泵用不可压缩流体密封刚度系数分析_张盟1_王晓放1_徐胜利1_万学丽2
- 格式:pdf
- 大小:983.69 KB
- 文档页数:7
◀油气田开发工程▶滚动转子式油气混输泵工作特性试验研究∗张志广1ꎬ2㊀潘灵永2㊀王峻乔2㊀张晓青1㊀代琼曦2(1 华中科技大学能源与动力工程学院㊀2 中石化石油机械股份有限公司)张志广ꎬ潘灵永ꎬ王峻乔ꎬ等.滚动转子式油气混输泵工作特性试验研究[J].石油机械ꎬ2023ꎬ51(12):120-129.ZhangZhiguangꎬPanLingyongꎬWangJunqiaoꎬetal.Experimentalresearchonworkingperformanceofrollingrotoroil ̄gasmixed ̄flowpumps[J].ChinaPetroleumMachineryꎬ2023ꎬ51(12):120-129.摘要:滚动转子式油气混输泵正在天然气开采领域快速推广ꎬ其试验研究有助于为泵头理论分析和正向设计建立基础ꎬ对于实现高性能泵头研发和推动天然气开发具有重大价值ꎮ通过搭建宽工况㊁高稳定性㊁高精度的内循环试验平台ꎬ开展了某型滚动转子泵工作温度㊁压力㊁排量和功耗测试试验ꎬ完成了其工作特性分析ꎬ全面建立了泵头工作机制ꎬ证明了该类泵头性能的优越性ꎮ研究结果表明:在油气混输作用下ꎬ滚动转子泵的缸内气体增压过程趋于等温压缩ꎬ工作腔温升有限ꎬ排气温度能够维持在55ħ左右ꎮ滚动转子泵虽然在天然气开发领域作为压缩机使用ꎬ但更多地体现了泵的工作特性:泵头实际排量与转速和进气压力呈正比ꎬ与进排气压差线性负相关ꎻ泵头容积效率与进排气压差线性负相关ꎻ泵头功耗与进排气压差线性正相关ꎬ但与进气压力无关ꎬ且随转速升高其增长幅度不断上升ꎻ滚动转子泵的出口压力脉动远低于往复式天然气压缩机ꎬ而其增压橇外输压力脉动几乎被完全削减ꎬ体现出了重大设备优势ꎮ研究结果可为油气混输泵的设计与应用提供参考ꎮ关键词:滚动转子式油气混输泵ꎻ准等温压缩过程ꎻ工作特性ꎻ排量特性ꎻ压力脉动特性中图分类号:TE974㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2023 12 018ExperimentalResearchonWorkingPerformanceofRollingRotorOil ̄GasMixed ̄FlowPumpsZhangZhiguang1ꎬ2㊀PanLingyong2㊀WangJunqiao2㊀ZhangXiaoqing1㊀DaiQiongxi2(1 SchoolofEnergyandPowerEngineeringꎬHuazhongUniversityofScienceandTechnologyꎻ2 SinopecOilfieldEquipmentCor ̄poration)Abstract:Therollingrotoroil ̄gasmixed ̄flowpumpsarerapidlygainingpopularityinthenaturalgasextrac ̄tionindustryꎬandtheexperimentalresearchonthesepumpshelptoestablishafoundationfortheoreticalanalysisandforwarddesignofpumpheadsꎬwhichisofgreatvaluetotheresearchanddevelopmentofhigh ̄performancepumpheadsandthepromotionofnaturalgasdevelopment.Byconstructinganinternalcirculationexperimentalplatformwithwideworkingconditionsꎬhighstabilityandhighprecisionꎬtestingexperimentsontheoperatingtem ̄peratureꎬpressureꎬdisplacementandpowerconsumptionofacertaintypeofrollingrotorpumpwereperformedꎬandtheworkingcharacteristicsofthepumpwereanalyzed.Inadditionꎬtheworkingmechanismofthepumpheadwascomprehensivelyestablishedꎬprovingthesuperiorperformanceofthistypeofpumphead.Theresearchfind ̄ingsindicatethatꎬinthecontextofoil ̄gasmixed ̄flowꎬthegascompressionprocesswithinthepump scylinder021 ㊀㊀㊀石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀2023年㊀第51卷㊀第12期∗基金项目:中国石油化工集团有限公司重点实验室项目 偏心转子油气混输泵技术研究 (JKL20007)ꎮtendstowardsisothermalcompressionꎬandthetemperaturerisewithintheworkingchamberremainslimitedꎬmain ̄tainingtheexhausttemperatureatapproximately55ħ.Althoughtherollingrotorpumpsareusedascompressorsinthenaturalgasdevelopmentfieldꎬtheyprimarilyexhibitpump ̄likeworkingcharacteristics:theactualpumpheaddisplacementisdirectlyproportionaltotherotationalspeedandintakepressureꎬandlinearlyinverselyproportionaltotheintake ̄exhaustpressuredifferenceꎻthepumpheadvolumetricefficiencyislinearlyinverselyproportionaltotheintake ̄exhaustpressuredifferenceꎻthepumpheadpowerconsumptionislinearlyproportionaltotheintake ̄ex ̄haustpressuredifferenceꎬbutunrelatedtotheintakepressureꎬfurthermoreꎬthemagnitudeofpowerconsumptionincreasescontinuouslywithhigherrotationalspeeds.Notablyꎬthepressurepulsationattherollingrotorpump sout ̄letissignificantlylowercomparedtoreciprocatingnaturalgascompressorsꎬandtheexhaustpressurepulsationattheboosterskidisalmosteliminatedꎬhighlightingthesubstantialadvantagesofthisequipment.Theseresearchre ̄sultsmayprovidevaluableinsightsforthedesignandapplicationofoil ̄gasmixed ̄flowpumps.Keywords:rollingrotoroil ̄gasmixed ̄flowpumpꎻquasi ̄isothermalcompressionprocessꎻfunctionalcharac ̄teristicꎻdisplacementcharacteristicꎻpressurepulsationcharacteristic0㊀引㊀言多相混输在油气田开发中的应用日趋深入ꎬ能够带来显著的经济与社会效益[1]ꎮ目前现场仍以离心泵[2]㊁螺旋轴流泵[3]㊁螺杆泵等常规多相混输泵为主ꎬ由于它们均采用将成熟泵头结构直接引入的方式ꎬ故适用范围有限ꎬ无法满足复杂多变的现场工况ꎮ尤其是对于含气0~100%全工况混输㊁大入口压力变化范围(6MPa甚至更高)和频繁出砂井况ꎬ其稳定性差ꎬ故障率高ꎮ因此ꎬ新型油气混输泵头结构的探索㊁开发与推广应用备受关注ꎮ鉴于转子式容积型泵头结构简单㊁工作稳定ꎬ宽含气率混输性能可靠ꎬ且适用压力变化范围大ꎬ国内外相继开发出以同步回转泵[4]㊁摆动转子泵[5]和滚动转子泵为代表的3种新型油气混输泵头体ꎬ正在国内各大气田推广ꎮ同步回转泵体结构由西安交通大学屈宗长教授首先提出ꎬ其团队在完成样机研制的基础上ꎬ针对该型泵头开展了系统性研究ꎬ涵盖整机动力特性与摩擦功耗分析㊁径向间隙与端面间隙对泵头排量影响分析㊁转子端面摩擦建模及其影响因素研究等ꎮ目前ꎬ他们的科研工作主要集中于整机结构的改进和滑板部件的优化设计[6]ꎮ南洋理工大学的TANK M 等[7]则基于滑板摩擦受力模型ꎬ对该类泵头结构不断完善ꎬ同时完成了整机性能试验ꎬ并进一步提出一种串联滑板型同步回转结构ꎮ然而由于运动部件过多ꎬ同步回转混输泵的整机摩擦磨损虽然得以减小ꎬ但无法承受高速运转ꎬ导致其实际应用受限ꎮ摆动转子泵的工作原理与摆动转子压缩机机体完全一致ꎬ由于滑板和活塞间连接设计不同ꎬ可衍生出众多变体结构ꎮ虽然在性能试验㊁结构形式创新[8]㊁摩擦损失理论建模[9]㊁动力学特性分析[10]等方面ꎬ摆动转子压缩机机体已得到广泛研究ꎬ但它在国内作为泵头体进行开发应用仅始于2015年前后ꎮ西南石油大学的吉效科[11]和李洋等[12]针对某型单缸摆动转子泵分别开展了动力学理论分析和工作腔流场仿真ꎬ并完成了样机试验验证ꎮ然而ꎬ由于采用单缸结构ꎬ该型混输泵主轴阻力矩波动过大ꎬ整机运转稳定性不足ꎬ无法满足当前大排量高负荷的现场需求ꎮ滚动转子泵同样来源于与之对应的滚动转子压缩机ꎮ作为一种常见的制冷和热泵用核心机ꎬ滚动转子压缩机在设计理论[13]㊁运动学与动力学建模[14]㊁试验研究和仿真分析[15]等方面发展成熟ꎬ当前研究主要聚焦于机体结构改进[16]㊁整机性能提升方法[17]㊁工作腔泄漏理论模型研究[18]ꎮ21世纪初ꎬ基于滚动转子压缩机发展而来的泵和膨胀机[19]相继被开发并投入使用ꎬ且均展现出良好性能ꎮ滚动转子泵通过摒弃进㊁排气阀门组件ꎬ结构更为简单ꎻ其泵头内部始终以油气混输形式对外输送介质ꎬ不仅适用于传统意义上的油气混合外输ꎬ而且可结合配套工艺直接替代压缩机实现纯天然气增压外输ꎬ在单井携液采气㊁混输增压采气[20]和负压抽吸采气[21]方面效果显著ꎬ利于充分挖掘气藏潜力ꎬ对于中后期气井的稳产增产意义重大[22]ꎮ目前正在川西新场气田㊁鄂尔多斯大牛地气田等地进行大力推广ꎮ与其余2种新型混输泵相比ꎬ滚动转子泵关键部件之间的接触和连接方式最为简单ꎬ设备故障率1212023年㊀第51卷㊀第12期张志广ꎬ等:滚动转子式油气混输泵工作特性试验研究㊀㊀㊀大幅降低ꎬ整机运转可靠性得到有力保障ꎬ不仅可以保持长期高效作业ꎬ而且排量提升(含转速提升)的限制因素减少ꎬ因此更具发展潜力ꎬ市场前景也更为广阔ꎮ滚动转子泵的基本结构虽然与滚动转子压缩机相同ꎬ但由于尺度㊁工质物性㊁实际工况及工作环境的改变ꎬ其动力学特性㊁内部流动特性和工作特性与后者完全不同ꎮ然而ꎬ目前未见与之相关的文献发表ꎮ对其工作特性等客观规律认识的不足ꎬ使得满足大排量㊁高压差需求的高性能泵头研发步伐严重受阻ꎬ极大限制了产品发展和更新迭代速度ꎮ通过开展滚动转子式油气混输泵试验研究ꎬ揭示泵头真实工作特性ꎬ掌握泵头工作机制ꎬ能够为高性能泵头研发提供有力技术支撑ꎬ对于服务天然气田全生命周期高效开发意义重大ꎮ本文阐明了滚动转子泵工作原理ꎬ并匹配泵头增压开采工艺ꎬ完成了高稳定性高精度内循环试验平台搭建ꎻ同时通过开展泵头出口温度㊁压力㊁排量和电机功率等性能参数测试试验ꎬ完成了泵头温升特性㊁排量特性㊁压力脉动特性和功耗特性分析ꎬ揭示了该型泵头典型工作特征ꎬ证明了其性能优越性ꎮ1㊀滚动转子式油气混输泵增压工艺图2㊀滚动转子式油气混输泵井口增压工艺流程Fig 