SPSS单因素方差分析步骤-图文
- 格式:docx
- 大小:37.14 KB
- 文档页数:2
SPSS常用分析方法操作步骤一、单变量单因素方差分析例题:某个年级有三个班,现在对他们的一次数学考试成绩进行随机抽(见下表),试在显著性水平0.005下检验各班级的平均分数有无显著差异(数据文件:数学考试成绩.sav)。
(1)建立数学成绩数据文件。
(2)选择“分析”→“比较均值”→“单因素方差”,打开单因素方差分析窗口,将“数学成绩”移入因变量列表框,将“班级”移入因子列表框。
(3)单击“两两比较”按钮,打开“单因素ANOV A两两比较”窗口。
(4)在假定方差齐性选项栏中选择常用的LSD检验法,在未假定方差齐性选项栏中选择Tamhane’s检验法。
在显著性水平框中输入0.05,点击继续,回到方差分析窗口。
(5)单击“选项”按钮,打开“单因素ANOV A选项”窗口,在统计量选项框中勾选“描述性”和“方差同质性检验”。
并勾选均值图复选框,点击“继续”,回到“单因素ANOV A选项”窗口,点击确定,就会在输出窗口中输出分析结果。
二、单变量多因素方差分析研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异(数据文件:粘虫.sav)。
(1)建立数据文件“粘虫.sav”。
(2)选择“分析”→“一般线性模型”→“单变量”,打开单变量设置窗口。
(3)分析模型选择:此处我们选用默认;(4)比较方法选择:在窗口中单击“对比”按钮,打开“单变量:对比”窗口进行设置,单击“继续”返回;(5)均值轮廓图选择:单击“绘制”按钮,设置比较模型中的边际均值轮廓图,单击“继续”返回;(6)“两两比较”选择,用于设置两两比较检验,本例中设置为“温度”和“湿度”。
三、相关分析调查了29人身高、体重和肺活量的数据见下表,试分析这三者之间的相互关系。
(1)建立数据文件“学生生理数据.sav”。
(2)选择“分析”→“相关”→“双变量”,打开双变量相关分析对话框。
(3)选择分析变量:将“身高”、“体重”和“肺活量”分别移入分析变量框中。
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
单因素分析spss操作单因素分析1.采集数据1.1 首先选择variable view(变量窗)在name下输入“group”在value下输入1治疗组2对照组3对照组1.2group下输入“x ”lable 下输入“住院时间”1.3打开data view (数据窗)输入你的组别共两组为1和2组和3组1组13个样本2组13个样本3组13个样本X 代表住院时间2.分析正态性2.1 选择analysis(分析)选择descriptive statistics (描述统计量)选择explore在dependent list(自变量在此处也就是x)选择“住院时间”在factor list(分组变量)Display 要展示什么一般选择both 既要统计量又要统计图Statistics (统计量如标准差中位数四分位数等)Plots(统计图)在此图选择statistics 显示下图选择描述均数的95%的可信区间在此图选择Plots 显示下图选择normality plots with tests (检验正态性)选择OK 显示下图(分析正态性)其中sig 为显著性的意思即为P值图中Sig =0.689 sig=0.846 sig=0.730 三组sig均大于0.1 (只有sig>0.1才是正态性的资料。
)3.进行单因素分析analysis(分析)选择compare means 选择one-way ANOV A(但因素分析)显示下图选择post hoc…. (进行两两比较)选中LSD 、S-N-K 、dunnett contro lcategory 三个按钮选择options 中选中homogeneit of variance test (方差齐性检验)Test variable 即为自变量(观察对象)选中住院时间Group variable 即为组别变量选中group在此图中选择Define group 显示下图进行组别输入(输入组别数字1或2)Group1 输入1Group2 输入2 (注意1带表治疗组2代表对照组3代表对照组)Group3 输入3点continue显示下图首先方差必须齐不齐的话则无法进行比较Sig.>0.1 说明方差齐亦显示下图Sig<0.05 说明三组有统计学意义三组有差别亦显示下图其中1是有区别的组;中2是无区别的组此图中1下面的框中有口服静脉组49.6154(说明口服静脉组和其它组有区别)此图中2下面的框中有口服组90.2308 和静脉组94.7692(说明口服组和静脉组无区别)。
熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。
它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。
单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。
二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。
单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。
研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。
