LM2500燃气轮机简介
- 格式:docx
- 大小:233.11 KB
- 文档页数:15
1、xxxx南方公司:【WS11】(仿乌克兰AI25),小推力不加力涡扇,推力16千牛,2002年已批量生产,用于K8/JL8、无人机。
【WS16】(引进乌克兰AI-222-25F),小推力加力涡扇,加力推力42千牛,预计2009年批量生产,用于L15/JL15系列。
【WZ8G】★(引自法国-WZ8A改),小功率涡轴,功率560千瓦,2005已年批量生产,用于Z9系列、Z11系列升级。
【WZ6】(仿法国TM-3C),中功率涡轴,功率1160千瓦,2000年批量生产,用于Z8系列。
【WZ9】★(仿加拿大普惠PT6C),中功率涡轴,功率1200~1450千瓦,2008年批量生产,用于Z10、Z15(6吨机)、Z8F系列。
【WJ6C】★,中功率涡浆,功率3600千瓦,2006年已批量生产,用于Y9(国产6桨机)系列。
【WJ9】(WZ8核心),小功率涡浆,功率550千瓦,1995年已批量生产,用于Y12系列。
【WJ5E】(东安动力-通用),中功率涡浆,功率2000千瓦,1990年已批量生产,用于Y7系列。
2、xx燃气涡轮院(预研基地):【WS500】★,小推力涡扇,推力5~10千牛,2005年已批量生产,用于无人机、巡航导弹。
【WS15】★,高推重比大推力涡扇,加力推力达180千牛,在研,用于未来四代战机。
3、xxxx航发公司:【WS9秦岭】(仿改英国斯贝202),中推力涡扇,加力推力92千牛,2002年已批量生产,用于JH7A(飞豹)系列。
-------【QC260】★(引自乌克兰DA80),大功率燃气轮机,功率25000千瓦,2007年已批量生产,用于052B/C(双发6000T)大驱系列等。
4、xxxx航发公司:【WS12泰山】★(中推核心),中推力涡扇,加力推力80千牛,2008年批量生产,用于J7、JL9和J8系列升级换代及双发型J10C。
【WS12B】(WS12加大涵道比加力改型),中推力涡扇,加力推力100千牛,预计2009年批量生产,用于JH7B(飞豹)。
燃气机和燃气轮机介绍一、燃气机1、燃气机简介燃气机是通过燃烧天然气或人工煤气产生动力做功,可用于推动汽车及轮船行走和驱动发电机发电。
其优点在于比柴油机或汽油机更加清洁、环保。
可以取代柴油机和汽油机,现广泛应用于公共交通、油田、发电等领域。
2、燃气机分类根据原料燃烧位置不同,分为燃气内燃机(俗称“内燃机”)和燃气外燃机(俗称“外燃机”)。
3、燃气内燃机燃气内燃机通常指活塞式内燃机,活塞式内燃机以往复活塞式最为普遍。
活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。
燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。
内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。
燃气内燃机的发电效率通常在30%-40%之间,比较常见的机型一般可以达到35%。
燃气内燃机最突出的优点正是发电效率比较高,其次是设备集成度高,安装快捷,对于气体中的粉尘要求不高,基本不需要水,设备的单位千瓦造价也比较低。
但是内燃机也有一些不足的地方,首先,内燃机燃烧低热值燃料时,机组出力明显下降,此外,内燃机需要频繁更换机油和火花塞,消耗材料比较大,也影响到设备的可用性和可靠性两个主要设备利用指标,对设备利用率影响比较大,有时不得不采取增加发电机组台数的办法,来消除利用率低的影响。
内燃机设备对焦化煤气中的水分子含量和硫化氢比较敏感,可能导致硫化氢和水形成硫酸腐蚀问题,需要采取一些必要措施加以克服。
燃气内燃机代表产品:GE公司的颜巴赫系列,功率输出范围为0.25至3兆瓦。
4、燃气外燃机燃气外燃机(简称外燃机)是一种外燃的闭式循环往复活塞式热力发动机,因它是在1816年为苏格兰的R.斯特林所发明,故又称斯特林发动机。
新型外燃机使用氢气作为工质(传递能量的媒介物质叫工质),在四个封闭的气缸内充有一定容积的工质。
气缸一端为热腔,另一端为冷腔。
工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀做功。
美国航空发动机的顶尖之路C-5“银河”运输机、“阿利·伯克”级驱逐舰、UH-1“休伊”直升机和M1“艾布拉姆斯”主战坦克和之间到底有什么关系?如果一定要找,那么请记住,它们之间最为重要的关系便是,都有一颗“飞翔的心”。
“阿利·伯克”使用的通用电气LM2500船用燃气轮机,先祖便是“银河”的TF39高涵道比涡扇发动机;而驱动“艾布拉姆斯”的霍尼韦尔AGT1500燃气轮机,其原型则是“休伊”的涡轴发动机T-53。
这样的例子在航空强国不胜枚举。
如果调查一下美国军用航空喷气技术在民航、车辆以及船舶制造等诸多领域的扩散效应,不难得出这样的结论——先进喷气发动机技术是构成美国航空技术优势乃至其大国地位的一块重要的基石。
这块基石是怎样修筑起来的?美国的航空喷气推进技术是怎样走到的今天?期间又有哪些值得总结和注意的经验?希望本文能够找到一些线索。
很难想象,没有先进航空发动机的美国空军会是怎样的面貌。
图为美军C-17“环球霸王”机群,该机使用的普惠F117-PW-100是普惠PW2000的军用型,PW2000最初是为波音757设计的,和罗罗RB211是竞争对手。
美利坚的喷气曙光喷气推进技术第一缕曙光初露的时候,美国并没有给予太多的重视,但也并非没有任何行动,通用电气、普惠、洛克希德和诺斯罗普公司等公司都进行过相关研究,但面对二战的紧张军需生产现状,美国政府甚至强制要求各军工企业放缓喷气推进研究,全力生产现有军备。
即便如此,美国军方仍然有人在密切关注航空喷气发动机,这就是美国陆军航空队司令亨利·阿诺德上将。
1941年初,阿诺德和部分通用电气公司负责人获悉英国正在从事喷气推进研究,而且已经开发出了惠特尔发动机,于是通过美国政府斡旋,最终从英国获得了惠特尔的技术成果,并交由通用电气涡轮增压器分部制造,以协助美国尽快开发喷气式战斗机。
与此同时,贝尔飞机公司接到政府订单,要求与通用电气制造的惠特尔发动机(GE 1-A)相匹配的喷气式飞机,即后来的XP-59。
第四章涡轮涡轮概述一:涡轮功用把来自燃烧室的高温、高压燃气中的部分热能和压力能转换成机械功,用以带动压气机、附件和外负荷。
二:按燃气流动方向分类轴流式径流式(离心式、向心式)三:涡轮工作条件高温、高转速、频繁剧烈热冲击、不均匀加热及由于转子不平衡和燃气压力、流量脉动造成的不平衡负荷的作用。
四:船舶燃气轮机涡轮船舶燃气轮机多应用轴流式涡轮。
其特点是功率大、燃气温度高、转速高、效率高。