2㊀Wellheadpressurizationprocessoftherollingrotoroil ̄gasmixed ̄flowpump1 1㊀滚动转子式油气混输泵结构原理滚动转子式油气混输泵主体结构由主轴㊁组合偏心转子系统㊁滚动活塞㊁缸体和闸阀构成ꎬ如图1所示ꎮ当主轴匀速旋转时ꎬ在偏心滚动活塞和上下往复运动闸阀的联合作用下ꎬ它们与缸体间形成的工作腔发生周期性变化ꎬ实现工质循环输送ꎮ由于泵头不含进㊁排气阀门ꎬ整机结构简单㊁运行稳定ꎬ基本可实现任意气液比油气混输ꎮ特别是其组合偏心转子系统采用了全滚动轴承结构ꎬ一方面使闸阀与滚动活塞间摩擦磨损得以控制ꎬ闸阀寿命得到延长ꎻ另一方面使主轴与滚动活塞直接接触带来的摩擦磨损几乎被消除ꎬ从而有效提升了整机能效ꎮ此外ꎬ滚动转子式油气混输泵采用了双缸结构ꎬ直接避免了单缸结构中主轴阻力矩波动过大的缺陷ꎮ图1㊀滚动转子式油气混输泵结构原理示意图Fig 1㊀Structuralschematicoftherollingrotoroil ̄gasmixed ̄flowpump1 2㊀滚动转子式油气混输泵地面工艺滚动转子式油气混输泵作为核心装备可广泛应用于各个领域ꎬ特别是在以单井增压采气和排液采气为代表的天然气稳产㊁增产方面取得了显著成效ꎮ基于该新型泵头的天然气地面工艺流程如图2所示ꎮ具体为:井口来气首先经前置气液分离器完成与井下携液的分离ꎬ然后进入滚动转子泵在其工作腔内实现气体增压ꎻ经增压后的天然气随后进入后置油气分离器ꎬ将气体从泵头工作腔带出的润滑油分离出去ꎬ最后进入集输管线ꎬ完成全部增压外输流程ꎮ期间ꎬ在后置油气分离器中被分离出的润滑油ꎬ则会在高压排气压力作用下经空冷器冷却后被再次注入泵体ꎬ实现压差自循环ꎮ为匹配上述增压工艺流程ꎬ采用一体化成橇设计后的滚动转子泵增压橇主要由底座㊁前置气液分221 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期离器㊁主电机㊁滚动转子泵㊁补油泵㊁后置油气分离器㊁空冷器及其配套管路仪表阀门等组成ꎮ2㊀试验台搭建以PXBQ6330D型滚动转子泵增压橇为试验对象ꎬ通过搭建能够覆盖其典型工况的试验平台ꎬ完成泵头性能测试试验ꎬ揭示滚动转子式油气混输泵真实工作特性ꎮ2 1㊀试验方案滚动转子泵增压橇包含了完整的动力系统㊁润滑系统㊁泵油系统㊁冷却系统㊁管路系统和控制系统ꎬ只需设备通电并接入气源即可正常工作ꎬ据此搭建泵头性能测试平台如图3所示ꎮ图3中的泵头出口背压阀用于调整排气压力ꎬ减压阀直接将经偏心泵增压后的高压气减压至泵头进口设计压力ꎬ储气罐则进一步对泵头进气予以缓冲稳压ꎮ此时ꎬ增压橇㊁背压阀㊁减压阀与储气罐构成了一个完整内循环系统ꎬ外置空压机则会在管路泄漏造成一定气量损失时进行适时补气ꎬ保证了试验平台的运行可靠性ꎮ图3㊀PXBQ6330D型滚动转子泵增压橇试验平台方案设计Fig 3㊀SchemedesignoftheboosterskidexperimentalplatformofPXBQ6330Drollingrotorpump2 2㊀设备介绍与参数说明PXBQ6330D型滚动转子泵增压橇主要技术参数见表1ꎮ因进气压力范围大ꎬ泵头排量和脉动特性分析尤为重要ꎬ试验过程中各温度㊁压力测点设置在泵头进㊁出口以及后置油气分离器出口ꎮ泵头性能测试过程中ꎬ温度测量采用LED一体式温度变送器ꎬ量程-50~150ħꎬ精度0 2%FSꎮ低频压力测量采用常规压力变送器ꎬ型号为HosswillHCP400ꎬ量程0~10MPaꎬ精度0 5%FSꎬ采样频率600Hzꎮ高频压力测量则采用了高频数采与动态压力传感器ꎬ其中高频数采型号为HBMQuantumX-MX840Bꎬ共8通道ꎬ24位分辨率ꎬ最高采样频率40kS/sꎮ动态压力传感器型号为UNIK5000ꎬ量程0~10MPaꎬ精度ʃ0 2%FSꎬ频响3 5kHzꎬ实际试验所采用的采样频率为1200Hzꎮ表1㊀PXBQ6330D型滚动转子泵增压橇技术参数Table1㊀Technicalparametersoftheboosterskidfor3㊀试验结果分析3 1㊀泵头温升特性滚动转子式油气混输泵配置了压差循环自润滑系统ꎬ并利用多通道润滑设计ꎬ基本达到了与缸内喷油相同的冷却效果ꎬ使腔内工质增压成为一种准等温压缩过程ꎮ试验结果表明ꎬ在不同进出口压差和转速工况下ꎬ空冷器只需间歇启停ꎬ即可使泵头排气温度持续维持在55ħ以下ꎬ从而为泵头长期稳定运转提供有力保证ꎮ显然ꎬ滚动转子混输泵的小温升工作特性较往复式天然气压缩机(出口温度普遍高于100ħ)体现出显著优势ꎮ3 2㊀泵头排量特性滚动转子泵的工作排量QV(m3/h)可表示为:QV=60Vsnp1p0æèçöø÷ηV(1)式中:Vs表示泵头工作腔最大可用容积ꎬm3ꎻn表示主轴转速ꎬr/minꎻp1表示入口绝对压力ꎬMPaꎻp0表示标准大气压ꎬ取0 1MPaꎻηV表示泵头容积效率ꎬ可以是任意结构参数与工作参数的组合函数ꎬ但主要受泵头工作参数(转速㊁进气压力㊁进出口压差等)影响ꎮ根据PXBQ6330D型泵头结构参数ꎬ上式可简化为:QV=0 65np1ηV(2)㊀㊀泵头排量性能测试的主要目标便是揭示排量QV和容积效率ηV的统计规律ꎬ建立泵头排量预测机制ꎮ3 2 