图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。
针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。
假设2:自变量存在2个或多个分组。
假设3:协变量是连续变量。
假设4:各研究对象之间具有相互独立的观测值。
假设5:各组内协变量和因变量之间存在线性关系。
假设6:各组间协变量和因变量的回归直线平行。
假设7:各组内因变量的残差近似服从正态分布。
假设8:各组内因变量的残差方差齐。
假设9:各组间因变量的残差方差齐。
假设10:因变量没有显著异常值。
经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。
在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。
在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。
如图2。
图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。
如图3。
图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。
SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。
在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。
适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。
案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。
(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。
提出原假设:⼴告形式和销售额之间不存在显著性差异。
界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。
SPSS 11.0 单因素方差分析步骤1.数据输入后点击“分析”(analyze)菜单2.进入“Compare Means”(均值比较)→One-Way ANOVA(单因素方差分析)3.点击“One-Way ANOVA”:4.确定“Dependent List”(相关要分析的组)(图中分别为低糖St和高糖St),左侧匡中选中点击箭头键:5.确定“Factor”(因素)(图中为group):5. Contrast子对话框:该对话框有两个用途:对均数的变动趋势进行趋势检验:定义根据研究目的需要进行的某些精确两两比较。
由于该对话框太专业,也较少用,这里只做简单介绍,在综合实例中会结合具体例题讲解。
1). Polynomial:定义是否在方差分析中进行趋势检验,即随着组别的变化,各组均数是否呈现某种变化趋势。
2).Degree下拉列表:和Polynomial复选框配合使用,用于定义需检验的趋势曲线的最高次方项,可选择从线性趋势一直到五次方曲线。
如果你选择了高次方曲线,系统会给出所有相应各低次方曲线的拟合优度检验结果(比如选择3次方曲线时,系统会给出线性、二次方、三次方三个结果),以供你选择。
3).Coefficients框:精确定义某些组间均数的比较。
这里按照分组变量升序给每组一个系数值,注意最终所有系数值相加应为o。
比如说在上例中要对第一、三组进行单独比较,则在这里给三组分配系数为1、0、-1,就会在结果中给出相应的检验内容。
6.点击“Post Hoc…”确定两两比较方法(当各组方差齐时适用):equal variances assume复选框:方差齐时比较结果有效,根据需要选择,通常选LSD、Tukey 等, 点击“Contimue”返回。
EqualVariancesNotAssumed复选框组:提供了方差不齐时可以采用的两两比较方法,共有四种可以选择,一般认为是Games-Howell法稍好一些,推荐使用。
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
SPSS详细操作:单因素方差分析一、问题与数据为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。
治疗后ALT水平(U/L)如下。
试问应用三种治疗措施后,患者的ALT水平是否有差异?表1. 三组患者治疗后的ALT水平(U/L)二、对数据结构的分析整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。
若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。
三、SPSS分析方法1. 数据录入SPSS(1=A组,2=B组,3=C组)2. 选择Analyze→General Linear Model→Univariate (假设三组数据服从正态分布)3. 选项设置1)主对话框设置:将分析变量(ALT)送入Dependent Variable 框中→将分组变量(Group)送入Fixed Factor(s) 框中。
2)Options设置:点击Options按钮,勾选Descriptive statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。