燃气发生器涡轮(增压涡轮):用来带动压气机和附件;动力涡轮:用来带动减速器-螺旋桨或其他负荷,输出功率五:涡轮通流形式平的扩张型:等中径通流等内径通流等外径通流涡轮转子一:涡轮转子组成涡轮盘、涡轮轴、工作叶片、连接零件二:盘与轴的连接1.不可拆卸式结构:销钉连接整体结构或焊接2.可拆卸式结构:螺钉连接短螺栓连接三:盘与盘的连接盘与盘地连接也分为不可拆卸和可拆卸两种结构,如下为典型连接:不可拆卸式的径向销钉连接用长螺栓连接的可拆卸结构用短螺栓连接的可拆卸结构四:工作叶片及其与轮盘的连接1:工作叶片工作环境:离心力、气动力、振动负荷、受到燃气腐蚀、冷热疲劳第一级工作叶片工作条件最恶劣,决定燃气初温选择,直接影响燃气轮机性能和可靠性2:工作叶片组成叶身、中间叶根、榫头(有些叶尖带有叶冠)3:中间叶根作用可以减少向轮盘传热,改善榫头应力分布不均匀;可以通冷却空气,降温,减少热应力,减轻轮盘质量。
4:榫头叶片用枞树形榫头连接,承受负荷、离心力大、高温下工作。
故需满足:a.允许榫头受热后自由膨胀 b.传热性能好,叶片热量容易带走5:工作叶片的固定:涡轮静子一:涡轮静子组成涡轮外环、导向器、涡轮支撑、传力系统二:涡轮机匣1:结构特点一般采用整体式,且采用与燃机轴线垂直的分开面,将外环分成几部分也有用于纵向剖分面的分开式结构的机匣,但多用于多级涡轮的情况: 2:径向周向定位通常采用圆柱表面实施,也有用几个不等距的精密配合的销钉作为定位件,再用精配螺栓附加定位1:涡轮径向间隙定义:涡轮机匣与工作叶片叶尖之间的距离2:影响径向间隙的因素机匣受热膨胀及不均匀变形高温工作时引起的转子和机匣的蠕变转子和静由离心力和热膨胀而引起的叶片和轮盘的伸长子偏心度、轴向角偏转及椭圆和翘曲变形结构形式所带来的工作中径向间隙变化3:减小径向间隙的措施减小装配间隙采用双层机匣采用主动间隙控制技术四:涡轮导向器1:涡轮导向器组成内、外环导向器叶片2:涡轮导向器功用使燃气的部分热能转换为动能,并使燃气以一定的方向进入工作叶片3:涡轮导向器工作环境工作条件十分恶劣温度高,尤其第1级导向器导向器各零部件受热不均匀,最易烧伤。
【⾏业观察】2019年全球⼗⼤燃⽓轮机制造商导读:2019年,全球燃⽓轮机市场中:⼤型燃⽓轮机市场从剧烈下降到开始平稳,中⼩型燃⽓轮机则继续以强劲⽽稳定的速度增长,不过,在燃⽓轮机制造⼚商的排名中,前10位的燃⽓轮机制造商仍然是⼤型制造商。
相⽐于其它发电设备,在发电效率、调峰灵活性、低污染排放等⽅⾯,燃⽓轮机仍具备诸多优势,并且在储能和燃氢技术⽅⾯的应⽤探索,预计未来⼏年,燃⽓轮机仍是发电设备市场不可缺少的装备之⼀。
什么是燃⽓轮机,它如何⼯作?燃⽓轮机是⼀种内燃机,其将燃料的化学能以旋转动⼒的形式转换为机械能,这种机械能可⽤于为各种⼯业过程提供动⼒,发电是其最重要的应⽤之⼀。
燃⽓轮机的优点包括⾼可靠性,低运⾏成本和⾼功率密度,燃⽓轮机也可以使⽤清洁和可再⽣的能源运⾏,从⽽减少碳排放。
在热电联产或热电联产(CHP)过程中使⽤的燃⽓轮机通过利⽤废⽓产⽣进⼀步产⽣蒸汽来提⾼电⼚的效率,燃⽓轮机的这些好处以及更严格的碳排放标准将在未来⼏年推动对燃⽓轮机的需求。
燃⽓轮机⾏业分析各家对燃⽓轮机市场的未来变化出现分歧,德国西门⼦公司则认为燃⽓轮机市场已经达到顶峰,开始拆分该业务,计划将其独⽴上市,甚⾄表⽰愿意让出控股股东的位置。
美国GE公司则表⽰继续看好,并且认为它将与GE公司的航空发动机和船⽤燃⽓轮机形成协同效益。
燃⽓轮机技术发展最重要的⽅向仍然是效率,这是燃⽓轮机制造商的主要投资领域。
例如,GE公司2019年推出的最新7HA.03机型和西门⼦的HL级重型燃⽓轮机在发电效率上都取得了新突破,其联合循环发电效率正朝着突破65%效率的⽅向逼近。
因此,燃⽓轮机制造商越来越关注提供技术先进和强⼤的产品,这将有助于全球燃⽓轮机市场在2020年复合年增长率可能超过3%。
全球⼗⼤燃⽓轮机制造商及其产品(注排名不分先后)GE发电成⽴于 1892年总部:美国纽约斯克内克塔迪⽹站:GE发电是美国GE公司旗下的⼦公司,其可以提供⾮常⼴泛的发电产品,包括燃⽓轮机,汽轮机、发电机、测量和控制系统、核反应堆、⽯油⽣产设备,太阳能电池板,热回收蒸汽发⽣器(HRSG)和风⼒涡轮机。
国产QC-185燃⽓轮机与美国⼀款机器很相似研制破费精⼒⽬前世界上只有少数⼏个发达国家具备独⽴研制燃⽓轮机,国产QC-185燃⽓轮机是沈阳黎明发动机公司基于国产“太⾏”涡轮风扇发动机研制的⼀款航改燃⽓轮机,采⽤三轴、后输出、轴流式结构,额定功率17.78MW,最⼤输出功率18.5MW,热效率37.2%。
该型燃⽓轮机热效率及可靠性⾼、灵活性强,可⼴泛应⽤于常规发电、电⼒调峰、管道增压及其它机械驱动领域。
国产QC-185型燃⽓轮机不妨对⽐⼀下QC-185和美国通⽤电⽓公司(GE)于60年代研制的LM-2500燃⽓轮机基本型的主要技术参数:机型QC-185LM-2500基本型额定功率(kw)1778023300热效率37.2%36.6%空⽓流量(kg/s)58.669.5压⽐27.719.3不难看出,从各⽅⾯来看,QC-185都和LM-2500很相似。
LM-2500系列燃⽓轮机是通⽤动⼒公司于20世纪60年代以TF39涡轮风扇发动机为基础研制的⼀款航改式燃⽓轮机。
由于该型燃⽓轮机性能优秀,所以美国与很多其他国家海军均采购LM2500燃⽓轮机作为作战舰艇的动⼒装置。
从20世纪70年代初到现在,LM2500系列燃⽓轮机已经销售了2000多台(包括⼯业和舰船),占据了世界舰船燃⽓轮机的绝⼤部分份额,堪称⼀代名机。
要说LM-2500,得从它的原型TF39涡轮风扇发动机谈起。
TF39是通⽤电⽓公司为满⾜远程重型运输机C-5的要求⽽研制的⼀种⼤涵道⽐涡轮风扇发动机。
1959年,美国空军提出“轻重量燃⽓发⽣器”计划,后改称“先进涡轮燃⽓发⽣器计划”,第⼀次明确提出以核⼼机研制为牵引的航空发动机研制⽅针。
1963年,在“先进涡轮燃⽓发⽣器计划”的⽀持下,通⽤电⽓公司开发出第⼀台“先进技术核⼼机”——GE1。
在GE1的基础上,⼜衍⽣出了三型验证机——GE1/6、GE9和GE1/10。
1965年4⽉,通⽤电⽓公司以GE1/6验证机赢得了C-5“银河”战略运输机的动⼒装置竞标。
第32卷㊀第2期2019年6月«燃㊀气㊀轮㊀机㊀技㊀术»GASTURBINETECHNOLOGYVol 32㊀No 2Jun.ꎬ2019收稿日期:2018 ̄06 ̄21㊀改稿日期:2018 ̄08 ̄02作者简介:刘培军(1974 )ꎬ男ꎬ湖北洪湖人ꎬ高级工程师ꎬ硕士ꎬ现主要从事燃气轮机研制和维修工作ꎬE ̄mail:liupeijun@yeah.netꎮ我国航改型燃气轮机发展现状及建议刘培军1ꎬ李辉全2ꎬ张凤梅2ꎬ谷思宇3ꎬ李顺勇4(1.中国科学院工程热物理研究所ꎬ北京㊀100190ꎻ2.青岛中科国晟动力科技有限公司ꎬ山东㊀青岛㊀266400ꎻ3.中国石油管道有限公司ꎬ河北㊀廊坊㊀065000ꎻ4.