1㊀转速影响滚动转子式混输泵以变频电机作为动力来源ꎬ在来气压力不变的条件下ꎬ可通过增大电机转速直接提升整机排量ꎮ给定进气压力1 0MPaꎬ试验获得不同进排气压差下泵头排量随主轴转速变化关321 2023年㊀第51卷㊀第12期张志广ꎬ等:滚动转子式油气混输泵工作特性试验研究㊀㊀㊀系ꎬ如图4所示ꎮ由图4可知:随主轴转速增大ꎬ泵头排量均不断增长ꎻ进一步作出二者线性拟合曲线可知ꎬ各曲线几乎均与y轴交于零点ꎬ故可认为泵头排量QV与转速呈正比ꎬ但增长比例与进㊁排气压力有关ꎮ图4㊀泵头排量随转速变化关系(进气压力1 0MPa)Fig 4㊀Relationshipbetweenpumpheaddisplacementandrotationalspeed(withintakepressureof1 0MPa)同时注意到ꎬ上述泵头排量与转速成正比的结论从侧面表明ꎬ滚动转子泵的工作腔容积效率ηV基本不受转速影响ꎮ3 2 2㊀进气压力影响保持来气温度不变ꎬ进气压力的增长意味着单位容积内工质质量流量的增长ꎮ给定主轴转速500r/minꎬ试验获得不同进排气压差下泵头排量随进气压力变化关系及其线性拟合曲线ꎬ如图5所示ꎮ由图5可知ꎬ与主轴转速影响规律类似ꎬ泵头排量QV随进气压力同样呈正比例放大关系ꎬ但放大比例由压差决定ꎬ故工作腔容积效率ηV基本与进气压力无关ꎮ图5㊀泵头排量随进气压力变化关系(转速500r/min)Fig 5㊀Relationshipbetweenpumpheaddisplacementandintakepressure(withrotationalspeedof500r/min)3 2 3㊀进排气压差影响滚动转子泵以油气混输的形式工作ꎬ工作腔内的润滑油与气体工质(如天然气)混合后共同参与增压热力过程ꎬ可同时起到润滑㊁冷却和密封作用ꎬ能够使增压后的气体温升得以控制ꎬ基本实现等温压缩ꎮ此外ꎬ由于泵头不含排气阀门ꎬ压缩腔内实际发生的更多是一种大容积高压气体与小容积低压气体瞬时掺混增压过程ꎬ故滚动转子泵虽然可作为压缩机用于气体增压ꎬ但采用的是泵类设计方法ꎬ体现出的更多是泵的工作特性ꎮ因此ꎬ进排气压差对该型泵的排量影响更为显著ꎬ而进排气压比的影响则相对微弱ꎬ并无明显规律ꎮ给定主轴转速500r/minꎬ试验获得不同进气压力下泵头排量随进排气压差的变化关系及其线性拟合曲线ꎬ如图6所示ꎮ图6中各曲线表明ꎬ对任意进气压力ꎬ泵头排量QV均会随进排气压差的增大而逐渐下降ꎬ且下降斜率保持不变ꎬ二者基本呈线性负相关关系ꎮ图6㊀泵头排量随进排气压差变化关系(转速500r/min)Fig 6㊀Relationshipbetweenpumpheaddisplacementandintake ̄exhaustpressuredifference(withrotationalspeedof500r/min)图7㊀泵头容积效率随进排气压差变化关系(转速500r/min)Fig 7㊀Relationshipbetweenpumpheadvolumetricefficiencyandintake ̄exhaustpressuredifference(withrotationalspeedof500r/min)根据式(2)和以上试验结果ꎬ得到不同进气压力下泵头容积效率ηV随进排气压差的变化关系及其线性拟合曲线ꎬ如图7所示ꎮ由图7可知ꎬ泵头容积效率ηV与进气压力无关ꎬ仅由进排气压差Δp决定ꎬ且为典型的线性负相关关系ꎮ421 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期3 3㊀泵头功耗特性如上所述ꎬ滚动转子式油气混输泵呈现出典型泵类工作特性ꎬ泵头消耗功率与进排气压差和工作转速密切相关ꎬ而与外输气体排量(对应进气压力这一参数)无关ꎮ试验过程中ꎬ泵头功耗直接以电机实际消耗电功率予以监测ꎮ给定进气压力1MPaꎬ试验获得不同转速下泵头功耗随进排气压差的变化关系及其线性拟合曲线ꎬ如图8所示ꎮ由图8可知ꎬ对任意转速ꎬ泵头功耗Pe均会随进排气压差的增大而逐渐上升ꎬ且上升斜率保持不变ꎬ二者基本呈线性正相关关系ꎮ图8㊀泵头功耗随进排气压差变化关系(进气压力1MPa)Fig 8㊀Relationshipbetweenpumpheadpowerconsumptionandintake ̄exhaustpressuredifference(withintakepressureof1MPa)㊀㊀进一步分析各曲线变化规律可知ꎬ在相同压差下ꎬ泵头功耗并未随转速的增大而成比例放大ꎮ分析其原因为ꎬ主轴转速提升后ꎬ泵头运转不稳定性增大ꎬ导致各相对运动部位摩擦因数变大ꎬ故摩擦功耗上升ꎬ整机功耗相对转速增长也更快ꎮ3 4㊀泵头进㊁出口压力脉动特性3 4 1㊀泵头进口压力变化特性增压橇中的前置气液分离器虽然可使滚动转子泵的进口压力稳定性得以保证ꎬ但由于不含进气阀门ꎬ受泵头工作腔周期性容积变化影响ꎬ其进口压力将不可避免出现微弱波动ꎮ以采样时间1s为例ꎬ试验获得不同转速下泵头进口压力时域变化曲线ꎬ如图9所示ꎮ由图9可知ꎬ泵头转速越高ꎬ进口压力波动愈密集ꎬ压力脉动峰峰值愈小ꎮ最小转速(300r/min)时ꎬ滚动转子泵进口压力脉动峰峰值最大ꎬ但仍不足0 004MPaꎬ相对压力平均值的占比在0 8%以下ꎮ对上述时域曲线进行滤波和快速傅里叶变换(FFT)ꎬ得到不同转速下泵头进口压力频谱分布ꎬ如图10所示ꎮ由图10可知:进口压力脉动幅值均集中于基频ꎬ即主轴转速的2倍(双缸结构)ꎻ随主轴转速的增大ꎬ基频脉动幅值逐渐降低ꎬ各倍频对应的幅值逐渐增加ꎬ表明压力脉动向高阶频率的分布缓慢增多ꎮ图9㊀不同转速下泵头进口压力时域变化曲线Fig 9㊀Time ̄domainVariationCurveofPumpHeadInletPressureatDifferentRotationalSpeeds521 2023年㊀第51卷㊀第12期张志广ꎬ等:滚动转子式油气混输泵工作特性试验研究㊀㊀㊀图10㊀不同转速下泵头进口压力频谱分析Fig 