四、结果解读Descriptive Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std. Deviation)和例数(N)。
Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果。
F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。
Tests of Between-Subjects Effects表格给出了方差分析的结果。
单因素方差分析,我见过的最详细SPSS教程,医咖会文章单因素方差分析,我见过的最详细SPSS教程发布时间:2017-07-03 14:08:02 最近更新:2017-07-04 来源:医咖会内容概要:1. (5)点击Continue,返回One-Way ANOVA对话框。
2. 如果是,用正确值进行替换并重新进行检验;。
3. 假设2:有一个包含2个及以上分类、且组别间相互独立的自变量;。
一、问题与数据有研究者认为,体力活动较多的人能更好地应对职场的压力。
为了验证这一理论,某研究招募了31名受试者,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间数,受试者被分为4组:久坐组、低、中、高体力活动组,变量名为group。
利用Likert量表调查的总得分来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强,变量名为coping_stress。
应对职场压力的能力,可以简写为CWWS 得分。
研究者想知道,CWWS得分的高低是否取决于体力活动的时间,即coping_stress变量的平均得分是否随着group变量的不同而不同(部分数据如下图)?二、对问题的分析研究者想分析不同group间的coping_stress得分差异,可以采用单因素方差分析。
单因素方差分析适用于2种类型的研究设计:1)判断3个及以上独立的组间均数是否存在差异;2)判断前后变化的差值是否存在差异。
使用单因素方差分析时,需要考虑6个假设。
假设1:因变量为连续变量;假设2:有一个包含2个及以上分类、且组别间相互独立的自变量;假设3:每组间和组内的观测值相互独立;假设4:每组内没有明显异常值;假设5:每组内因变量符合正态分布;假设6:进行方差齐性检验,观察每组的方差是否相等。
那么进行单因素方差分析时,如何考虑和处理这6个假设呢?三、思维导图四、对假设的判断1.假设1:因变量为连续变量;假设2:有一个包含2个及以上分类、且组别间相独立的自变量;假设3:每组间及组内的观测值相互独立。
SPSS中的单因素方差分析(One-Way Anova)SPSS中的单因素方差分析(One-Way Anova) 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
二、实验工具SPSS for Windows三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
SPSS单因素方差分析步骤-图文
SPSS(Statistical Package for the Social Sciences)是一种常
用的统计分析软件,可以用于进行各种统计分析,包括单因素方差分析。
单因素方差分析是一种用于比较三个或更多组之间平均值差异的统计方法。
下面是使用SPSS进行单因素方差分析的步骤:
1.载入数据:
打开SPSS软件,并导入数据文件。
可以通过“File”菜单中的“Open”选项来导入已有的数据文件,或是通过“File”菜单中的“New Data”选项创建新的数据文件。
2.数据检查:
在进行方差分析之前,需要对数据进行检查,确保数据符合方差分析
的假设要求。
主要包括以下几个方面:
- 数据的正态性:使用“Explore”功能可以进行直方图和正态性检验。
在菜单栏中选择“Analyze”-“Descriptive Statistics”-“Explore”,然后选择需要检查的变量,并将其拖放到“Dependent List”框中。
点击“Plots”选项卡,勾选“Normality plots with tests”,然后点击“OK”进行正态性检验。
- 数据的同方差性:使用“Explore”功能可以进行散点图和相关统
计检验。
同样地,在“Explore”对话框的“Plots”选项卡中,勾选“Scatter/Matrix”选项,并在“Options”选项卡中勾选“Flag
extreme cases”,然后点击“OK”进行散点图和异常值检查。
-异常值:通过观察数据的散点图或是通过计算异常值统计量,可以确定是否存在异常值。
3.单因素方差分析:
使用“Analyze”菜单中的“General Linear Model”选项来进行单因素方差分析。
在“General Linear Model”对话框中,将需要进行分析的因变量拖到“Dependent Variable”框中,将独立变量拖到“Fixed Factor(s)”框中,然后点击“OK”进行分析。
4.结果解读:
单因素方差分析的结果主要有两部分:总体统计量和多重比较。
总体统计量包括平均值、F值和p值等,用于判断不同组之间的平均值是否具有显著差异。
多重比较用于确定具体哪两个组之间存在显著差异。
以上是使用SPSS进行单因素方差分析的基本步骤。
通过SPSS的强大功能,可以进行更加复杂的方差分析,包括多因素方差分析和交互效应分析等。
在实际数据分析中,还需要注意进行统计检验的前提和假设,并根据具体的研究问题选择适当的统计方法和结果解读。