小学四年级:运算定律与简便计算公式整理(附练习题)
- 格式:docx
- 大小:86.46 KB
- 文档页数:8
四年级数学:运算定律与简便计算练习一、加减法运算定律:1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c) 3.连减的性质:a-b-c=a-(b+c)二、乘除法运算定律:1.乘法交换律:a×b=b×a2.乘法结合律:(a×b)×c = a×(b×c )3.乘法分配律:(1)两个数的和与一个数相乘:(a+b)×c=a×c-b×c(2)两个数的差与一个数相乘:(a-b)×c=a×c-b×c。
4.除法的性质:a÷b÷c=a÷(b×c)。
5.乘法分配律的应用:①类型一:(a+b)×c= a×c+b×c(a-b)×c= a×c-b×c②类型二:a×c+b×c=(a+b)×ca×c-b×c=(a-b)×c③类型三:a×99+a = a×(99+1)a×b-a= a×(b-1)④类型四:a×99 = a×(100-1)35×8+35×6-4×3578×12+89×78-78 99×87125×72493-138-2622700÷45÷253×101-5355×12125×3225×46101×5699×261022-478-42280÷5÷41000÷125÷81000÷4÷25125×(8+16)150×63+36×150+150 36+64-36+64487-287-139-61 500-257-34-143 12×99+1233×101-3398×99 ①连续除以几个数就等于除以这几个数的积。
(完整版)四年级运算定律与简便计算练习题大全运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
|字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245!3.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98.减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244-(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56|(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便计算 (一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)二、应用运算定律及性质例子1、加法①45+32+55=45+55+32=100+32=132②63+28+72+37 =63+37+28+72=(63+37)+(28+72)=100+100=2002、减法①145-36-45 =145-45-36 =100-36=64 ②283-56-44=283-(56+44)=283-100=183③197-(42+97) =197-97-42=100-42=58三、加减凑整法①145+201 =145+200+1 =345+1=346 ②234+98 =234+100-2 =334-2=332③163-102 =163-100-2 =63-2=61 ④236-199 =236-200+1 =36+1四年级下册简便计算归类总结简便计算共十四种第七种1200-624-76 2100-728-772 273-73-27 847-527-273 第八种278+463+22+37 732+580+268 1034+780320+102 425+14+186第九种214-(86+14)787-(87-29)365-(65+118)455-(155+230)第十种576-285+85 825-657+57 690-177+77 755-287+87第十一种871-299 157-99 363-199 968-599 容易出错类型(共五种类型)100+45-100+45 100+1-100+1 1000+8-1000+8 102+1-102+125+75-25+75 672-36+64324-68+32 100-36+641022-478-422 987-(287+135) 478-256-144 672-36+64 36+64-36+64 487-287-139-61 500-257-34-143 2000-368-132 1814-378-42289×99+89 155+264+36+44 698-291-9 236+189+64568-(68+178) 561-19+58 382+165+35-82 155+256+45-98759-126-259 569-256-44 216+89+11 514+189—214 369—256+156 512+(373—212) 228+(72+189) 169+199 109+(291—176)四、应用题。
运算定律与简便计算 (一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
一、加法定律:1.加法交换律:a+b=b+a即,交换加数的位置,结果不变。
2.加法结合律:(a+b)+c=a+(b+c)即,按照顺序进行加法运算时,括号的位置可以改变,结果不变。
3.加零律:a+0=a即,任何数加0,结果都等于这个数本身。
二、减法定律:1.减法的定义:a-b=c如果b加上c的结果等于a,那么c就是a与b的差。