10㊀FrequencySpectrumAnalysisofPumpHeadInletPressureatDifferentRotationalSpeeds3 4 2㊀泵头出口压力变化特性滚动转子泵不含排气阀门ꎬ使得工作腔周期性容积变化对泵头出口压力脉动的影响有限ꎮ同样以采样时间1s为例ꎬ试验测得不同转速下泵头出口压力时域变化曲线ꎬ如图11所示ꎮ由图11可以看出ꎬ泵头出口压力脉动较进口压力脉动显著增强ꎬ且随转速增大ꎬ脉动峰峰值不断上升ꎮ此外ꎬ由图11还可以看出转速越高ꎬ泵头2个缸内压力输出的不同步性愈明显ꎮ如在300r/min转速下ꎬ出口压力曲线呈现出典型的单周期双峰值特征ꎬ这在一定程度上抑制了压力脉动的程度ꎮ图11㊀不同转速下泵头出口压力时域变化曲线Fig 11㊀Time ̄domainvariationcurveofpumpheadoutletpressureatdifferentrotationalspeeds㊀㊀经数据处理后ꎬ不同转速下的出口压力频谱如图12所示ꎮ图12中各频谱基频同样均为主轴转速的2倍ꎬ且出口压力脉动特性与转速密切相关ꎮ低转速下(如300r/min)的压力脉动主要集中于基频和双倍频ꎬ且脉动幅值较高转速时显著减小ꎬ这与时域曲线分析结果完全一致ꎮ而高转速下的压力脉动则仅集中于基频ꎬ且其基频脉动幅值随转速增大而增大ꎬ但增长幅度会逐渐降低ꎬ如图13所示ꎮ对于600r/min转速ꎬ即使不加任何措施ꎬ滚动转子泵出口压力的基频脉动幅值仅占到平均值的2%左右ꎬ显著优于当前气田二次增压广泛使用的往复式天然气压缩机ꎮ621 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期图12㊀不同转速下泵头出口压力频谱分析Fig 12㊀Frequencyspectrumanalysisofpumpheadoutletpressureatdifferentrotationalspeeds图13㊀主脉动幅值随转速变化曲线Fig 13㊀Variationcurveofmainpulsationamplitudewithrotationalspeed图14㊀不同转速下增压橇排气压力时域变化曲线Fig 14㊀Time ̄domainvariationcurveoftheexhaustpressureofboosterskidatdifferentrotationalspeeds3 5㊀橇体外输压力变化特性滚动转子泵增压橇作为一个整体装备ꎬ整橇压力外输特性关系到外输管网的工作稳定性ꎬ是衡量橇装设备的重要指标ꎮ不同转速下的橇体出口压力测试结果如图14所示ꎮ由图14可知ꎬ其脉动峰峰值随转速变化无明显规律ꎬ始终维持0 003MPa左右ꎬ仅为平均压力的0 45%ꎮ这一结果表明ꎬ泵头排出气体经后置油气分离器后ꎬ压力脉动得以缓冲ꎬ基本达到消除状态ꎮ721 2023年㊀第51卷㊀第12期张志广ꎬ等:滚动转子式油气混输泵工作特性试验研究㊀㊀㊀进一步分析增压橇出口压力频谱(见图15)可知ꎬ其主频分布无明显规律ꎬ脉动幅值主要集中于泵头基频和50Hz附近ꎬ表明橇体出口压力脉动除受主轴转速影响外ꎬ还与增压橇外输管路密切相关ꎮ但各阶脉动幅值与平均出口压力相比ꎬ基本可忽略不计ꎮ综上ꎬ滚动转子式油气混输泵自身气流脉动微弱ꎬ合理的橇装设计使之得到进一步削减ꎬ使得整橇外输气体的压力脉动基本被完全抑制ꎬ这与往复压缩机增压橇相比体现出重大性能优势ꎮ图15㊀不同转速下增压橇排气压力频谱分析Fig 15㊀Frequencyspectrumanalysisoftheexhaustpressureofboosterskidatdifferentrotationalspeeds4㊀结㊀论作为一种新型多相混输泵ꎬ滚动转子泵理论分析匮乏ꎬ通过开展泵头性能试验充分研究泵头特性ꎬ能够为高性能泵头研发提供坚实技术支撑ꎬ对于推动我国天然气高效开发具有重大意义ꎮ本文基于滚动转子式油气混输泵地面工艺ꎬ针对某型滚动转子泵增压橇搭建了高稳定性内循环试验平台ꎬ完成了泵头温度㊁压力㊁排量和功耗测试ꎬ揭示了滚动转子式油气混输泵典型工作特性ꎮ(1)泵头始终以油气混输形式工作ꎬ工作腔内润滑油同时起到冷却和密封作用ꎬ使工质增压成为一种准等温压缩过程ꎬ增压后的气体温升被有效控制ꎬ出口温度维持在55ħ左右ꎮ(2)虽然能够以压缩机的形式工作ꎬ但滚动转子式油气混输泵更多地体现了泵的工作属性ꎮ其实际排量与转速和进气压力均呈正比ꎬ与进排气压差线性负相关ꎻ泵头工作腔容积效率则仅与进排气压差有关ꎬ且为线性负相关关系ꎮ(3)泵头功耗与进排气压差线性正相关ꎬ但与泵头实际排量(或进气压力)无关ꎻ转速增大后ꎬ泵头功耗随之增大ꎬ且增幅逐渐变大ꎮ(4)泵头进出口均出现一定的压力脉动ꎬ且出口脉动效应相对更为显著ꎬ二者基频均为2倍转速ꎻ出口压力脉动峰峰值及各阶脉动幅值均会随主轴转速的增大而上升ꎬ但远低于往复式天然气压缩机ꎮ滚动转子泵增压橇外输气体的压力脉动则基本被消除ꎬ体现出了重大设备优势ꎮ参㊀考㊀文㊀献[1]㊀OLSONS.Multiphasepumpingforoilandgasindustry[J].OilfieldTechnologyMagazineꎬ2017(4):21-23.[2]㊀SHAOCLꎬLICQꎬZHOUJF.Experimentalinvestiga ̄tionofflowpatternsandexternalperformanceofacen ̄trifugalpumpthattransportsgas ̄liquidtwo ̄phasemix ̄tures[J].InternationalJournalofHeatandFluidFlowꎬ2018ꎬ71:460-469.