单因素方差分析完整实例
- 格式:docx
- 大小:54.04 KB
- 文档页数:5
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。
•水平:因素变化的各种状态或因素变化所分的等级或组别。
•单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。
设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。
样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。
单因素方差分析实例[例6-8]在1990 年秋对“亚运会期间收看电视的时刻”调查结果如下表所示。
问:收看电视的时刻比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有无显著的不同?即要查验从“态度”上看,这三组居民的样本是取自同一整体仍是取自不同的整体在SPSS 中进行方差分析的步骤如下:(1)概念“居民对亚运会的总态度得分”变量为X(数值型),概念组类变量为G(数值型),G=1、2、3 表示第一组、第二组、第三组。
然后录入相应数据,如图6-66所示图6-66 方差分析数据格式(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对话框(如图6-67所示)。
从主对话框左侧的变量列表当选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。
单击[OK]按钮完成。
图6-67 方差分析对话框(3)分析结果如下:因此,收看电视时刻不同的三个组其对亚运会的态度是属于三个不同的整体。
多因素方差分析[例6-11]从由五名操作者操作的三台机械每小时产量中别离各抽取1 个不同时段的产量,观测到的产量如表6-31所示。
试进行产量是不是依托于机械类型和操作者的方差分析。
SPSS 的操作步骤为:(1)概念“操作者的产量”变量为X(数值型),概念机械因素变量为G1(数值型)、操作者因素变量为G2(数值型),G1=1、2、3 别离表示第一、二、三台机械,G2=1、2、3、4、5 别离表示第1、2、3、4、5 位操作者。
录入相应数据,如图6-68所示。
图6-68 双因素方差分析数据格式(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。
单因素方差分析和多因素方差分析简单实例
单因素方差分析与多因素方差分析(即分析方差分析,简称 ANOVA)是统计学中常用
的一种方法。
它可以用来评估相关变量之间的差异程度,以确定这些变量对数据集的影响
程度。
本文将对两种方法进行简单介绍,并通过一个实例来帮助大家更好地理解。
1、单因素方差分析
单因素方差分析是统计学中最常见的研究方法之一,可以用来评估一个单独变量的影响。
在这种情况下,我们分别将多个样本分为两组或以上,每组有不同的自变量。
然后使
用单因素处方差分析检验来检验这些样本组之间的均值的差异,从而得出该自变量对样本
组之间的均值的影响大小。
举个例子,假设我们有一个取自不同地区的样本,想要测试该样本收入水平是否受某
个城市所在地区影响,那么我们可以把这些样本分为两组:一组是属于某个城市所在地区,另一组是其他地区,然后使用单因素方法分析测试这两组样本收入水平是否显著不同。
拿前面的例子来说,我们在检验受某个城市影响的收入水平的时候如果只用单因素分
析可能不太准确,因为受某个城市影响的收入水平还可能受到一些其他因素的影响,比如
年龄、阶层等,这时就可以使用多因素方差分析来进行检验和确定不同因素的影响程度。
所以,单因素方差分析和多因素方差分析都是用来评估变量之间差异程度的统计方法,但并不能确定变量之间的关联性和互动作用。
至于哪一个方法更适合于某种特定情况,需
要结合实际情况,根据具体分析需求而定。
单因素方差分析范文单因素方差分析(One-way Analysis of Variance,简称ANOVA)是统计学中一种常用的方法,用于比较三个或三个以上的组的均值是否存在显著差异。
本篇文章将从原理、假设、步骤和应用等方面进行介绍。
一、原理二、假设在进行单因素方差分析时,需要假设组间均值是否存在显著差异。
具体的假设如下:H0:各组均值相等(即组间均值差异不显著)H1:至少有两组均值不相等(即组间均值差异显著)三、步骤进行单因素方差分析的步骤如下:1.根据研究目的和问题选择合适的统计方法;2.收集数据,涉及到多个组的测量值;3. 计算总平方和(SS_total),表示总变异性大小;4. 计算组间平方和(SS_between),表示组间变异性大小;5. 计算组内平方和(SS_within),表示组内变异性大小;6. 根据以上计算结果,计算组间均方(MS_between)和组内均方(MS_within);7. 计算F值,即F=MS_between/MS_within;8.根据设定的显著性水平(通常为0.05),查表或计算得到临界值;9.比较计算得到的F值与临界值,判断是否达到显著性水平。
四、应用1.医学研究:比较不同药物对疾病治疗效果的影响;2.教育研究:比较不同教学方法对学生学习成绩的影响;3.市场调查:比较不同广告对产品销量的影响;4.农业实验:比较不同施肥方式对作物产量的影响。
五、总结单因素方差分析是一种常用的统计方法,通过比较三个或三个以上组的均值差异来判断各组之间是否存在显著差异。
它的优点是可以同时比较多个组均值的差异,从而提高实验效率和减少误判,应用广泛且实用。
因此,研究者在进行多组均值比较时,可以选择单因素方差分析方法进行分析。
百度文库- 让每个人平等地提升自我!