2.减法转换法则:a-b=a+(-b)即,把减法转化成加法,减去一个数等于加上这个数的相反数。
3.减零律:a-0=a即,任何数减0,结果都等于这个数本身。
三、乘法定律:1.乘法交换律:a×b=b×a即,交换因数的位置,结果不变。
2.乘法结合律:(a×b)×c=a×(b×c)即,按照顺序进行乘法运算时,括号的位置可以改变,结果不变。
3.乘一律:a×1=a即,任何数乘以1,结果都等于这个数本身。
四、除法定律:1.除法的定义:a÷b=c如果b乘以c的结果等于a,那么c就是a除以b的商。
2.除法转换法则:a÷b=a×(1÷b)即,把除法转化成乘法,除以一个数等于乘以这个数的倒数。
3.除以1律:a÷1=a即,任何数除以1,结果都等于这个数本身。
简便计算方法:1.乘法的简便计算方法:相乘有零则为零,相乘都是偶数则为偶数,相乘都是奇数则为奇数。
2.除法的简便计算方法:被除数和除数的个位数相同则商为1,被除数最后两位与除数互补则商为93.近似计算法:将数按单位位数相加,然后舍去不确定位。
4.同除同乘法则:当两个数都乘以或除以同一个数时,它们之间的大小关系不变。
综合运用运算定律和简便计算方法,可以更快速、准确地进行数学运算。
复习建议:1.通过练习题来巩固运算定律的记忆与理解,比如加法交换律、乘法交换律等。
2.制作卡片或使用在线学习工具来记忆定律的表达方式,便于复习和回忆。
3.在实际生活中找到与定律相关的例子,帮助理解定律的应用。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即: a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用: a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a - b - c=a - c - b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算一、运算定律必须弄清加法交换律a+b = b+ a 例:25+37=37+25加法结合律a+b+c=a+(b+c) 例:25+37+63=25+(37+63)(扩展)a-b-c=a-(b+c) 例:125-37-63=25-(37+63) a-b+c=a-(b-c) 例:300-159+59=300-(159-59) 乘法交换律a×b×c=a×c×b 例:25×9×4=25×4×9乘法结合律a×b×c=(a×c)×b 例:128×3×8=(125×8)×3乘法分配律a×(b+c)=a×b+a×c 例:8×(125+25)=8×125+8×25 (扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c 例:100÷(5×2)=100÷5÷2 二、必须背下来的几个算式2×5=10 2×50=100 4×25=100 8×25=20012×5=60 8×125=100037×3=111 333=111×3 999=333×3=111×91、凑整法简便计算:例:(28+36)+64 182+18+276+24=28+(36+64)=(182+18)+(276+24)=28+100 =200+300=128 =500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:a+b+c=a+b+c2、乘法交换律:a×b=b×a 4、乘法结合律:a×b×c=a×b×c5、乘法分配律:a+b×c=a×c+b×c6、减法的性质:a-b-c=a-b+c7、除法的性质:a÷b÷c=a÷b×c1.加法①45+32+55②63+28+72+372、减法①145-36-45②283-56-44③197-42+973、乘法①25×13×4②125×32×25③24×102④21×99⑤56×23+44×23⑦178×45-45×78⑧34×99+344、除法①3000÷125÷8②810÷18③720÷18÷4④630÷21×2三、加减凑整法①145+201②234+98③163-102④236-199四年级下册简便计算归类总结简便计算第一种第二种84x101300+6x12504x2525x4+8第三种第四种99x6499X13+1399x1625+199X25第五种第六种125X32X83600÷25÷4 25X32X1258100÷4÷75 88X1253000÷125÷8 72X1251250÷25÷5第七种1200-624-762100-728-772273-73-27847-527-273第八种278+463+22+37732+580+2681034+780320+102425+14+186第九种214-86+14787-87-29365-65+118455-155+230第十种576-285+85825-657+57690-177+77755-287+87第十一种871-299157-99363-199968-599第十二种178X101-17883X102-83X217X23-23X7第十三种64÷8X21000÷125X4四年级运算定律与简便计算练习题一、判断题.1、27+33+67=27+1002、125×16=125×8×23、134-75+25=134-75+254、先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律.5、1250÷25×5=1250÷25×5二、选择把正确答案的序号填入括号内8分1、56+72+28=56+72+28运用了A、加法交换律B、加法结合律C、乘法结合律D、加法交换律和结合律2、25×8+4=A、25×8×25×4B、25×8+25×4C、25×4×8D、25×8+43、3×8×4×5=3×4×8×5运用了A、乘法交换律B、乘法结合律C、乘法分配律D、乘法交换律和结合律4、101×125= A、100×125+1B、125×100+125C、125×100×1D、100×125×1×125三、怎样简便就怎样计算35分.355+260+140+245102×992×125645-180-245 