[3]㊀ZHANGWWꎬYUZYꎬLIYJ.Analysisofflowandphaseinteractioncharacteristicsinagas ̄liquidtwo ̄phasepump[J].Oil&GasScienceandTechnology ̄Rev.IFPEnergiesNouvellesꎬ2018ꎬ73:69.[4]㊀刘岳龙ꎬ刘玉祥ꎬ隋冬梅ꎬ等.同步回转泵降压排水采气工艺应用及改进[J].石油机械ꎬ2017ꎬ45(6):67-71.LIUYLꎬLIUYXꎬSUIDMꎬetal.Pressurereductionanddrainagegasrecoverytechnologyusingsynchronousrotarypump[J].ChinaPetroleumMachineryꎬ2017ꎬ 821 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第12期45(6):67-71.[5]㊀吉效科.偏心转子油气混输泵的研制与应用[J].内蒙古石油化工ꎬ2016ꎬ42(9):14-16.JIXK.Eccentricrotoroil ̄gasmixturepumpdevelop ̄mentandapplication[J].InnerMongoliaPetrochemi ̄calIndustryꎬ2016ꎬ42(9):14-16.[6]㊀YANGXꎬQUZC.Suctionportdesignforasynchronalrotarymultiphasepump[J].ProceedingsoftheInstitu ̄tionofMechanicalEngineersꎬPartE:JournalofProcessMechanicalEngineeringꎬ2018ꎬ232(1):127-132.[7]㊀TANKMꎬOOIKT.Experimentalstudyoffixed ̄vanerevolvingvanecompressor[J].AppliedThermalEngi ̄neeringꎬ2014ꎬ62(1):207-214.[8]㊀SHINMSꎬNASKꎬCHOIGM.Anovelstructureofrollingpistontyperotarycompressor[C]ʊ24thInter ̄nationalCompressorEngineeringConference.WestLafa ̄yetteꎬIN:Purduee ̄Pubsꎬ2018:Paper2595. [9]㊀MAJJꎬCHENXꎬQUZC.Structuraloptimaldesignofaswingvanecompressor[J].FrontiersinEnergyꎬ2019ꎬ13(4):764-769.[10]㊀HEZLꎬYANGXZꎬLIDTꎬetal.Dynamiccharac ̄teristicsofaswingcompressorforanairconditioningsystematdifferentdischargepressures[J].Interna ̄tionalJournalofRefrigerationꎬ2020ꎬ112:125-135. [11]㊀吉效科ꎬ梁政.偏心摆动油气混输泵的动力特性研究[J].中国机械工程ꎬ2016ꎬ27(21):2890-2894ꎬ2901.JIXKꎬLIANGZ.Researchondynamiccharacteristicsofaneccentricswingmultiphasepump[J].ChinaMechanicalEngineeringꎬ2016ꎬ27(21):2890-2894ꎬ2901.[12]㊀李洋.偏心回转油气混输泵内部流场的数值模拟及优化设计[D].成都:西南石油大学ꎬ2016.LIY.Numericalsimulationandoptimizationdesignofinternalflowfieldineccentricrotaryoilgasmixedtransportpump[D].Chengdu:SouthwestPetroleumUniversityꎬ2016.[13]㊀XUJꎬYUBꎬYANGOXꎬetal.Researchonmotionandfrictionofrollingpistoninrotarycompressor[J].IOPConferenceSeries:MaterialsScienceandEngi ̄neeringꎬ2021ꎬ1180(1):012047.[14]㊀SULTANIAꎬSULTANTH.Positivedisplacementmachines:moderndesigninnovationsandtools[M].London:AcademicPressꎬ2019:263-289. [15]㊀HSULCꎬWONGGWꎬLUPJꎬetal.Numericalsim ̄ulationforflowofrollingpistontypeofrotarycompres ̄sor[J].Energiesꎬ2020ꎬ13(10):2526. [16]㊀FARKASBꎬSUDAJM.Applicationofmorphednon ̄linearphaseoscillatorsforrepresentingrollingpistoncompressorperformance[J].ProceedingsoftheInsti ̄tutionofMechanicalEngineersꎬPartA:JournalofPowerandEnergyꎬ2020ꎬ234(3):332-341. [17]㊀FARKASBꎬSUDAJM.Performanceanalysisofano ̄veloil ̄freerotarycompressor[J].ProceedingsoftheInstitutionofMechanicalEngineersꎬPartA:JournalofPowerandEnergyꎬ2018ꎬ232(7):870-887. [18]㊀王寿川ꎬ张欢ꎬ徐进兵ꎬ等.