中国石油西南管道公司ꎬ昆明㊀650217)摘㊀要:针对我国航改型燃气轮机的发展问题ꎬ首先从航改型燃气轮机和重型燃气轮机两个方面介绍了我国燃气轮机发展现状ꎬ分析了我国燃气轮机发展存在的问题ꎬ借鉴国外燃气轮机发展的经验ꎬ对我国发展航改型燃气轮机提出了建议:1)明确发展方向㊁优选攻关机型ꎻ2)军民融合㊁综合利用国内现有资源ꎮ关㊀键㊀词:航改型燃气轮机ꎻ发展ꎻ建议ꎻ军民融合中图分类号:TK472㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄2889(2019)02 ̄0008 ̄06㊀㊀燃气轮机被誉为 制造业皇冠上的明珠 ꎬ是各种类型航空喷气发动机及其衍生燃气轮机㊁重型(发电)燃气轮机㊁车辆与工业驱动燃气轮机㊁舰船动力燃气轮机及各种微型燃气轮机的总称[1]ꎮ燃气轮机与航空发动机在技术上一脉相承ꎬ轻型燃气轮机大部分由航空发动机改型研制ꎬ重型燃气轮机移植航空发动机技术研制[2]ꎬ航改型燃气轮机与原型航空发动机零件90%以上是相同的ꎮ航改型燃气轮机主要应用于管线动力㊁循环发电和舰船等ꎬ目前中国石油管道已经安装的燃驱机组主要为德国西门子公司(SIEMENS)生产的RB211(原罗尔斯 罗伊斯公司生产ꎬ2014年德国西门子公司收购了其航改型燃气轮机和压缩机业务)和通用电气公司(GE)生产的LM2500+SAC两型航改型燃气轮机ꎮ在国家发改委发布的天然气十三五规划中ꎬ我国的预计目标为到2020年ꎬ天然气占一次能源消费量的比例由2015年的5.9%ꎬ提高至8.3%~10.0%ꎬ这其中的需求增量主要来自大气污染治理重点地区的气化工程㊁天然气发电及分布式能源工程㊁交通领域气化工程和节约替代工程等四大利用工程[3]ꎮ初步估计ꎬ2020年天然气发电装机将达到1.1亿kW以上ꎮ预计到2020年ꎬ我国将在规模以上城市进行天然气分布式能源的推广与普及ꎬ力争总装机规模达到5ˑ104MW[4]ꎮ由于中小功率的航改型燃气轮机在启停速度㊁单循环热效率㊁安装等方面都具有非常显著的优势ꎬ因此分布式能源主要采用中小功率的航改型燃气轮机[5]ꎮ未来十年ꎬ仅能源电力行业ꎬ燃气轮机的国际需求就高达5000亿美元ꎬ如果考虑船舶和制造业等领域的需求ꎬ整个市场规模有望突破万亿美元大关ꎮ1㊀我国燃气轮机发展现状1.1㊀重型燃气轮机二十一世纪初ꎬ我国以 打捆招标㊁市场换技术 的方式ꎬ先后三次共引进了F级重型燃气轮机与E级重型燃气轮机50多套ꎬ引进公司主要为美国通用电气公司(GE)㊁日本三菱公司(MHI)和德国西门子公司(SIEMENS)ꎬ由哈汽 美国通用电气㊁东汽 日本三菱㊁上汽 德国西门子㊁南汽 美国通用电气四个联合体进行国产化制造ꎬ国产化机型为SGT5-2000E/4000㊁M701F和V94.3A等[6-8]ꎬ由于国内主机厂商掌握的技术主要是燃气轮机分解装第2期我国航改型燃气轮机发展现状及建议配㊁冷端零件代加工㊁部分热端部件的代加工和外围的辅助系统配套ꎬ引进的技术中不包括燃气轮机的整机设计技术㊁热端关键件制造技术和控制系统技术ꎬ所以国内重型燃气轮机市场被国外企业垄断的局面没有任何改变ꎮ重型燃气轮机的分解和装配技术含量不高ꎬ在运行现场就能操作ꎻ冷端零件㊁部分热端零件的代加工和外围辅助系统配套也是依据外商的图纸进行的ꎬ不掌握知识产权ꎻ热端关键部件修理方面ꎬ国内目前有三家合资公司ꎬ分别是:通用电气 哈动力 南汽轮能源服务(秦皇岛)有限公司㊁华瑞(江苏)燃机服务有限公司和三菱重工东方燃气轮机(广州)有限公司ꎬ基本实现了重型燃气轮机热端关键零件修理本地化ꎬ但维修利润仍然主要掌握在外商手中ꎮ2014年ꎬ上海电气公司收购了意大利安萨尔多公司40%的股份ꎬ成立了上海电气燃气轮机有限公司(SGC)和上海安萨尔多燃气轮机科技有限公司(AGT)两家合资公司ꎬ引进了重型燃气轮机的设计研发㊁制造和服务技术ꎬ为重型燃气轮机全面国产化创造了条件ꎬ下一步的关键是上海电气的技术人员能否全面消化吸收燃气轮机的设计技术㊁热端关键零部件的制造技术和控制技术ꎬ并在此基础上进行创新ꎮ上海电气公司希望用5~10年的时间ꎬ真正掌握重型燃气轮机的设计技术㊁热端关键部件制造技术和控制技术ꎬ具备对现有机型进行优化㊁改进㊁升级和自主开发新型燃气轮机的能力ꎻ掌握重型燃气轮机的服务技术ꎬ具备为用户提供个性化定制服务的能力ꎻ具备为用户提供燃气蒸汽联合循环整体解决方案的能力ꎮ1.2㊀航改型燃气轮机我国航改型燃气轮机的发展起步于20世纪50年代ꎬ主要以前苏联的技术为基础进行仿制㊁测绘㊁研发㊁设计和实验ꎮ我国借用前苏联的技术仿制生产过WP5-WP8ꎬ在此基础上自主设计过WP13A和WS13ꎬ1976年花费5亿英镑购买了英国罗尔斯 罗伊斯公司(RR)的SPEYMK202全套技术ꎬ在消化吸收的基础上研制了WP14和WS9ꎬ借鉴俄罗斯的AL31F和SNECMA公司的CFM56发动机的技术研制了WS10和WS20ꎬ借鉴俄罗斯的技术目前正在研制的有WS15和WS18Aꎮ这些航空发动机全部用于军用ꎬ但我国尚不能批量制造性能稳定的用于第四代和第五代战斗机的发动机ꎬ航空发动机产业与欧美相比仍有较大差距ꎮ目前形成批量生产的只有1993年从乌克兰引进的舰用燃气轮机GT25000ꎬ1998年开始以QC280型号进行国产化ꎬ在2003年装备052B 武汉 驱逐舰试用ꎬ目前QC280已交付70多台ꎬ返厂修理周期为5000hꎬ而欧美同功率级别的燃气轮机返厂维修周期达到25000hꎬ两者差距较大ꎬ该型燃气轮机的稳定性也远不如欧美的产品ꎮ2009年4月ꎬ国家能源局在沈阳召开天然气长输管道关键设备国产化工作会议ꎬ确定开展以西气东输二线工程建设为依托的燃驱压缩机组等天然气长输管道站场关键设备研制工作ꎮ对舰用GT25000的燃烧室㊁燃料喷嘴等进行设计改进ꎬ适用于天然气燃料ꎬ与国产离心压缩机及辅助系统配套使用[9]ꎬ2014年9月通过国家能源局组织的新产品专家鉴定[10]ꎬ该机组目前已安装于烟墩压气站和衢州压气站ꎬ正在开展工业性试验ꎮ前期出现了一台轴流压气机叶片断裂导致压气机全部损坏ꎬ所以还需要花大力气研究GT25000设计存在的缺陷ꎬ因为当年乌克兰转让该燃气轮机的全套制造技术时ꎬ只生产了7台ꎬ并没有大规模的工业应用ꎬ还需要相关单位组织技术人员不断掌握外商的设计思想ꎬ针对工业试验出现的问题不断进行改进ꎬ真正做到不仅知其然而且知其所以然ꎬ掌握燃气轮机的设计技术ꎮ航改型燃气轮机国内主要用于长输天然气管道驱动ꎬ中国石油是LM2500和RB211两个型号航改型燃气轮机的最大用户ꎬ迫于市场压力ꎬGE公司和RR公司分别转让了两型燃气轮机的大修技术ꎬ包括燃气轮机的完全分解㊁装配和试车技术ꎬ零件的清洗㊁故检和除五大关键件(两级涡轮叶片㊁两级涡轮导向器叶片㊁燃烧室)以外的零件的修理技术ꎮ管道压缩机组维检修中心[11]是中国石油下属单位ꎬ从事航改型GELM2500+SAC和RRRB211-24G两型30MW级燃气发生器大中修理㊁管道压缩机组远程监测与诊断服务㊁管道压缩机组运维技术服务和压缩机组运维人才培养任务ꎬ目前已经建立了两条修理生产线ꎬ培养了一个燃气轮机修理专业团队ꎮ西气东输各个地区公司积累了丰富的航改型燃气轮机的运行维护经验ꎬ经历了较多的故障排查过程ꎬ形成了自主的排故经验ꎬ基本摆脱了依靠外商现场服务的局面ꎮ9燃气轮机技术第32卷㊀2㊀航改型燃气轮机发展存在的问题2.1㊀缺少核心技术燃气轮机的设计技术和试验技术不可能从国外企业引进ꎬ必须依靠我们自主研发ꎮ同时ꎬ燃气轮机不完全是设计㊁计算出来的ꎬ更为重要的是试验环节ꎬ主要包括涡轮㊁燃烧室㊁压气机等部件的性能试验以及整机的性能试验ꎮ这些试验环节不仅需要花费大量的资金ꎬ而且需要花费很长的周期ꎬ我国由于没有长时间的试验数据积累ꎬ基础技术薄弱制约了中国燃气轮机的快速发展[12]ꎮ运行温度㊁运行压力㊁过载等问题一直制约着燃气轮机设计研发前进的步伐ꎬ解决这些问题的途径为ꎬ选用最先进的材料ꎬ采用最为适当的加工工艺ꎬ科学合理的设计与匹配以及正确的使用维护ꎮ近几年我国在材料和零件制造方面取得了一些进步ꎬ但在部件设计㊁系统集成和匹配㊁如何提高性能和可靠性方面仍然存在问题ꎮ随着燃气轮机燃气初温的提升ꎬ燃烧室的结构和材料以及排放㊁热声震荡㊁回火等在较低温度下没有暴露出来的这一系列问题都需要进行改进ꎬ因此ꎬ完善试验能力非常重要ꎮ要支持企业开展各个部件㊁单元体和整机试验ꎬ要反复试验㊁积累数据和经验㊁不断改进和完善设计ꎬ这需要大量的资金投入和长时间的试验ꎮ一般设计一款成熟的航空发动机大概需要20~30年ꎬ投入资金大概为数十亿美元ꎮ例如美国的 