382×101-3824×60×50×835×8+35×6-4×35125×3225×46101×5699×261022-478-422987-287+135478-256-144672-36+6436+64-36+64487-287-139-61500-257-34-1432000-368-1321814-378-42289×99+89155+264+36+4425×20+488×225+225×12698-291-9568-68+178561-19+58382+165+35-82155+256+45-98236+189+64759-126-25925×79×4569-256-44216+89+1157×125×81050÷15÷77200÷24÷30219×9937×9858×10176×10278×46+78×54169×123—23×16937×99+37129×101—129149×69—149+149×3256×51+56×48+56125×25×3224×25125×48514+189—214369—256+156732—254—56×25×4×12524×73+26×2416×98+32512+373—228+72+189169+199109+291—176四、应用题.14分1、雄城商场1—4季度分别售出冰箱269台、67台、331台和233台.雄城商场全年共售出冰箱多少台2、第三小组六个队员的身高分别是128厘米、136厘米、140厘米、132厘米、124厘米、127厘米.他们的平均身高是多少五、应用题31分1.一台磨面机每小时磨面800千克,照这样计算,6台磨面机5小时能磨面粉多少千克用两种方法解答2.一堆煤共800吨,用5辆卡车,16次可以运完,平均每辆卡车每次运几吨3.一辆汽车6小时行了300千米,一列火车6小时行了600千米,火车比汽车每小时多行多少千米4.向阳小学气象小组一周中,测得每天的最高气温分别为:31、31、34、32、33、30、33度.这一周最高平均气温是多少度四年级简便计算题集100道26×39+61×26356×9-56×999×55+5578×101-7852×76+47×76+76134×56-134+45×134乘法分配律的运用48×52×2-4×4825×23×40+4999×999+1999乘法分配律的综合运用184+98695+202864-199738-301加减法接近整百数的简算380+476+120569+468+432+131加法交换律和结合律的运用256-147-53373-129+29189-89+74456-256-36减法的简算,重点:运算符号变化的处理28×4×25125×32×259×72×125乘法交换律和结合律的运用,重点:一个因数分成两个因数的处理720÷16÷5630÷42除法的简算102×3598×42乘法接近整百数的简算158+262+138375+219+381+2255001-247-1021-232181+2564+2719378+44+114+242+222276+228+353+219375+1034+966+1252214+638+2863065-738-1065899+3442357-183-317-3572365-1086-214497-2992370+19953999+4981883-39812×2575×24138×25×413×125×3×812+24+80×50704×2525×32×12532×25+12588×125102×7658×98178×101-17884×36+64×8475×99+2×7583×102-83×298×199123×18-123×3+85×12350×34×4×325×24+16178×99+17879×42+79+79×577300÷25÷48100÷4÷7516800÷12030100÷210032000÷40049700÷7001248÷243150÷154800÷2521500÷125158+262+138375+219+381+2255001-247-1021-232181+2564+2719378+44+114+242+222276+228+353+219375+1034+966+1252130+783+270+10177755-2187+7552214+638+2863065-738-1065899+3442357-183-317-3572365-1086-214497-2992370+19953999+4981883-39812×2575×24138×25×413×125×3×812+24+80×50704×2525×32×12532×25+12588×125102×7658×98178×101-17884×36+64×8475×99+2×7583×102-83×298×199123×18-123×3+85×12350×34×4×325×24+16178×99+17879×42+79+79×577300÷25÷48100÷4÷7516800÷12030100÷2100 