基于均质两相流的滚动转子压缩机径向泄漏预测模型[J].制冷ꎬ2019ꎬ38(3):45-50.WANGSCꎬZHANGHꎬXUJBꎬetal.Refrigerantleakagepredictionforrollingpistoncompressorsbasedonatwo ̄phasehomogeneousmodel[J].Refrigera ̄tionꎬ2019ꎬ38(3):45-50.[19]㊀GIUFFRIDAAꎬVALENTIGꎬPALAMINIDꎬetal.Ontheconceptualdesignofthenovelbalancedrollingpistonexpander[J].CaseStudiesinThermalEngi ̄neeringꎬ2018ꎬ12:38-46.[20]㊀仲耀龙ꎬ姚志光ꎬ高海军ꎬ等.混输增压技术在见水气井中的应用与效果评价[J].中国石油和化工标准与质量ꎬ2020ꎬ40(24):6-8.ZHONGYLꎬYAOZGꎬGAOHJꎬetal.Applicationandeffectevaluationofmixedtransportationboostingtechnologyinwatergaswells[J].ChinaPetroleumandChemicalStandardandQualityꎬ2020ꎬ40(24):6-8.[21]㊀刘融.抽吸与气举排水采气工艺方法研究[D].大庆:东北石油大学ꎬ2022.LIUR.Studyongasproductiontechnologyofsuctionandgasliftdrainage[D].Daqing:NortheastPetrole ̄umUniversityꎬ2022.[22]㊀宁梅ꎬ郝冠中ꎬ刘洋ꎬ等.天然气气井井口增压开采工艺评价[J].石油化工应用ꎬ2020ꎬ39(10):72-74.NINGMꎬHAOGZꎬLIUYꎬetal.Evaluationofboos ̄tingproductiontechnologyatwellheadofnaturalgaswells[J].PetrochemicalIndustryApplicationꎬ2020ꎬ39(10):72-74.㊀㊀第一作者简介:张志广ꎬ工程师ꎬ生于1988年ꎬ2019年毕业于南京航空航天大学航空宇航推进理论与工程专业ꎬ获博士学位ꎬ现从事能源动力系统的流动与传热调控方法研究和新型石油天然气开发装备的研发工作ꎮ地址: (430223)湖北省武汉市ꎮ电话:(027)52307645ꎮemail:shdzzg@163.comꎮ通信作者:潘灵永ꎬemail:panly oset@sinopec comꎮ㊀收稿日期:2023-07-23(本文编辑㊀刘㊀锋)9212023年㊀第51卷㊀第12期张志广ꎬ等:滚动转子式油气混输泵工作特性试验研究㊀㊀㊀。
195离心泵广泛应用于火力发电领域,而环形密封是离心泵减少工作介质从高压区域泄漏到低压区域的关键部件。
随着火力发电的不断发展,对离心泵环形密封性能的研究已成为热点。
虽然环形密封的主要作用是限制泄漏流动,但其产生的流体激振力对转子系统的稳定性有着明显的影响。
在火力发电行业,离心泵主要用于输送含有粉煤灰颗粒的固液两相流。
与清水介质相比,离心泵内的固液两相流动更为复杂。
离心泵安全稳定的高效运行对维护火力发电系统的安全稳定运行具有重要的经济和社会意义[1]。
因此本文采用欧拉-欧拉模型对固液两相流迷宫密封的动特性进行研究,通过对数值结果的处理分析颗粒体积分数、压差以及转速对迷宫密封的动力学特性的影响[2]。
1 迷宫密封模型与数值模拟方法1.1 几何模型本文所选用的迷宫密封为定子带10个矩形槽的直通式密封,其结构如图1所示。
通过三维建模软件建立了迷宫密封水力模型如图2所示,密封的进出口长度均为5.2mm,齿腔高度为3.0mm,齿顶间隙为0.2mm,转子直径为80mm,环形密封的长度为80mm。
图1直通式定子矩形齿迷宫密封口环结构示意图图2 迷宫密封口环水力模型1.2 控制方程在数值计算中,求解固液两相流问题一般有两种方法,一种是将颗粒视为连续相的欧拉-欧拉方法,另一种是将颗粒视为离散相的欧拉-拉格朗日方法。
当计算的颗粒浓度较高时主要采用欧拉-欧拉方法,其可以将流体与颗粒处理成互相贯穿的连续介质,其计算量小,计算成本低[3,4]。
在低颗粒浓度下,主要采用欧拉-拉格朗日方法,在数值模拟过程中,该方法可以追踪每个粒子的运动轨迹,且能够获取流体与颗粒之间的相互作用,但计算量相当大。
本文选取的颗粒直径为5μm且颗粒体积分数大于10%,因此选择欧拉-欧拉方法进行数值模拟离心泵迷宫密封内部的固液两相流动。
1.3 环形密封转子动力学模型在迷宫环形密封的制造和安装过程中会存在一定的误差累积导致转子在静止状态下其轴线与定子轴线不重合。
高压离心式注水泵泵轴材质选择袁静1,孙剑毅2,毛学强1,宋文文1,赵密锋1,李岩1,王鹏1 (1.中石油塔里木油田分公司油气工程研究院,新疆库尔勒 841000)(2.中石油塔里木油田分公司开发事业部,新疆库尔勒 841000)【摘要】[摘要]本文分析了国内某油田联合站内的两台高压离心式注水泵泵轴腐蚀的原因,并将1Cr17Ni2与Monel K500两种材料的性能进行对比。
对比结果显示:Monel K500作为联合站高压离心式注水泵泵轴材质具有一定的优越性,该材质能够有效抵抗Cl-造成的点蚀。
【期刊名称】石油和化工设备【年(卷),期】2015(018)009【总页数】5【关键词】[关键词]高压离心式注水泵;泵轴腐蚀;1Cr17Ni2;Monel K500国内某油田联合站内的两台高压离心式注水泵于2005年投入生产。