综合高性能涡轮发动机技术计划 (IHPTET计划)ꎬ长达16年ꎬ总投资为45亿美元ꎮ2.2㊀研发力量分散ꎬ且没有与实践结合燃气轮机产业涵盖多个方面的专业领域ꎬ包括研发设计能力ꎬ金属材料制造加工能力ꎬ装配能力ꎬ试验能力等ꎬ需要不同专业领域人才的配合ꎬ以此形成从设备制造㊁材料制造到系统集成的整套产业链ꎮ这其中的设计㊁研发㊁制造㊁试验等各环节须整合国内各专业领域资源共同攻克ꎬ才能形成具有我国自主知识产权的燃气轮机ꎮ我国在2011年确定了燃气轮机和航空发动机两机专项ꎬ国内的许多企业㊁高校与科研院所(包括清华大学㊁上海交通大学㊁上海电气集团㊁东方电气集团等)成立了专门的燃气轮机研究院ꎬ其他科研院校也都相继成立了与燃气轮机研究以及发展密切相关的技术团队ꎮ但是截止到目前ꎬ进行燃气轮机研发的科研机构㊁高等院校㊁制造厂商都是分散着去努力ꎮ这些科研机构和企业分属于不同的行业ꎬ目前并没有具体措施将其进行整合ꎬ直接影响了 两机专项 中燃气轮机方面的实质性推进进程ꎬ这是目前燃气轮机产业发展需要改进的方面ꎮ此外ꎬ一些高校和科研院所开展了燃气轮机材料方面的课题研究ꎬ其研究成果在项目结题之后便就此搁置ꎬ并未将其应用于实际生产中ꎬ也很难找到相应的研发型号去实践ꎮ我国的燃气轮机主机厂商也处于竞争状态ꎬ厂商之间没有联合合作ꎬ这使得原先就比较薄弱的研发力量更加分散ꎬ也造成了许多重复性工作ꎬ这是目前行业体制上亟待解决的问题ꎮ现阶段ꎬ高等科研院校和科研院所必须与生产企业紧密结合联系才能形成合力ꎬ企业生产实践过程中的很多难题应有组织地分解到相关的研究机构和高等院校中ꎬ与此同时高等科研院所也应该主动深入企业ꎬ从企业实践生产所遇到的问题中提炼课题ꎬ并将科研课题成果转化为实际生产力ꎬ才能在整机设计上有较大的改进ꎮ我国 两机专项 的发起人师昌绪院士在研发九孔涡轮叶片的征程中ꎬ也是在贵州黎阳工厂长达一年多时间ꎬ与工厂技术人员和工人探讨每一项工艺和工序的改进ꎬ在实践中不断总结经验ꎬ最终成功研发制造出我国具有自主知识产权的九孔涡轮叶片ꎮ目前我国的各个科研院所与工厂是脱节的ꎬ科研人员没有与工厂技术人员和工人形成联动ꎬ理论和实践是脱节的ꎬ长期下去可能阻碍燃气轮机行业的发展ꎬ只有将这些研发力量整合起来ꎬ并且与工厂紧密结合形成推动行业前进的合力ꎬ才能推动燃气轮机行业健康发展ꎮ2.3㊀攻关机型技术落后我国目前所发展的大部分机型是借用俄罗斯的技术ꎬ由于设计思路的不同ꎬ俄罗斯的发动机的使用寿命明显要低于欧美的发动机ꎬ我国仿制或研制的发动机又略低于俄罗斯发动机的使用寿命ꎮ欧美的发动机中只有SPEYMK202是完整转让了技术ꎬ但它是RR公司二十世纪七十年代淘汰的产品ꎬ目前我国生产的WS9的使用寿命要略低于RR公司当时的水平ꎬWS10结合了俄罗斯和欧美的技术ꎬ但是目前发动机批量生产后质量还处于不稳定状态ꎬ还需要在使用的过程中总结经验ꎬ不断改进设计ꎬ确保WS10能成为我国一款成熟的航空发动机ꎮ彻底改变我国军用航空发动机长期依赖采购俄罗斯发动机的历史ꎮ在民用航空发动机ꎬ我国目前还没有一款自己01第2期我国航改型燃气轮机发展现状及建议生产的定型发动机ꎬ中国商发2008年成立ꎬ目前攻关的机型主要有CJ1000和CJ2000ꎬ选择欧美的发动机为基础的技术方向上没有问题ꎬ需要长时间的试验才能不断完善设计ꎮ燃气轮机目前只是全部引进了乌克兰的GT25000的制造技术ꎬ并没有走完自主设计的全过程ꎬ加上这款机器在转让时只生产了7台ꎬ没有工业应用的长期积累ꎬ另外该款机器的效率和可靠性都较欧美的燃气轮机有很大的差距ꎬ所以前期选择的攻关机型技术落后也是制约我国燃气轮机快速健康发展的原因之一ꎮ3㊀国外发展燃气轮机的先进经验轻型燃气轮机通过航空改型发展的途径进行研发设计是一种最快捷㊁最经济㊁最可靠的发展途径ꎮ以燃气轮机为动力的舰船中有接近95%的燃气轮机是航改型燃气轮机ꎮ如美国通用电气公司(GE)的LM2500燃气轮机㊁英国罗尔斯 罗伊斯公司(RR)的WR-21间冷回热燃气轮机㊁MT30燃气轮机等ꎬ均由航空发动机改型发展而来ꎮ由于燃气轮机和航空发动机大部分的部件结构㊁整机系统㊁材料㊁装配工艺以及设计㊁制造㊁服务等体系可共享ꎬ所以航改型燃气轮机具有基础好㊁风险低㊁周期短和技术升级快等优势ꎮ这也是舰船用燃气轮机采用航空发动机改型的原因ꎮ美国通用电气公司(GE)在用于B-747/767和A310/330飞机的CF6-80C2发动机基础上ꎬ改型发展了LM6000轻型燃气轮机㊁LMS100间冷循环燃气轮机以及MS9001G㊁MS9001H重型燃气轮机ꎬ充分体现出航改型燃气轮机的 一机为本㊁满足多用㊁缩短周期㊁节约成本㊁衍生多型㊁形成谱系 的特点ꎬ这使得航空发动机具有了更长久的生命力ꎬ形成了更新换代的良好发展态势ꎬ也保证了燃气轮机的可靠性㊁先进性ꎬ而且显著缩短了燃气轮机的研制周期ꎬ节约了设计㊁研发㊁试验以及制造成本ꎮ目前国际上主要的30MW级的航改型燃气轮机见表1ꎬ其中LM2500和RB211比其他型号燃气轮机具有明显的优势ꎬ不仅出力和效率较高ꎬ同时还具有高稳定性和可靠性ꎮ表1㊀国际上主要的30MW级的燃气轮机型号生产厂家增压比压气机级数输出功率/MW热效率/%空气流量/(kg s-1)排气温度/ħ销售业绩/台RB211-24GSiemens21.07+629.538.094.5491>600LM2500+SAC美国GE23.01730.739.791.2497>2000GT25000乌克兰21.89+926.736.589.8465>100FT8美国PW20.48+726.337.087.1450>400GTU-25P俄罗斯28.56+1125.039.585.0451>200㊀㊀LM2500燃气轮机是美国通用电气公司(GE)研制的一型航改燃气轮机ꎬ由航空涡轮风扇发动机TF39(军用型)及CF6-6(民用型)改制而成ꎮ自1970年装备美国海军后ꎬ目前已有超过700台LM2500燃气轮机应用于美国海军的170余艘各类舰船中ꎬ而在全世界范围内ꎬ被用于30多个国家海军的推进系统ꎬ舰船和工业应用超过2400台ꎮ在工业中ꎬLM2500系列机组总运行时间已超过4000万hꎻ在舰船中ꎬLM2500系列燃气轮机机组总运行时间已超过5000万hꎬ由于该系列机组的高性能㊁高可靠性和高利用率ꎬ使得其他任何一型燃气轮机都无法达到并超越LM2500系列ꎮ由于设计研发和制造燃气轮机的难度较大ꎬ目前的研究趋势为在已研制成功的燃气轮机的基础上进行升级改进ꎬ提高其性能ꎬ目前的LM2500系列就是这一趋势的典型案例ꎮLM2500燃气轮机的功率为25.1MWꎬ热效率达37.5%ꎬ以LM2500燃气轮机为基础ꎬ逐步发展出了LM2500+和LM2500+G4燃气轮机ꎮLM25000+燃气轮机的功率为30.2MWꎬ热效率达38.9%ꎻLM2500+G4燃气轮机功率为35.3MWꎬ热效率达39.1%ꎬ燃气轮机的功率和热效率都得到了不断地提高ꎮRB211系列发动机是由英国罗尔斯 