32000÷40049700÷7001248÷243150÷154800÷2521500÷1252356-1356-7211235-1780-1665 75×27+19×2531×870+13×3104×25×65+25×28 7755-2187+7552214+638+2863065-738-1065899+3442357-183-317-3572365-1086-214497-2992370+19953999+4981883-39812×2575×24138×25×413×125×3×812+24+80×50704×2525×32×12532×25+12588×125102×7658×98178×101-17884×36+64×8475×99+2×7583×102-83×298×199123×18-123×3+85×12350×34×4×325×24+16178×99+17879×42+79+79×57 7300÷25÷48100÷4÷7516800÷12030100÷210032000÷40049700÷7001248÷243150÷154800÷2521500÷1252356-1356-7211235-1780-166575×27+19×2531×870+13×3104×25×65+25×28十二1.9.31-1.125-7.8752.×183.640+128×454.8.2×1.6-0.336÷4.25.6.7.400乘以0.62与0.08的和,积是多少8.一个数的2.5倍等于37与8的和,求这个数.方程解13X-1/2+1/4=7/123X=7/12+3/43X=4/3X=4/926.6-5X=3/4-4X6.6-0.75=-4X+5XX=5.8531.1X+2.2=5.5-3.3X1.1X+3.3X=5.5-2.24.4X=3.3X=3/4=4/3还有0.5+x+x=9.8÷22X+X+0.5=9.825000+x=6x3200=450+5X+XX-0.8X=612x-8x=4.87.52X=151.2x=81.6x+5.6=9.452-x=1591÷x=1.3X+8.3=10.715x=33x-8=167x-2=2x+33x+9=2718x-2=270 12x=300-4x7x+5.3=7.43x÷5=4.830÷x+25=851.4×8-2x=66x-12.8×3=0.06 410-3x=1703x+0.5=210.5x+8=436x-3x=180.273÷x=0.351.8x=0.972x÷0.756=909x-40=5x÷5+9=2148-27+5x=31 10.5+x+21=56x+2x+18=78200-x÷5=30x-140÷70=40.1x+6=3.3×0.4 4x-5.6=1.676.5+x=87.5 27.5-3.5÷x=4x+19.8=25.85.6x=33.69.8-x=3.875.6÷x=12.65x+12.5=32.35x+8=102x+3x+10=703x+3=50-x+35x+15=60x÷1.5-1.25=0.75 4x-1.3×6=2.620-9x=1.2×6.25 6x+12.8=15.8150×2+3x=6902x-20=43x+6=1822.8+x=10.4x-3÷2=7.513.2x+9x=33.33x=x+100x+4.8=7.26x+18=483x+2.1=10.512x-9x=8.713x+5=1692x-97=34.23.4x-48=26.842x+25x=1341.5x+1.6=3.62x-3=5.865x+7=429x+4×2.5=9189x-43x=9.25x-45=1001.2x-0.5x=6.323.4=2x=564x-x=48.64.5x-x=28X-5.7=2.15155X-2X=183X+0.7=53.5×2=4.2+x26×1.5=2x+100.5×16―16×0.2=4x 139.25-X=0.403 16.9÷X=0.3X÷0.5=2.6x+13=333-5x=801.8+6x=546.7x-60.3=6.79+4x=402x+8=16x/5=10x+7x=84/5x=20 2x-6=12 7x+7=14 6x-6=05x+6=11 2x-8=10 1/2x-8=4 x-5/6=7 3x+7=28 3x-7=26 9x-x=16 24x+x=50 6/7x-8=4 3x-8=30 6x+6=12 3x-3=15x-3x=4 2x+16=19 5x+8=19 14-6x=8 15+6x=2710-x=88x+9=179+6x=14x+9x=4+72x+9=178-4x=66x-7=127x-9=8x-56=18-7x=1x-30=126x-21=216x-3=69x=184x-18=135x+9=116-2x=11x+4+8=237x-12=8X-5.7=2.15 155X-2X=1826×1.5=2x0.5×16―16×0.2=4x 9.25-X=0.40316.9÷X=0.3X÷0.5=2.63-5x=801.8-6x=546.7x-60.3=6.79+4x=400.2x-0.4+0.5=3.7 