排除球形应力张量的影响而描绘应力状态特征的一个参数。
它可以表征偏应力张量的形式。
,例2.1已知一点的应力状态由以下一组应力分量所确定,即======1,应力单位为MPa。
试求该点的主应力值。
,解:,解得主应力为:,代入,例2.2已知结构内某点的应力张量如式,试求该点的球形应力张量、偏量应力张量、等效应力及主应力数值。
,解:,等效应力:,主应力:,也可由主应力求等效应力,,第三章应变状态理论,小变形情况下,应变分量与位移分量的关系,(几何方程/柯西几何关系),,,,张量形式,重点:应变分量、主应变及应变不变量的定义,应变张量不变量,,,平均线应变,,应变球张量及偏张量,,,如体积不变,,应变偏张量不变量,,,,还可以写成:,,,八面体面上的正应变:,,剪应变:,,,等效应变(应变强度),,等效剪应变(剪应变强度),,Γ=,最大剪应变,,表示应变状态的Lode参数,,几何意义:应变莫尔圆上Q2A与Q1A之比,应变协调方程(判断某点应变场成立),保证物体在变形后不会出现‘撕裂’,‘套叠’的现象,,第四章屈服条件和塑性本构关系,重点:屈服条件、加载规律和塑性流动法则,屈服函数,应力空间,等倾线,π平面,屈服曲面和屈服轨迹,应变空间,π平面上的点所代表的应力状态是偏张量,其球张量为零,等倾线上的点所代表的应力状态是球张量,其偏张量为零,Tresca屈服条件,认为最大剪应力达到极限值时开始屈服:,Tresca屈服条件的完整表达式,Tresca屈服条件常用在主应力大小顺序为已知的问题上,p平面上的屈服曲线(正六边形),主应力空间内的屈服条件(正六边形柱面),平面应力状态的屈服条件(s3=0),常数k值由简单拉伸实验或纯剪实验确定,ss=2ts,Mises 屈服条件,用连接p平面上的Tresca六边形的六个顶点的圆来代替原来的六边形,即:,,,常数C值由简单拉伸实验或纯剪实验确定,在主应力空间中,Mises屈服面将是圆柱面,在的平面应力情形,Mises屈服条件可写成:,两种屈服条件的关系,若规定简单拉伸时两种屈服条件重合,则Tresca六边形内接于Mises圆,且,若规定纯剪时两种屈服条件重合,则Tresca六边形外接于Mises圆,且,加载条件和加载曲面,初始屈服曲面,加载曲面(后继屈服面),强化现象,加载函数,加载准则,对强化材料,对理想塑性材料,当采用Mises屈服条件时,当采用Mises屈服条件时,注意:加载或卸载都是对一个点上的整个应力状态而言。
《弹塑性力学》复习提纲1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么?研究对象的不同:材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。
非杆状结构则在弹性力学里研究研究方法的不同:材料力学大都引用一些关于构件的形变状态或应力分布的假定,得到的解答往往是近似的,弹性力学研究杆状结构一般不必引用那些假定,得到的结果比较精确。
并可用来校核材料力学得出的近似解。
2. 弹性力学有哪些基本假设?(1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微小的3. 弹性力学有哪几组基本方程?试写出这些方程。
(1)平面问题的平衡微分方程:平面问题的几何方程:平面应力问题的物理方程:(在平面应力问题中的物理方程中将E换为,换为就得到平面应变问题的物理方程)(2)空间问题的平衡微分方程;空间问题的几何方程;空间问题的物理方程:4. 按照应力求解和按照位移求解,其求解过程有哪些差别?(1)位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,解出位移分量,然后再求形变分量和应力分量。
要使得位移分量在区域里满足微分方程,并在边界上满足位移边界条件或应力边界条件。
(2)应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和边界条件,解出应力分量,然后再求出形变分量和位移分量。
满足区域里的平衡微分方程,区域里的相容方程,在边界上的应力边界条件,其中假设只求解全部为应力边界条件的问题。
5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平面应变;逆解法与半逆解法。
