弹塑性力学作业题
- 格式:docx
- 大小:144.55 KB
- 文档页数:4
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
中国地质大学(武汉)远程与继续教育学院弹塑性力学课程作业1 (共 4 次作业)学习层次:专升本涉及章节:第1章——第2章一、选择题(每小题有四个答案,请选择一个正确的结果。
)1.弹塑性力学的研究对象是。
A.刚体;B.可变形固体;C.一维构件;D.连续介质;2.弹塑性力学的研究对象是几何尺寸和形状。
A.受到…限制的物体;B.可能受到…限制的物体;C.不受…限制的物体;D.只能是…受限制的任何连续介质;3.弹塑性力学的研究的问题一般都是。
A.力学问题;B.工程问题;C.静定问题;D.静不定问题;4.固体力学分析研究的问题大多是静不定问题。
通常这类问题的求解的基本思路是_______。
A.进行受力分析、变形分析、材料力学性质三方面的研究;B.进行应力的研究、应变的研究、材料力学性质三方面的研究;C.进行受力的研究、变形的研究、功和能量间关系三方面的的研究;D. 进行受力的分析、运动分析或变形分析、力与运动之关系或力与变形之关系三方面的研究。
5. 弹塑性力学任务中的最主要、最基本任务是。
A. 建立求解固体的应力、应变和位移分布规律的基本方程和理论;B.给出初等理论无法求解的问题的理论和方法,以及初等理论可靠性与精确度的度量;C.确定和充分发挥一般工程结构物的承载能力,提高经济效益;D.为进一步研究工程结构物的强度、振动、稳定性和断裂理论等力学问题,奠定必要的理论基础。
6.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是。
A..连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,。
A.是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;B .应该慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;C .是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究;D .根据具体研究对象的性质,并联系求解问题的范围,慎重、客观、相对地加以分析和研究,全面考虑对所研究问题的实质有影响的因素,使问题得以解决;8.弹塑性力学分析研究的问题大多是静不定问题。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x y x yxy x yxy M Pa M Pa σσσσσατασστατα+-=+----+=++=--⨯+⨯=----+=⋅+=⋅-=-⨯⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy M Pa M Pa σσσσσατασστατα+-=++---+=++=--⨯+⨯=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz AAγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()22z z z z z z z z y z zl d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移): ()2222ll A l l W l l d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
2. 12.2 2.3本教材习题和参考答案及部分习题解答第——早计算:(1)pi iq qj jk , (2) e pqi e ijk A jk , (3) 答案(1)pi iq qj jk pk ;e ijp e kip B kiB j 。
答案(2)解:(3)证明:若(需证明)设a、e pqi 6jk A jk A pq A qp ;8P e klp B<i Blj ( ik jl ila ij a ji ,贝U e jk a jk 0。
jk) B<i B ij B ii B jj B ji B ij。
b和c是三个矢量,试证明:bbb[a,b,c]2a i a a ib a i C a1a2a3a1证: 因为ba b i b i bc b1b2b s a2ca C ib iCC C1C2C3a3所以a i a ai b ac a1a2a3a1bi det ba b i b b i C det(b1b2b3a2b2 ca C i b CCC1C2c a3b3a a ab ac a i a i ab i a i C i a1a2a3即得 b a b b b c b a i bb i b i c i b b2b3c a c b c c c a i cb i C i C i C1C2C3b2 b3C ic2a2 a3b、c和d是四个矢量,证明: bi C iC2C32.4 设a、(a b) (c d) (ac)(bd) (a d)(b c) 证明:(ab) (c d) b ib2b3C2C3[a,b,c]2。