罗伊斯公司(RR)投入巨额资金研制的发动机ꎬ但这种发动机的研制进程并不顺利ꎬ并导致罗尔斯 罗伊斯公司破产被收为国有ꎬ到1987年ꎬ罗尔斯 罗伊斯公司重新归为私有ꎮRB211发动机设计中体现了 三高 设计思想ꎬ即高涵道比㊁高增压比和高涡轮前温度ꎬ较第一代涡扇发动机(斯贝㊁JT3D)推力大增㊁耗油率大幅度降低ꎮRB211系列发动机从研制至今ꎬ已经推出了多种型号ꎮ1972年4月ꎬRB211-22发动机装备洛克希德11燃气轮机技术第32卷㊀L-1011 三星 客机ꎬ正式投入运营ꎮ经过重新设计风扇和中压压气机的RB211-22发动机ꎬ形成了RB211-524系列变推力发动机ꎮ其中ꎬRB211-524B㊁RB211-524C㊁RB211-524D三款机型主要装备洛克希德L-1011㊁波音747经典型飞机ꎻ推力更大的RB211-524G㊁RB211-524H两款机型主要装备波音747-400飞机和波音767飞机ꎮ目前在役的RB211-52发动机约有480台ꎬ其中包括440台RB211-524G/H及其升级型RB211-524GT/HTꎮ以此为原型机的RB211-24G燃气轮机全球销量也超过600台ꎮ所以以RB211为原型的系列发动机不仅衍生了多款成熟的航空发动机ꎬ也衍生出多款成熟的航改型燃气轮机ꎬ极大节约了研发经费和缩短了研制周期ꎬ让企业的最初研发技术焕发出了强大的生命力ꎮ目前ꎬSiemens公司正在推广的工业燃气轮机还有RB211-Gz和RB211-GT30等ꎮ4㊀对我国航改型燃气轮机发展的建议燃气轮机作为高科技的载体ꎬ国家高度重视行业发展ꎬ在2016年的全国两会期间ꎬ发改委公布 十三五 规划纲要ꎬ提出的100个重大项目中ꎬ航空发动机与燃气轮机项目居于首位ꎮ2016年ꎬ在国家发展改革委㊁工业和信息化部㊁国家能源局共同组织编制的«中国制造2025-能源装备实施方案»中对燃气轮机的发展进行了详细规划ꎮ2016年8月28日ꎬ中国航空发动机集团在北京挂牌成立ꎬ将整合全国的航空发动机研发力量ꎬ在发动机设计㊁整机实验验证㊁关键零件的制造和修理等核心技术上进行科研攻关ꎮ因此ꎬ在航空发动机㊁航改型燃气轮机的研发制造方面ꎬ建议以下两点:4.1㊀明确发展方向ꎬ优选攻关机型航改型燃气轮机可以最大程度的继承航空发动机的资源ꎬ具有节约资金成本㊁缩短研发周期㊁降低风险等诸多优势ꎬ是燃气轮机发展的一个最重要方向ꎮ在已研制成功的燃气轮机的基础之上ꎬ通过不断地升级改进ꎬ逐步改型派生出一系列的燃气轮机ꎬ这样不仅赋予了原型燃气轮机强大的生命力ꎬ而且也形成了更新换代的良性发展态势ꎬ同时也保证了后续燃气轮机研制试验的稳定可靠性㊁低风险㊁低成本㊁短周期ꎮ由于俄罗斯的发动机在使用寿命和稳定性方面要明显低于欧美发动机ꎬ从转为民用的航改型燃气轮机着手ꎬ借鉴欧美的先进发动机技术是更好的发展方向ꎮ国外企业升级燃气轮机的基本策略是保留并利用原型机的先进设计㊁结构㊁高性能的材料和涂层ꎬ在原型机的可靠性和利用率的基础之上ꎬ采用十分保守㊁很低风险的设计途径ꎬ以此来升级改进㊁加大功率ꎮ我们可以借鉴其先进经验ꎬ选择现有先进机型来攻关ꎬ并在该机型的基础上发展我国具有自主知识产权的航空发动机与航改型燃气轮机ꎮ4.2㊀军民融合ꎬ综合利用国内现有资源在2015年3月12日举行的中国十二届全国人大三次会议解放军代表团全体会议上ꎬ我国第一次明确提出: 把军民融合发展上升为国家战略 ꎮ 十三五 规划明确提出ꎬ 实施军民融合发展战略ꎬ形成全要素㊁多领域㊁高效益的军民深度融合发展格局 ꎮ在民用领域像燃气轮机等国产高端装备的发展一直面临着工业试运行机会少㊁市场推广难的困境ꎬ严重制约了其发展ꎬ燃气轮机在民用领域的应用及市场推广作为国家战略予以支持ꎬ以真正实现其军民融合发展ꎬ是兴国之举㊁强军之策ꎮ我国从事航空发动机和燃气轮机的研发团队可以充分利用中石油的平台以及全国各地科研院所以及厂家的现有资源ꎬ深入消化航空发动机和燃气轮机的的设计思想ꎬ思考已有的设计改型文件ꎬ建立压气机㊁燃烧室和涡轮的试验台ꎬ通过实验积累数据ꎬ利用试车台的试验数据不断摸索不同的设计改动对燃气轮机性能和可靠性的影响ꎬ利用燃气轮机站场应用数据对设计改进进行验证ꎬ根据验证结果再去总结设计经验ꎬ争取做到不仅知其然而且知其所以然ꎬ尽快研制出自主知识产权的航改型燃气轮机ꎬ大幅度缩短母型机的研制时间ꎬ然后在此基础上缩小㊁放大㊁增加燃气初温㊁改善冷却效果㊁增加涂层耐高温程度ꎬ设计出涵盖10~50MW不同功率等级的燃气轮机ꎮ5㊀结语目前ꎬ我国航改型燃气轮机产业与欧美相比仍有较大差距ꎮ现阶段燃气轮机的设计技术和试验技术不可能从国外企业引进ꎬ必须依靠我们自主研发ꎮ我国核心技术缺乏ꎬ相关技术研发力量分散ꎬ且没有与实践结合ꎬ同时攻关机型技术落后等问题制约着我国燃气轮机产业的发展ꎮ针对以上问题文中对我国发展航改型燃气轮机提出了建议:1)明确发展方向㊁优选攻关机型ꎬ2)军民融合㊁综合利用国内现有资源ꎮ21第2期我国航改型燃气轮机发展现状及建议参考文献:[1]蒋洪德ꎬ任静ꎬ李雪英.重型燃气轮机现状与发展趋势[J].中国电机工程学报ꎬ2014ꎬ29(34):5096 ̄5102.[2]李孝堂.加快发展保障能源安全的载体装备 研制自主知识产权燃气轮机的战略意义[J].开放导报ꎬ2017ꎬ10(5):29 ̄33. [3]王震㊁薛庆.充分发挥天然气在我国现代能源体系构建中的主力作用 对«天然气发展 十三五"规划»的解读.天然气工业ꎬ2017ꎬ37(3)::1 ̄8.[4]景春梅.中国能源环境政策最新进展[J].国际石油经济ꎬ2013(4):65 ̄67.[5]秦渊ꎬ陈昕ꎬ王华超.分布式能源站燃气轮机的选择[J].燃气轮机技术ꎬ2013ꎬ26(2):34 ̄38.[6]张岳飞ꎬ王伟莉.SGT5 ̄2000E/4000F燃气轮机国产化发展现状[J].热力透平ꎬ2014ꎬ43(3):231 ̄233.[7]马少林ꎬ王为民.M701F重型燃气轮机国产化研制[J].电力设备ꎬ2006ꎬ7(10):17 ̄20.[8]陈富新.V94.3A燃气轮机国产化制造工艺分析与探讨[J].热力透平ꎬ2005ꎬ34(1):48 ̄54.[9]黄泽俊ꎬ高顺华ꎬ王世君.我国天然气管道核心装备国产化进程及应用展望[J].天然气工业ꎬ2014ꎬ34(7):1 ̄6.[10]谭东杰ꎬ李柏松ꎬ杨晓峥ꎬ等.中国石油油气管道设备国产化现状和展望[J].油气储运ꎬ2015ꎬ34(9):913 ̄918.[11]刘培军ꎬ谷思宇ꎬ常维纯ꎬ等.压缩机组维检修中心可持续发展的若干问题探讨[J].油气储运ꎬ2017(1):120 ̄125.[12]李孝堂.燃气轮机的发展及中国的困局[J].