Sig.>0.05,方差同质
Sig.=0.001<0.01,所以组间存在极显著差异
在0.05水平上,A组与C组存在显著差异,A组与B D E组差异不显著
B组与C组存在显著差异,B组与D E组差异不显著
C组与D E组存在显著差异
D组与E组差异不显著
在0.05水平上,A组与C组存在极显著差异,A组与B D E组不存在极显著差异B组与C组存在极显著差异,B组与D E组不存在显著差异
C组与D E组存在极显著差异
D组与E组不存在极显著差异
综上所述,A组与C组存在极显著差异,A组与B D E组差异不显著
B组与C组存在极显著差异,B组与D E组差异不显著
C组与D E组存在极显著差异
D组与E组差异不显著
111。
SPSS单因素方差分析案例
一、案例简介
本案例主要探讨不同年龄组对对不同种类游戏的不同评价。
采用
SPSS软件进行单因素方差分析,研究对象为50名参与游戏评测的受试者,其中25名为年龄段20-30,25名为年龄段30-40。
每位受试者都被分配3
种不同类型的游戏来评价,评价方式为3分制,值得1,2,3分,分别表
示很差,一般,不错。
二、SPSS分析
1.数据的输入
①打开SPSS软件,点击“文件”-“打开”,选择需要进行分析的数据;
②若原始数据是excel格式,选择“所有的excel文件”,点击“打开”;
③若原始数据是文本格式,选择“所有文本文件”,点击“打开”;
④若原始数据是spss格式,选择“spss 调查”,点击“打开”;
⑤若原始数据是SAS格式,选择“所有SAS文件”,点击“打开”。
2.数据分析
①点击“统计”菜单,在下拉菜单中选择“多元统计分析”;
②在多元统计分析对话框中,在“因变量”栏中选择需要分析的评测
结果;
③在“自变量”栏中选择“受试者的年龄”;
④点击“确定”按钮,开始进行单因素方差分析;
⑤点击“分析”按钮,在下拉菜单中选择“单因素方差分析”;
⑥点击“分析”按钮。
单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。
为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。
第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。
在治疗开始前,研究人员记录了每个患者的收缩压数据。
第一步是对数据进行描述性统计分析。
研究人员计算了每一组的平均值、标准差和样本量。
结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。
研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。
备择假设是至少有一组的平均收缩压不同。
为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。
组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。
组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。
组间方差的计算方法是对所有组的平均值进行方差分析。
我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。
F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。
根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。
假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。
这意味着至少有一组的平均收缩压与其他组有显著差异。
最后一步是进行事后检验。
由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。
常用的事后检验方法包括Tukey HSD检验、Duncan检验等。
综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。
SPSS-单因素方差分析(ANoVA)案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。
研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠b代表雌性老鼠0代表死亡1代表活着tim代表注射毒液后,经过多长时间,观察结果)点击“分析比较均值单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可 选, 这里可能需要进行“转换”对数据重新进行编码, 点击“转换”一“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果a 51F 9.00a 7 0 / 3.00 ∖ a 13 1J la.oo ∖a 131S OGz□ a 231S 00I a 30 19 00I 3 30. 8 00a 羽1 ∖3 00Z7 a 421 ∖ 8.00 ∑ta 421∖ 8.00a450 ΓZS^ P 11 9 OOb 319.00Ib 319.00 b 11 9 00b 10 1 9 00 b 15 1 9.00h 1519.00b 239, OQj b 3019 00生存时间毬存結局頤田 tim US此时的8代表a (雄性老鼠) 9代表b 雌性老鼠,我们将“生存结局”变量 移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较” 按钮,如下所示:儡定有盖芥性≡ LSDcL)∏ S -N-K(S)[⅛Val Ier -Dun ca∏'V ∣,;BOnfe 仃的1亡TUkey裝翹I 熒型Il 逞差比率V) h 00Sidak IWWl .TUkey ≡-b(K) E J DUnnett(E)Seheffe(C)DUnean(D: 挫剧蹈止:I 最后一√-iL.