位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每一点,位移函数u和v和应满足条件=,=(在上)应力边界条件:若在部分边界上给定了面力分量(s)和(s),则可以由边界上任一点微分体的平衡条件,导出应力与面力之间的关系式。
期末考试范围:1.推导公式,两类物理方程互换推导;2.平面直角坐标的逆解法,要求画出面力分布规矩;3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
4.半空间问题受法向集中力问题;5.平面问题的位移变分,指定里兹法,也给出了里兹法公式;6.1.推导公式,两类物理方程互换推导1[()]1[()]1[()]x x y z y y z x z z x y E E Eεσμσσεσμσσεσμσσ=-+=-+=-+⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=θμμεμσθμμεμσθμμεμσ211211211z z y y x x E EE若不计体力,试推到分别用应变、应力、应力函数表示的相容方程。
2.平面直角坐标的逆解法,要求画出面力分布规矩;COxybh2l 2l例:设能否作为应力函数?并分析其所能解决的问题。
223126y a y a Φ+=xF exF已知函数([)== a y3 + bx2, a、b为常数。
试分析:1.该函数能否作为应力函数使用;(7分)2.如能作为应力函数使用,在左图所示不计体力的单位厚平板上,画出上述函数能够解决的问题。
(8分)女°厂l3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
已知曲杆内外半径分别为a 、b '一端固定,另一端受集中力F 作用,试求应力分量半定解,并写出除固定端外的所有边界条件(不用计算待定常数)。
可设定应力函数吵=(A p '+�+Cp+Dp ln p }in ,p。
一一一一鲁酝Xo , ,p a,y4.半空间问题受法向集中力问题;里兹法·一--6-c,忒确化方程吁-c ,化曲E 点处的茄宁0千0:.To;t __ / __ (T。
I I今J某杆件所用材料的应力应变曲线为σT=B∈0.5,若杆件在颈缩前的工程应变为0.4,当工程应变再增加多少时,杆件方能进入颈缩状态。
研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有和联系和区别?(10) 论述薄板小挠度弯曲理论的基本假定?二、计算题1、For the following state of stress, determine the principal stresses and directions andfind the traction vector on a plane with unit normal (0,1,1)/n =311102120ij σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2、In suitable units, the stress at a particular point in a solid is found to be214140401ij σ-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。
Plot the variation of the magnitude of the traction vector n T as a function of θ.3、 利用应变协调条件检查其应变状态是否存在存在?,(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数222(),,2x y xy k x y ky kxy εεγ=+== k 为常数(2)222225ij x y xz yz z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦4、The displacements in an elastic material are given by22222(1)(1)(1),(),0224M M M l u xy v y x w EI EI EI νννν-+-=-=+-=where M ,E , I , and l are constant parameters 。