航空发动机ꎬ2011ꎬ37(3):5 ̄11.CurrentStatusandSuggestionsofChina sAeroDerivativeGasTurbineDevelopmentLiuPeijun1ꎬLiHuiquan2ꎬZhangFengmei2ꎬGuSiyu3ꎬLiShunyong4(1.InstituteofEngineeringThermophysicsꎬChineseAcademyofSciencesꎬBeijing100190ꎬChinaꎻ2.TsingtaoCASGuoShengPowerTechnologyCo.ꎬLtd.ꎬShandongQingdao266400ꎬChinaꎻ3.ChinaPetroleumPipelineEngineeringCo.ꎬLtd.ꎬHebeiLangfang065000ꎬChinaꎻ4.ChinaPetroleumSouthwestPipelineCo.ꎬLtd.ꎬKunming650217ꎬChina)Abstract:InviewofthedevelopmentofAeroDerivativeGasTurbineinChinaꎬthepresentsituationofgasturbinedevelopmentinChinaisintroducedfromtheaspectsofaeroderivativegasturbineandheavy ̄dutygasturbineꎬandtheproblemsexistinginthedevelopmentofChina'sgasturbineareanalyzed.Basedontheexperienceofthedevelopmentofgasturbineabroadꎬsomesuggestionsareputforwardforthedevelopmentofaeroderivativegasturbineinourcountry:Firstꎬtomakeclearthedevelopingdirectionꎬtooptimizethekeytypeofgasturbine.SecondꎬtointegratethemilitaryandcivilianꎬandtomakecomprehensiveuseoftheexistingresourcesinChina.Keywords:aeroderivativegasturbineꎻdevelopmentꎻsuggestionsꎻcivil ̄militaryintegration31。
我国燃气轮机的发展历程2006年底服役的115号和116号051C型防空驱逐舰加入北海舰队服役。
该级军舰留给世人深刻印象的不仅是基于俄罗斯S-300F(SA-N-6)导弹的区域防空系统,还有就是该级军舰作为21世纪唯一使用蒸汽动力的新一代主力战舰而格外引人注目。
可以说,基于167"深圳"号改型而来的051C型导弹驱逐舰正是人民海军发展史的缩影,在它身上可以看到我国舰船用燃气轮机的坎坷发展之路。
我国舰船用燃气轮机研发的起步并不算晚。
据我国燃气轮机专家、中国工程院闻雪友院士介绍,国内有关方面根据《国防科学技术十年规划》,在1958年即着手研发计划的具体组织实施。
当时决定成立南、北方两个联合设计组,先开展大、中、小三型燃气轮机的可行性论证和方案设计。
1960年初,在对方案设计审查的基础上,确定重点进行4410千瓦舰船用燃气轮机的研制工作。
为加强舰船用燃气轮机的设计、研制工作,决定成立专业研究所。
与此同时,在1959年底,根据中苏双方的协定,苏联将其研制的第一款舰船用燃气轮机M-1的图纸运抵我国。
M-1曾装于苏联183K型鱼雷快艇,功率为2940千瓦,翻修寿命100小时,在苏联已被淘汰。
可见,国内燃气轮机产业的开局、布局是不错的,一开始就是自行设计和仿制两条腿走路。
在当时对舰船用燃气轮机知之甚少,工艺水平也很低的状况下,从M-1图纸到达,经翻译、消化、工艺准备、试制和装配,上海汽轮机厂仅用11个月就完成了首台样机的制造。
由于原机结构设计存在缺陷,加之制造、装配质量欠佳,苏方又未提供计算资料,台架试车并不顺利,历经3年才通过了验收试验。
4410千瓦的燃气轮机则是我国自行设计、研制的首型舰船专用机,1964年完成设计。
整机试验阶段曾发生涡轮叶片严重烧伤、主轴承损坏等事故,最终完成500小时耐久性试车,其后进行小批量生产。
与此同时,开展了双机并车传动装置的研制,包括行星减速器、液力耦合器、自动同步离合器及其自动控制系统,整套双机并车传动装置在陆上试验站进行了150小时试车。
C550 Cavour 加富尔号航空母舰加富尔号是意大利最新研制的一种能担负多种作战任务,且拥有两栖作战能力的多用途轻型航空母舰。
该舰可搭载短距起降战斗机,大大提高了其海空作战实力,两栖作战时该舰机库能够容纳100辆轻型车辆或24辆主战坦克,舰上还设置旗舰所需的各种设备,拥有1000平方米的指控中心,可有效地进行合成作战指挥。
服役后加富尔号将取代朱塞佩.加里波底号成为意大利海军旗舰。
☆C550 Cavour 加富尔号下水日期: 2004年7月20日服役日期: 预计2008年性能数据:舰长: 244米舰宽: 39米吃水: 8.7米排水量: 标准21160吨满载27100吨动力系统: 全燃动力(COGAG)推进系统,4台General Electric/Avio LM2500燃气轮机,双轴航速: >28节续航力: 7000海里/18节自持力: >18天武器系统: 2门OTO Breda 76/62 SR 76mm速射舰炮,3门80倍口径Oto Breda Oerlikon KBA 25mm速射舰炮,4座8单元SYLVER A43垂直发射系统(配备配备紫苑Aster-15舰空导弹)舰载机: 12~16架A V-8B Harrier鹞式战斗机或Lockheed Martin F-35B战斗机,3架EH-101 Mk.112 AEW/HEW预警直升机,4~6架EH-101、NH-90或SH-3D多用途反潜直升机;或30架直升机舰载艇: 4艘LCVP登陆艇电子设备: 1部RAN-40L三坐标远程搜索雷达;1部SPY-760 EMPAR对空/海搜索雷达;1部SPS-791 RASS水面搜索雷达;1部SPN-753(V)4搜索雷达;Telephonics AN/SPN-41A 着舰控制系统;Galileo Avionica SPN-720空中管制系统;SNA-200声纳;SLAT鱼雷对抗系统;导航雷达;电子对抗系统;2座20管干扰火箭发射器等舰员编制: 451人+空勤203人+旗舰人员140人+海军陆战队416人C551 Giuseppe Garibaldi 朱塞佩.加里波底号航空母舰朱塞佩.加里波底号是一种以反潜为主要作战任务的多用途轻型航空母舰,它是意大利第4艘以19世纪意大利将军Giuseppe Garibaldi命名的军舰,目前是意大利海军的旗舰,现役中。
2015年我国燃气轮机产业发展现状及需求市场前景分析燃气轮机是一种先进而复杂的成套动力机械装备,主要通过将连续流动的气体作为工质、把热能转换为机械功产生动力。
燃气轮机用途广泛,在能源电力、航空航天、舰船车辆等多个领域均有应用。