∙~ R-E*G-W F(R) 二 IHoChberg S GT2(H}⅛⅛⅛⅛ ^1⅛⅛E''□ R-BG-WQ(Q)Gabrtel(G)ΦO ∣Π 21 ® < ≡⅛J{0)MB"来幔定方差齐性 √ Tarrlhane ,sT2(M J D□∩r⅜ett*s T3(3} Zi G3mes*H0√veU(A> 3 D^rlneif=显W ,⅛^KΦ(Fy Q05勾选“将定方差齐性”下面的LSD 选项,和“未假定方差齐性”下面的 Tamhane's T2 选项 点击继续点击“选项”按钮,如下所示:境计量 ------ K 描述性I I 固症和随机效果 √方茎同尚性⅛(H) -.旦 row∩'Fors⅛tħeCB) □ WelChC;7) √均値图也; 越失値◎核分斯顺序排除个案迫: ◎按列去排障个案(D勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:⅛J敢料 ⅛⅛ ⅛ /结果分析:方差齐性检验结果,“显著性”为O,由于显著性0<0.05所以, 方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANoVA ”分析结果,显著性0.098 ,由于0.098>0.05所以可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)假设检验汇总通过“Kruskal-Wallis ”检验方法,我们得出“Sig=O.098" 跟我们先前分析的结果一样,都是0.098,事实得到论证。
案例:某饮料生产企业研制出一种新型饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超级市场上随机收集了前一时期该饮料的销售情况,见下表。
试分析饮料的颜色是否对销售量产生影响。
根据问题“分析饮料的颜色是否对销售量产生影响。
”可知这是一个单因素方差分析,首先进行“方差齐性检验”(1)打开“spss”(2)在变量视图定义变量如下:(3)数据视图录入数据,其中四种不同的颜色以数值代码的方式录入(4)单击“分析”---“比较均值”----“单因素ANOVA”,弹出如下界面(5)销售量放入“因变量列表”,颜色放入“因子”,单击“选项”勾选“方差同质性检验”,单击“继续”返回单击“确定”,弹出输出结果由于P值=0.838<0.05(0.05为显著性水平),因此四个总体的方差相等。
单因素方差分析1.设μ1为无色饮料销售量的均值,μ2为粉色饮料销售量的均值,μ3为橘黄色饮料销售量的均值,μ4为绿色饮料销售量的均值,提出的假设为▪H0 :μ1=μ2=μ3=μ4▪H1 :μ1 , μ2 , μ3 , μ4 不全相等2、“SPSS软件操作”单击“分析”---“比较均值”----“单因素ANOVA”,弹出如下界面销售量放入“因变量列表”,颜色放入“因子”,单击“选项”勾选“描述性”,单击“继续”返回单击“确定”,弹出输出结果3、由于P值=0.000<0.05(0.05为显著性水平),因此拒绝原假设,即四种颜色的饮料的销售量有差异,具体哪几种颜色的饮料的销售量有差异,需进行“多重比较”单击“分析”---“比较均值”----“单因素ANOVA”,弹出如下界面销售量放入“因变量列表”,颜色放入“因子”,单击“两两比较”勾选“LSD”,单击“继续”返回单击“确定”,弹出输出结果通过两两比较可知“1与3无显著差异、2与4 无显著差异,除此之外两两配对皆有差异”(1代表无色,2代表粉色,3代表橘黄色,4代表绿色)。
什么是单因素方差分析【1】
单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念
●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]
例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
28. 5 30.
8
11.
18.
3
25.
32. 0
34.
8
8.3 19.
24.
2
在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生
素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是
单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]
与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假
设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平
下进行了nj = 4次独立试验,得到如上表所示的结果。
这些结果是一个随
机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总
体的均值依次记为,则按题意需检验假设
不全相等
为了便于讨论,现在引入总平均μ
其中:
再引入水平Aj的效应δj
显然有,δj表示水平Aj下的总体平均值与总平均的差异。
利用这些记号,本例的假设就等价于假设
不全为零
因此,单因素方差分析的任务就是检验s个总体的均值μj是否相等,也就等价于检验各水平Aj 的效应δj是否都等于零。
2. 检验所需的统计量
假设各总体服从正态分布,且方差相同,即假定各个水平下的样本来自正态总体N(μj,σ2),μj与σ2未知,且设不同水平Aj下的样本之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。
下面先引入:
水平Aj下的样本平均值:
数据的总平均:
总平方和:
总平方和ST反映了全部试验数据之间的差异,因此ST又称为总变差。
将其分解为
ST = SE + SA
其中:
上述SE的各项表示了在水平Aj下,样本观察值与样本均值的差异,这是由随机误差所引起的,因此SE叫做误差平方和。
SA的各项表示了在水平Aj下的样本平均值与数据总平均的差异,这是由水平Aj以及随机误差所引起的,因此SA叫做因素A的效应平方和。
可以证明SA与SE相互独立,且当为真时,SA与SE分别服从自由度为s − 1,n − s的χ2分布,即
SA / σ2˜χ2(s − 1)
SE / σ2˜χ2(n − s)
于是,当为真时
这就是单因素方差分析所需的服从F分布的检验统计量。
3. 假设检验的拒绝域
通过上面的分析可得,在显著性水平α下,本检验问题的拒绝域为
为了方便分析比较,通常将上述分析结果编排成如下表所示的方差分析表。
表中的分别称为SA,SE的均方。
方差来源平
方
和
自
由
度
均方F比
因素A SA s −
1
误差SE n −
s
总和ST n −
1。