122.5设有矢量U ue 。
原坐标系绕z 轴转动 求矢量U 在新坐标系中的分量。
答案:U 1 U 1 cos U 2 sin U 2 U 1si n U 2cosU 3 U 3。
角度,得到新坐标系,如图 2.4所示。
试中的分量T i i 、T 12、T i 3和T 33。
提示:坐标变换系数与上题相同。
2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。
(2):如以ϕ为应力函数,求出应力分量的表达式。
(3):指出在图示矩形板边界上对应着什么样的边界力。
(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷一.选择题(共10小题,每小题3分,共30分)1.力系简化时若取不同的简化中心,则( )。
(A)力系的主矢、主矩都会改变;(B)力系的主矢不会改变,主矩一般会改变;(C)力系的主矢会改变,主矩一般不改变;(D)力系的主矢、主矩都不会改变,力系简化时与简化中心无关。
2.当作用在质点系上的外力系的主矢恒为零时,则( )。
(A) 只有质点系的动量守恒; (B) 只有质点系的动量矩守恒;(C) 只有质点系的动能守恒; (D) 质点系的动量和动能均守恒。
3.关于瞬时平移时下列叙述正确的是:()(A) 速度相同,加速度不同; (B) 速度不同,加速度不同;(C) 速度不同,加速度相同; (D) 速度相同,加速度相同。
4.平面一般力系的二力矩平衡方程为是( )(A) 合力的作用线必然通过A点和B 点的连线 (B) x轴与A点和B点的连线不相互垂直;(C) x轴与A点和B点的连线相互垂直; (D) 合力与x轴相互垂直。
5.圆盘作定轴转动,若某瞬时其边缘上A、B 、C三点的速度、加速度如图所示,则的运动是不可能的()。
(A) 点A,B;(C) 点B,C;(B) 点A,C;(D) 点A,B,C。
6.刚体作平面运动,某瞬时平面图形的角速度为の,角加速度为α,则其上任意两点A、B的加速度在A、B连线上的投影()。
(A) 必相等; (B) 相差AB·w²;(C) 相差AB·α; (D) 相差(AB·w²+AB·α)。
7.在图示系统中,A点的虚位移大小δr₄与C点的虚位移大小δrc的比值δr₄:δrc=()(A)Icosβlh;(B)l/(hcos β);(C)lcos²βlh;(D)Ih/cos²β。
8.已知刚体质心C 到相互平行的z'、z轴之间的距离分别为a、b,刚体的质量为m,对 z 轴的转动惯量为J,则的计算公式为( )。
弹塑性力学练习题1、已知简单拉伸时的应力-应变曲线如图所示,(1)试导出当采用刚塑性模型时的应力-应变关系表达式(2)如采用等向强化模型,区服条件()0σψξ-=,这里内变量pp pd εξωσε==⎰。
试导出()ψξ的表达式。
2、 试导出平面应变条件的Mises 区服条件和Tresca 区服条件的具体表达式。
3、设材料的屈服条件为{}1233max ,,s s s k =,其中(1,2,3)i s i =为主偏应力。
试由简单拉伸试验确定3k 。
4、什么是Drucker 公设?试用Drucker 公设论述加载面的外凸性及正交流动法则。
5、试从弹性力学平面问题基本方程出发,推导平面直角坐标系中按应力求解的基本方程。
6、 试推导平面极坐标系中的平衡微分方程。
7、已知厚壁圆筒内径为a ,外径为b ,受均匀内压p 作用,体力不计。
(1)试导出圆筒内应力的弹性解答。
(2)若材料为服从Mises 屈服准则的理想弹塑性材料,简单拉伸屈服应力为s σ。
试导出塑性区半径ρ与内压p 之间的关系,并计算弹、塑性区的应力。
8、设某点应力张量ijσ的分量值已知,求作用在过此点平面ax by cz d ++=上的应力矢量(,,)n nx ny nz p p p p ,并求该应力矢量的法向分量n σ。
9、为了使幂强化应力-应变曲线在s εε≤时能满足虎克定律,建议采用以下应力-应变关系:()()()00s ms E B εεεσεεεε⎧≤≤⎪=⎨-≤⎪⎩ 为保证σ及d d σε在s εε=处连续,试确定B 、0ε值。
10、 设123S S S 、、为主偏应力,试证明用主偏应力表示Mises 屈服条件时,其形式为:()22212332s S S S σ++= 11、 设J 2为应力偏量的第二不变量,计算 ∂J2∂σij。
12、 函数 (x,y )=ax 3y 3+bxy 5+cx 3y 如作为应力函数,各系数之间应满足什么关系?为什么?13、 按应力求解弹性力学平面问题时,应力分量应满足的基本方程是什么?试验证下列应力分量在体力不计时是否可能发生? 23326,2,46Axy Ay Ay y Ax xy y x -==-=τσσ 其中,A 为非零常数。
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。