先进燃气轮机具有高效率、低噪音、低排放等特点,是提供清洁、可靠、高质量发电及热电联供的最佳方式。
燃气轮机由于工作原理和航空发动机基本相同,核心技术也与之有相似之处,因此航空发动机改装为燃气轮机的工作一直被人们所重视。
由于航空发动机体积小、质量轻,故最初改装后均用于舰艇的推进装臵。
自20 世纪60 年代末,英美纷纷做出“舰船以燃气轮机为动力”的决策后,舰船燃气轮机得到了大力发展。
国外典型航空发动机改舰船燃气轮机简介及参数中国的燃气轮机发电开始于上世纪50 年代末,水电部与1959 年从瑞士引进2套功率为6,200 千瓦的简单循环燃气轮机列车发电站用于大庆油田发电。
而航改燃气轮机的工作则是从上世纪70 年代由南方动力公司等单位与民用部门协作开始的。
到目前,我国已经具备了自主研发重型燃气轮机的能力。
2001 年,我国第一台具有自主知识产权的重型燃气轮机R0110 在黎明公司的主导下开始研制。
到2013 年底,R0110 重型燃气轮机已在中海油深圳电力有限公司完成168 小时联合循环试验运行考核,各项性能均符合要求。
R0110 的研制成功标志着我国已成为世界上第五个具备重型燃气轮机研制能力的国家。
中国典型燃气轮机简介及参数纵观世界燃气轮机市场,高端市场基本被欧、美、日等国家和地区的公司所垄断,通用电气、西门子、三菱重工和阿尔斯通等几家公司占据了燃气轮机的主要市场份额。
我国燃气轮机市场虽然稳步增长,但自主研发产品的缺失导致我国燃气轮机长期受制于人。
据中国电器工业年鉴数据,2013 年我国燃气轮机产品进口金额达到3.9 亿美元,同比增长11%,而燃气轮机产品出口金额仅为1 亿美元。
国内燃气轮机厂家众多,但水平差距较大。
舰船燃气轮机发展现状、方向及关键技术摘要:在20世纪30年代研制成功之后,燃汽轮机有了非常广阔的发展空间。
通过对燃气轮机应用的调查,燃气轮机主要应用在航空、发电、舰船动力等多个领域。
应用范围越来越广,实现了规模化发展,也满足了产品谱系的健全。
燃气轮机的技术应用水平与国家的经济和科技有着紧密联系,通过对燃气轮机的自主研发能够实现对能源结构的改善,满足可持续发展要求更是对国防安全的保障。
我国的舰船燃气轮机在应用过程中与其他国家还存在着一定差距,以当前的先进燃气轮机研发为基础,需要加大对燃气轮机关键技术的探讨,以我国自主知识产权为基础满足舰船燃气轮机应用的科学性。
关键词:舰船燃气轮机;技术指标;发展方向;结构;性能中图分类号:U664 文献标识码:A1引言舰船燃气轮机在使用过程中尺寸较小、重量较轻,而且功率非常大,能够发挥其良好的加速性和机动性,将其应用在舰船战术方面能够满足运行效率提升,为舰船的使用提供支持。
通过相关调查发现,在世界各个国家的海军舰船方面均采用了全燃动力和柴燃动力的装置,其中包含航空母舰、护卫舰以及潜艇支援船等。
在一些大型的舰船动力应用方面,燃气轮机发挥着关键作用,一直处于主导地位,是当前现代化舰船发展的关键。
随着当前海上交通工具的快速发展,对于舰船燃气轮机应用的需求量不断上涨,以我国目前自主研发的燃气轮机应用为基础,满足对燃气轮机的批量化生产,促进燃气轮机有更大的发展空间。
2燃气轮机的技术优点第一,先进的设计。
燃气轮机在应用过程中融合了航空发动机的多项技术优势,比如,在进行压气机系统的应用过程中,采用了最新的叶片冷却技术,能够在一些特殊环境内部保持对关键部位的保护,提高设备应用的可靠性。
同时,结合新技术的搭载,能够实现燃气轮机使用寿命的延长。
第二,箱装体构成。
燃气轮机在应用过程中内部结构相对紧凑,重量较轻,满足了安装过程的简化,通过燃气轮机的使用,能够为舰船提供充足的动力支持,并且以燃料、水、电等相连接,能够更好的实现进排气的配置。
美国LM2500舰用燃气轮机2009-09-14 17:10:09 来源: 新华网跟贴 516 条手机看新闻研制背景美国通用电气公司是美国、也是世界上最大的电子设备制造公司之一,总部位于美国康涅狄格州的费尔菲尔德市。
公司由多个多元化的基本业务集团组成,如果单独排名,有1 3个业务集团可名列《财富》杂志500强。
除了生产消费电器、工业电器设备外,还是著名的军事装备制造商。
与同样著名的波音公司不同,通用电气公司的名称并非来源于创始人的名字,这在美国的百年老店里是非常罕见的。
实际上,它来源于1876年著名的美国发明家托马斯·爱迪生创立的爱迪生电灯公司。
1890年,爱迪生将各项业务重组,成立了爱迪生通用电气公司。
1892年,在与汤姆森-休斯顿电气公司合并后,成立了通用电气公司(General Electric C ompany,GE),当时的总部设在纽约。
1896年,道琼斯工业指数榜设立,通用电气公司是当时榜上的12家公司之一。
时至今日,它还是唯一一个保留在道琼斯30指数榜上的公司。
1960年,应美国海军的要求,通用电气公司开始为海军沿岸炮艇开发新型燃气轮机动力装置。
为了提高新型发动机的研制速度,在空、海军战斗机上已经获得大量采用的J79涡轮喷气发动机被选中为改装的原型机。
第一台LM1500——这是赋予新发动机的编号,意味着它可以提供15000马力(110325千瓦)等级的功率——从1961年10月开始装艇进行海试,这是美国海军舰艇第一次采用燃气轮机作为动力装置。
根据试验中暴露出来的问题(主要是海水、盐雾对发动机部件的腐蚀问题,以及使用含硫量更高、密度更大、杂质也更多的船用柴油导致的腐蚀和磨损问题),通用电气公司在1963年获得了进一步的开发合同,小批量试生产LM1500燃气轮机来装备后续建造的炮艇,以扩大试验规模。
到1966年,该型燃气轮机已经装备了17艘“阿沙维拉”级炮艇,采用两台柴油机(巡航)加一台燃气轮机(高速)的CODOG驱动方式。
经过连续几年的装备试验后,LM1500终于在1969年正式定型,除用于海军舰艇之外,还广泛用作工业发电、油气泵站以及其他专用设备的动力。
鉴于LM1500燃气轮机的研制、试用成功,舰船燃气轮机动力装置得到了美国海军的认可,特别是在进行反潜作战时,装备燃气轮机动力装置的舰船加速性远高于装备蒸汽轮机动力装置的舰船,动力性、自噪音特性又远胜于装备柴油机动力装置的舰船(当时还缺少现代的浮筏减震技术)。
这对于当时正困扰于红色狼群威胁的美国海军来说,的确是一种理想的解决方案。
于是,美国海军也决定将燃气轮机化作为海军舰船动力发展的方向。
不过与英国海军分别采用专门的小功率巡航燃气轮机和大功率加速燃气轮机的COGOG组合不同,美国海军走得更远,直接要求获得一种全工况燃气轮机,采用COGAG的推进组合方式。
这样可以在主战舰船上装备同一个型号的燃气轮机,不仅能通过提高采购量来压低采购成本,还简化了对后勤支援的要求。
为了满足新一代大型驱逐舰超过30节的航速要求,其动力装置的总推进功率必须达到约10万马力(73550千瓦);而为了保障动力装置的生命力,至少应设置两组独立的主机。
这样,新舰应该设置4台同样的全工况燃气轮机作为动力,单机功率应该达到约2.5万马力(18387.54千瓦)。
与之相比,苏联海军“卡辛”级驱逐舰的动力装置由8台1.1万马力(8090.5千瓦)燃气轮机组成,高下立见。