9.4x-0.4x=16.212-4x=201/3x+5/6x=1.412x+34x=118x-14x=1223x-5×14=1412+34x=5622-14x=1223x-14x=14x+14x=6523x=14x+1430x12x-14x=1x-0.7x=3.63.12×5/6–2/9×34.8×5/4+1/45.6÷3/8–3/8÷66.4/7×5/9+3/7×5/97.5/2-3/2+4/58.7/8+1/8+1/99.9×5/6+5/610.3/4×8/9-1/311.7×5/49+3/1412.6×1/2+2/313.8×4/5+8×11/514.31×5/6–5/615.9/7-2/7–10/2116.5/9×18–14×2/717.4/5×25/16+2/3×3/418.14×8/7–5/6×12/1519.17/32–3/4×9/2420.3×2/9+1/321.5/7×3/25+3/722.3/14××2/3+1/623.1/5×2/3+5/624.9/22+1/11÷1/225.5/3×11/5+4/328.1/4+3/4÷2/329.8/7×21/16+1/230.101×1/5–1/5×21 17/32–3/4×9/243×2/9+1/35/7×3/25+3/73/14××2/3+1/61/5×2/3+5/69/22+1/11÷1/25/3×11/5+4/345×2/3+1/3×157/19+12/19×5/61/4+3/4÷2/38/7×21/16+1/2101×1/5–1/5×213/7×49/9-4/38/9×15/36+1/2712×5/6–2/9×38×5/4+1/46÷3/8–3/8÷64/7×5/9+3/7×5/95/2-3/2+4/57/8+1/8+1/97×5/49+3/146×1/2+2/38×4/5+8×11/531×5/6–5/69/7-2/7–10/215/9×18–14×2/74/5×25/16+2/3×3/4 14×8/7–5/6×12/15 17/32–3/4×9/243×2/9+1/35/7×3/25+3/73/14××2/3+1/61/5×2/3+5/65/3×11/5+4/345×2/3+1/3×157/19+12/19×5/61/4+3/4÷2/38/7×21/16+1/2101×1/5–1/5×21.253+1255+253+252.99993+10111101-923.23/4-3/436+24.3/7×49/9-4/37.8×5/4+1/48.6÷3/8–3/8÷69.4/7×5/9+3/7×5/910.5/2-3/2+4/511.7/8+1/8+1/912.9×5/6+5/613.3/4×8/9-1/314.7×5/49+3/1415.6×1/2+2/316.8×4/5+8×11/517.31×5/6–5/618.9/7-2/7–10/2119.5/9×18–14×2/720.4/5×25/16+2/3×3/421.14×8/7–5/6×12/1522.17/32–3/4×9/2423.3×2/9+1/324.5/7×3/25+3/725.3/14××2/3+1/626.1/5×2/3+5/627.9/22+1/11÷1/228.5/3×11/5+4/329.45×2/3+1/3×1530.7/19+12/19×5/631.1/4+3/4÷2/332.8/7×21/16+1/233.101×1/5–1/5×21。
四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a—b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)1.加法①45+32+55 ②63+28+72+372、减法①145—36-45 ②283-56-44 ③197-(42+97)3、乘法①25×13×4 ②125×32×25 ③24×102 ④21×99 ⑤56×23+44×23⑦178×45-45×78 ⑧34×99+344、除法①3000÷125÷8 ②810÷18 ③720÷18÷4 ④630÷(21×2)三、加减凑整法①145+201 ②234+98 ③163-102 ④236—199四年级下册简便计算归类总结简便计算第一种第二种84x101 (300+6)x12504x25 25x(4+8)第三种第四种99x64 99X13+1399x16 25+199X25第五种第六种125X32X8 3600÷25÷4 25X32X125 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5第七种1200—624-762100-728-772273—73-27847—527-273第八种278+463+22+37732+580+2681034+780320+102425+14+186第九种214—(86+14)787-(87-29)365-(65+118)455-(155+230)第十种576—285+85825—657+57690—177+77755—287+87第十一种871-299157-99363-199968—599第十二种178X101-17883X102—83X217X23—23X7第十三种64÷(8X2)1000÷(125X4)四年级运算定律与简便计算练习题一、判断题。