研究生《弹塑性力学》教学大纲陈明祥一、应力分析二、应力矢量与应力张量的概念, 斜面应力公式, 平衡微分方程与力边界条件;应力分量的坐标变换;主应力、应力张量不变量和最大剪切应力;Mohr应力圆;应力张量的分解、偏应力张量及其不变量;八面体上的应力和等效应力;主应力空间与(平面三、应变变形和应变的概念;应变张量和几何方程;刚体转动与转动张量;体积应变;应变张量的性质;应变率和应变增量;变形协调方程。
四、弹性本构方程应力-应变关系的一般表达;各向异性线弹性体的本构方程;各向同性线弹性体的本构方程;弹性应变能与弹性应变余能。
五、弹性力学基本方程与求解方法弹性力学的基本方程;求解方法;解的基本性质;圣维南原理;空间问题求解实例。
六、平面问题平面问题分类;平面问题的基本方程;平面问题的应力解法与实例分析;极坐标表示的基本方程;使用极坐标求解的几个问题。
七、薄板弯曲板的基本概念与薄板的基本假定;应力应变与挠度的关系;薄板弯曲微分方程;薄板横截面上的内力及内力表示的平衡微分方程;薄板的边界条件;薄板的广义力、广义变形和应变能;考虑横向剪切的Mindlin板理论。
八、温度应力问题热传导基本概念;热弹性基本方程;求解方法与举例。
九、能量原理与变分方法可能功原理;虚位移原理与最小势能原理;使用位移变分原理近似求解;虚应弹塑性力学目录力原理、最小余能原理及其近似求解;卡氏定理;有限元方法的基本概念。
九、塑性力学的基本概念塑性力学的主要内容;有关塑性本构关系的基本试验资料;应力路径与加载历史的基本概念;塑性本构关系的主要研究内容和研究方法;塑性变形的物理机制。
十、屈服条件屈服条件的概念与假设, 屈服面在主应力空间中的一般形状;Tresca屈服条件;Mises屈服条件;Tresca屈服条件和Mises屈服条件的比较及实验验证;后继屈服面与内变量;一致性条件;硬化模型。
十一、塑性本构关系塑性应变增量的概念;加卸载判别准则;Drucker公设和Ilyushin公设;加载面外凸形和正交流动法则;塑性势理论;理想塑性材料的增量本构关系;硬化材料的增量本构关系;增量本构关系的一般表达;关于增量理论的讨论;全量理论及适用范围;十二、简单弹塑性边值问题增量和全量理论的边值问题;梁的弹塑性弯曲;理想塑性材料的厚壁圆筒受内压作用。
塑性力学复习题塑性力学复习题塑性力学是力学中的一个重要分支,研究材料在超过其弹性限度时的变形和破坏行为。
它在工程领域中有着广泛的应用,特别是在金属材料的设计和加工中。
本文将通过一些典型的复习题来回顾和巩固塑性力学的知识。
1. 弹性和塑性的区别是什么?请举例说明。
弹性和塑性是材料在外力作用下的两种不同的变形行为。
弹性变形是指材料在受力后能够恢复原状的能力,而塑性变形则是指材料在受力后会发生永久性的形变。
举个例子来说明,当我们用手指轻轻地压在弹簧上时,弹簧会发生弹性变形,但当我们用更大的力量压在弹簧上时,弹簧就会发生塑性变形,无法完全恢复原状。
2. 什么是屈服点和屈服强度?屈服点是指材料在受力后开始发生塑性变形的临界点。
在应力-应变曲线上,屈服点是曲线开始出现明显的非线性变化的位置。
屈服强度是指材料在屈服点处的应力值。
它是材料能够承受的最大应力,超过这个应力值后,材料就会发生塑性变形。
3. 什么是硬化现象?如何应对材料的硬化?硬化是指材料在经历一次塑性变形后,下一次变形所需的应力会增加的现象。
这是因为材料的晶体结构在塑性变形过程中发生了改变,使得材料变得更加坚硬。
为了应对材料的硬化,可以采取以下措施:- 热处理:通过加热和冷却的方式改变材料的晶体结构,以降低硬化程度。
- 冷加工:通过冷加工的方式,如冷拔、冷轧等,可以增加材料的塑性,减少硬化现象。
- 添加合金元素:某些合金元素可以改变材料的晶体结构,降低硬化程度。
4. 什么是断裂韧性?如何评价材料的断裂韧性?断裂韧性是指材料在受到外力作用下抵抗破坏的能力。
它是材料的断裂强度和塑性变形能力的综合体现。
评价材料的断裂韧性常用的方法有:- 断口形貌观察:通过观察材料的断口形貌,可以了解材料的断裂方式和韧性。
- 断裂韧性试验:常用的试验方法有冲击试验和拉伸试验,通过测量断裂前的应力和断裂后的断面积,计算出材料的断裂韧性。
5. 什么是应力集中?如何减小应力集中的影响?应力集中是指材料中存在的一些几何形状或缺陷引起的应力集中现象。