由于开发LM1500燃气轮机的过程中已积累了足够的研制经验,新型燃气轮机的发展合同毫无悬念地落到了通用电气公司手中。
鉴于新型燃气轮机的功率等级比LM1500上了一个台阶,一般班的航空喷气发动机已经难以满足要求。
当时美国空军最大、最重的飞机是研制中的C-5“银河”重型运输机,其上将要装备的通用电气TF39涡轮风扇发动机是当时推力最大的发动机,该机当仁不让地成为改装新型燃气轮机的最优选择。
TF39涡轮风扇发动机的源头来自于1959年,当时美国空军提出“轻重量燃气发生器”计划,后改称“先进涡轮燃气发生器计划”。
这是一个由美国军方牵头、军工界共同参与的先进航空技术预研计划。
由于燃气发生器属于涡轮发动机的核心部分,其性能高低决定了发动机的总体水平,技术难度也最大。
通过开展“先进涡轮燃气发生器计划”,可以对关键技术进行先期研究,同时对燃气发生器(核心机)进行装机环境下的试验验证,从而降低型号研制的技术风险、缩短周期、减少成本。
1963年,在“先进涡轮燃气发生器计划”的支持下,通用电气公司开发出第一台“先进技术核心机”——GEI。
GEI核心机由14级轴流式高压压气机、环形燃烧室与2级冷却式高压涡轮组成,主要参数为:空气流量32公斤/秒,压比11,推力2272公斤,压气机前五级静子可调,直径0.61米,长度1.78米。
在GEI的基础上,衍生出了三型值得注意的验证机——GEI/6、GE9和GE1/10。
1964年5月,美国空军针对新型远程重型运输机的需求,提出发动机和飞机机体招标,其中要求发动机达到18000公斤级的推力。
1965年4月,通用电气公司以GE1/6验证机参与投标,战胜了竞争对手普拉特·惠特尼公司。
1965年12月,新型TF39发动机首次试车,1967年6月开始试飞,到了1968年10月,TF39发动机便开始了生产型交付。
在获得美国海军的新型燃气轮机开发合同之后,1968年4月(这时TF39还未正式投产),通用电气公司以TF39涡轮风扇发动机的核心机为基础,开始了新型LM25OO燃气轮机的研制。
广泛应用1969年,通用电气公司生产出第一台LM2500样机,次年,样机被安装到一艘滚装船上进行了海上试验。
试验证明,LM2500的输出功率达到了25500只力(18755千瓦),效率达到了35.5%,完全满足海军的要求。
随后,通用电气公司开始新型燃气轮机的量产,第一艘装备LM2500燃气轮机的是DDG963“斯普鲁恩斯”号导弹驱逐舰。
该舰采用两组燃气轮机、每一组均由2台LM2500组合而成的COGAG推进方案,最大航速达到33节。
美国海军共建造了31艘8040吨的“斯普鲁恩斯”级导弹驱逐舰。
该级舰现已从美国海军中退役,其中至少19艘已经被作为靶舰击沉。
采用LM2500燃气轮机的第二个大用户是FFG7“佩里”级护卫舰。
为了降低设计成本,该级舰直接采用了“斯普鲁恩斯”级驱逐舰的一组2台LM2500燃气轮机动力装置,驱动一具可调距螺旋桨。
美国海军共建造了51艘“佩里”级护卫舰,澳大利亚、西班牙也引进和仿制此型舰,该级舰现已有一部分从美国海军中退役。
1970年代后期,伊朗海军订购了6艘对空型“斯普鲁恩斯”级导弹驱逐舰,后来因为资金问题减为4艘。
巴列维王朝被推翻后,伊朗最后撤销了这些舰的订货。
当时建造工程已经基本完成,为了减小船厂损失,美国海军接过了这4艘舰的合同,即DDG993“基德”级导弹驱逐舰,动力装置同样为两组共4台LM2500燃气轮机。
由于战斗力偏低,该级舰已从美国海军中退役。
为了满足美国/北约近海防御的要求,波音公司为美国海军建造了6艘“飞马座”级导弹水冀艇,CODOG方式驱动,排水航行时使用两台柴油机,水翼航行时的动力为1台LM2 500燃气轮机。
1970年代后期,美海军原计划设计—型装备“宙斯盾”系统的核动力巡洋舰,但因为成本问题最终撤销。
取而代之的是设计一型“斯普鲁恩斯”级的派生舰,即9466吨的CG47“提康德罗加”级导弹巡洋舰。
“提康特罗加”级巡洋舰的建造总数为27艘,也使用了两组共4台LM2500燃气轮机。
之后装备MK41多用途导弹垂直发射系统和“宙斯盾”系统的新型驱逐舰的大量服役,该级舰第一批建造的5艘由于装备的是Mk26 Mod5型双臂式导弹发射装置,“宙斯盾”系统的威力难以完全发挥,已经提前退役,其中,CG50“福吉谷”号已经于2006年11月2日作为靶舰被击沉。
为了对抗未来的新威胁以及满足美国海军当时计划拥有60帅雯舰的要求,1981年,美国海军开始投资发展新一代的驱逐舰,即现在的DDG51“阿利·伯克”级导弹驱逐舰。
该舰装备“宙斯盾”系统和MK41多用途导弹垂直发射系统,成本较“提康特罗加”巡洋舰要低,用于弥补后者不能大量建造而造成的防空火力空白。
“阿利·伯克”级导弹驱逐舰建造数达到了52艘,同样使用4台LM2500燃气轮机。
得益于新型材料、工艺的发展,以及长期运行的经验,LM2500的功率提高到了每台30600马力(22506千瓦),效率达到了36.2%。
由于LM2500燃气轮机的优异性能,其他国家海军的舰艇也大量采用LM2500作为推进动力。
到上世纪末,LM2500燃气轮机的总装机数已经超过1800台,近30个国家的海军共3 50多艘各类舰艇装备了870多台舰用LM2500,累计海上运行时间超过600万小时,总运行时间超过了1800万小时。
结构与系统压气机是燃气轮机的主要部件之一,它的作用是提高流经空气的压力,向燃烧室供给符合要求的压缩空气。
压气机性能的优劣直接影响燃气轮机的功率、油耗、工作稳定性和可靠性等主要性能。
LM2500的压气机为16级、高压比、轴流单转子设计,主要由压气机前承力机匣、压气机转子、压气机静子(中机匣)和压气机后承力机匣等组成。
压气机静子的前端由前承力机匣壳体支撑,后部由压气机后承力机匣支撑。
而压气机转子的前端由滚柱轴承支撑,后端由滚珠轴承支撑。
前承力机匣形成了压气机进口空气的流通通道,毂部与外壳之间用导流支板联接,支板为空心结构,内有回油池的滑油供油和回油管路。
该机匣同时还支承着压气机前轴承、进气管、整流罩、压气机壳体的前端、进气导叶内支承、输入齿轮箱和回油池端盖。
在机匣中还有密封压力和通风等的空气通道,以及监测压气机进口空气压力、温度等参数的传感器。
压气机转子是一个高速旋转、对吸入空气做功使其压力上升的部件,核心是一个带有圆周分布的燕尾榫槽的短鼓-轮盘混合结构,压气机叶片通过燕尾榫槽固定在其上。
所有的法兰联接都采用过盈配合,以保证零件良好的定心和联接刚性。
转子的短鼓-轮盘材料分别为:第1到10级为钦合金,其余部分使用Inconel718合金制造。
第l到14级工作叶片的材料为钦合金,第15和16级工作叶片的材料为A286合金钢。
由于第1级工作叶片相对比较狭长、刚性较差,为了减少振动,在叶片的中部有减振阻尼凸台,当所有的第1级叶片安装好之后,凸台共同组成了一个阻尼圈。
压气机静子是气流减速扩压的部件,也是燃气轮机的主要承力壳体构件之一,它与前承力机匣和后承力机匣构成了一个整体。
各级整流器(静子叶片环)固定在静子机匣内,形成气流通道的静子部分。
静子机匣由4部分组成,并用螺栓固定在一起。