四年级运算定律与简便计算练习题大全运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56 (二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便计算 (一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)二、应用运算定律及性质例子1、加法①45+32+55=45+55+32=100+32=132②63+28+72+37 =63+37+28+72=(63+37)+(28+72)=100+100=2002、减法①145-36-45 =145-45-36 =100-36=64 ②283-56-44=283-(56+44)=283-100=183③197-(42+97) =197-97-42=100-42=58三、加减凑整法①145+201 =145+200+1 =345+1=346 ②234+98 =234+100-2 =334-2=332③163-102 =163-100-2 =63-2=61 ④236-199 =236-200+1 =36+1四年级下册简便计算归类总结简便计算共十四种第七种1200-624-76 2100-728-772 273-73-27 847-527-273 第八种278+463+22+37 732+580+268 1034+780320+102 425+14+186第九种214-(86+14)787-(87-29)365-(65+118)455-(155+230)第十种576-285+85 825-657+57 690-177+77 755-287+87第十一种871-299157-99 363-199 968-599 容易出错类型(共五种类型)100+45-100+45 100+1-100+1 1000+8-1000+8 102+1-102+125+75-25+75 672-36+64324-68+32100-36+641022-478-422 987-(287+135) 478-256-144 672-36+64 36+64-36+64 487-287-139-61 500-257-34-143 2000-368-132 1814-378-42289×99+89 155+264+36+44 698-291-9 236+189+64568-(68+178) 561-19+58 382+165+35-82 155+256+45-98759-126-259 569-256-44 216+89+11 514+189—214 369—256+156 512+(373—212) 228+(72+189) 169+199 109+(291—176)四、应用题。
运算定律与简便运算一、加减法运算定律1、加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例题:(1)50+98+50 (2)488+40+60 (3)165+93+353.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例题:(1)198-75-98 (2)528—89—128 (3)226-58-26减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例题:(1)369-45-155 (2)896-580-120 (3)528—(150+128) (4)126-(26+88)4、加减法的“符号搬家”:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
字母表示:b c a c b a +-=-+例题:(1)256-58 +44 (2)123 + 38 - 23 (3)146 -78 +54二、乘除法运算定律1、乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯运用:①使用乘法交换律、结合律凑整(把积是整十、整百、整千的数先交换再结合在一起。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就能够利用加法交换律将原式中的加数实行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置能够互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们能够把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律实行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们能够把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律实行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的实行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
(一) 加、减法运算定律1. 加法交换律定义:两个加数交换位置,和不变。
字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462. 加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860= 63+(16+84)(4)63+1.6+8.4 (5)0.76+15+0.24 (6)1.4+639+8.6=(0.76+0.24)+15举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245(4)0.46+67+0.54 (5)6.80+485+1.20 (6)1.55+657+2.45拓 展3.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2. 简便计算:198-75-98 346-58-46 7453-289-253= (198-98)-75减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)=--a+-a(cbcb例3.简便计算:(1)369-45-155 (2)896-580-120 (3)1823-254-746= 369-(45+155)4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
小学四年级:运算定律与简便计算公式整理(附练习题)
小学四年级:运算定律与简便计算
一、运算定律必须弄清
加法交换律 a b = b a
例:25 37=37 25
加法结合律 a b c=a (b c)
例:25 37 63=25 (37 63)
(扩展) a-b-c=a-(b c)
例:125-37-63=25-(37 63)
a-b c=a-(b-c)
例:300-159 59=300-(159-59)
乘法交换律a×b×c=a×c×b
例:25×9×4=25×4×9
乘法结合律a×b×c=(a×c) ×b
例:128×3×8=(125×8) ×3
乘法分配律a×(b c)=a×b a×c
例:8×(125 25)=8×125 8×25
(扩展)a÷b÷c=a÷(c×b)
例:100÷5÷2=100÷(5×2)
a÷(c×b)= a÷b÷c
例:100÷(5×2)=100÷5÷2
二、必须背下来的几个算式
2×5=102×50=1004×25=1008×25=200
12×5=608×125=1000
37×3=111333=111×3999=333×3=111×9
三、加法简便计算训练
1、凑整法简便计算:
例:(28 36) 64
=28 (36 64)
=28 100
=128
182 18 276 24
=(182 18)(276 24)
=200 300
=500
小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
练习:
91+89+11
78+46+154
168+250+32
85+15+41+59
364 97 636 1803
2、补差法的简便计算:
例:99 198 397 296
=100-1 200-2 400-3 300-4
=100 200 400 300-1-2-3-4
=1000-10
=990
小结:计算中先看有与整数最接近的数字,补差后计算。
练习:
999 9999 99 9
99 88 77 66
2、简便运算一:
例:(4 2)×25
=4×25 2×25
=100 50
=150
小结:注意必须背下来的算式中的数字是否在算式中出现,尽量求整数再计算。
练习:
(24+8)×125
25×(20—4)
3、简便运算二:
例:45×9+55×9
=(45 55)×9
=100×9
=900
8×27+73×8
=8×(27 73)
=8×100
=800
小结:在两组乘法相加的算式中,看是否有相同数字出现练习:
14×9 9×36
28×19 28×81
9×47 53×9
8×(125 25 5)
(1000—3)×8
125×13—125×5
4、简便运算三:
例:45×90+550×9
=45×9×10 550×9
=450×9 550×9
=(450 550)×9
=1000×9
=9000
37×12+3.7×880
=37×12+3.7×10×88
=37×12+37×88
=37×(12+88)
=37×100
=3700
小结:两个因数一个扩大10倍,另一个缩小10倍,积不变。
(可类推)
练习:
0.55×200+55×4
99999×7 11111×37
5、简便运算四:
例:999×7
=(1000-1)×7
=1000×7-7
=7000-7
=6993
102×43
=(100 2)×43
=100×43 2×43
=4300 86
=4386
练习:
69×101
1111×9999
四、减法性质和除法性质
1、减法简便计算;
例:1035-235-497
=(1035-235)-497
=800-497
= 303
1275-164-36
=1275-(164 36)
=1275-200
=1075
小结:减法题看尾数是否相同,可以先减;连减题可以先看后两数是否可以相加求整。
练习:
436-236-150
1245-(245 673)
480-82-18
673-84-71-45
2、除法简便计算;
例:81÷3÷3
=81÷3×3
=81÷9
=9
210÷(7×6)
=210÷7÷6
=30÷6
=5
练习:
64÷2÷4
420÷(7×6)
综合练习:
1184-68-42
5347一347一972 3576-133-67 1054-13-54
25×4×6
7×8×125
4×7×25
234×25×4
37×2×125×25×5×4×8 125×32×2×25×5 4444×25
98 265 202 273—73—27
250×13×4
3200÷4÷5
88×125
99×38 38
17×23—23×7
72×125
24×125
99×56
125×(8 10)199×56 56
333×774 113×666 999×999 999。