在2008年第一次大修期间发现:叶轮口环固定螺钉腐蚀,导致叶轮口环脱落、移位;导叶叶片磨损,造成出口压力下降;在泵轴处的3、6级叶轮安装部位有长61mm×宽7.5mm×深0.5mm的沿泵轴的径向腐蚀,4、5级叶轮安装部位有轻微腐蚀,其余各叶轮部位均可见腐蚀痕迹。
处理的方法是更换泵轴和十个叶轮。
在使用后不到半年的时间里,进行了第二次返修,又发现了如下三个问题:(1)轴上高压端机械密封所在位置中的O形圈位置沿圆周腐蚀,宽度为5 mm,镀铬层全部腐蚀掉;(2)每只叶轮所在位置叶轮两端均有不同程度的腐蚀;(3)第4级与第5级之间有多处点腐蚀,最大直径为Φ6 mm,深度5 mm。
在本次修理中,将泵轴换为Monel K500材质。
更换后,至今未发现问题。
图1为离心式注水泵泵轴腐蚀图片,可以明显地看到,在泵轴的表面上有很多的点蚀坑。
该地区Cl-浓度相当高,这是Cl-造成点蚀的典型表现。
综上所述,泵轴原先使用的材质1Cr17Ni2不能满足工作环境的腐蚀特性,尤其是耐Cl-腐蚀。
1 泵体内部环境对泵轴腐蚀的影响国内某油田联合站内高压离心式注水泵中的水是经过三相分离器、原油脱水器、除油器、一级过滤器、二级过滤器处理之后的水。
中国石油大学渗流力学实验报告实验日期:2012.4.6 成绩:班级:石工09-6班学号:09021251 姓名:张敏教师:张俨彬同组者:张慧、王宇轩实验一不可压缩流体单向稳定渗流实验一、实验目的1、本实验采用的是变截面两段均质模型,通过实验观察不同段的不同压力降落情况。
2、进一步加深对达西定律的深入理解,并了解它的适用范围及其局限性。
二、实验原理一维单相渗流实验以稳定渗流理论为基础,采用变直径填砂管模型,以流体在模型中的流动模拟水平均质地层中不可压缩流体单向稳定渗流过程。
保持填砂管两端恒定压力,改变出口端流量,在稳定条件下测量填砂管不同位置处的压力值,可绘制压力随位置的变化曲线;根据一维单相稳定渗流方程的解并计算两段填砂管的渗透率。
三、实验流程图1-1 一维单相稳定渗流实验流程图1~10-测压管 11-供液阀 12-供液筒 13-溢流管 14-供液控制阀15-水平单向渗流管(粗) 16-支架 17-水平单向渗流管(细) 18-出口控制阀 19-量筒四、实验步骤1、记录渗流管长度、渗流管直径、测压管间距等相关数据。
2、关闭出口控制阀“18”,打开供液阀“11”,打开管道泵电源,向供液筒注水。
3、打开并调节供液控制阀“14”,使各测压管液面与供液筒内的液面保持在同一水平面上。
4、稍微打开出口控制阀“18”,待渗流稳定后,记录各测压管的液面高度,用量筒、秒表测量渗流液体流量,重复三次。
5、调节出口控制阀“18”,适当放大流量,重复步骤4;测量不同流量下各测压管高度,共测三组流量。
6、关闭出口控制阀“18”,关闭供液控制阀“14”,结束实验。
注:待学生全部完成实验后,先关闭管道泵电源,再关闭供液阀“11”。
五、实验要求与数据处理1、根据表1-1,记录取全所需数据,计算三个不同流量下的测压管水柱高度(举例)。
1流量下填砂管粗端测压管1的水柱高度cm 6.862/90.31.1-2.80=++= 2流量下填砂管细端测压管6的水柱高度cm 55.752/5.40.31.1-4.71=++=2、绘制三个流量下,测压管压力与流动距离的关系曲线,说明曲线斜率变化原因。
第11卷第22期2016年11月中国科技论文CHINA SCIENCEPAPERVol. 11 No. 22Nov.2016涡轮泵密封动力学特性和封严性能的分析与优化涂霆,何立东,李宽,胡航领,张力豪(北京化工大学化工安全教育部工程研究中心,北京100029)摘要:针对氢涡轮泵由流体激振产生次同步振动问题,采用CFD软件进行了数值计算,分析了该涡轮泵密封的动力学特性和 泄漏量。
首先,研究了涡轮泵离心轮原始梳齿迷宫密封的偏心率、密封间隙、密封齿厚和密封齿数对密封动力学特性系数的影 响,结果表明改变原梳齿迷宫密封的结构参数对动力性能提升有限。
在此基础上,改进该密封为孔型密封并进行计算和分析,结果表明孔型阻尼密封的动力学特性及泄漏量较迷宫密封有极大改善;通过计算分析进一步优化了孔型密封的周向孔数、孔深、密封间隙和孔排布方式,得出交错布置的周向80孔、孔深3. 3 m m的孔型密封性能最优。
进一步计算了 1组蜂窝密封的动 力学特性系数,与孔型密封进行比较,得出蜂窝密封较孔型密封动力学性能略有提升。
关键词:密封动力学特性;梳齿迷宫密封;孔型密封;蜂窝密封;CFD中图分类号:TB42; TE962 文献标志码:A 文章编号= 2095 - 2783(2016)22 - 2568 - 07Dynamic coefficients analysis and optimization research on turbo pump sealTU Ting, HE Lidong, LI Kuan, HU Hangling, ZHANG Lihao(Engineering Research Center o f Chemical Technology Safety Ministry o f Education ,Beijing University o f Chemical Technology,Beijing 10002^,China)Abstract:To solove the sub-synchronous vibration problem in hydrogen turbo pump of a certain model liquid rocket engine excited by fluid in its seal,the dynamic coefficients and leakage of the seal are numerically calculated and analyzed. Firstly,the turbo pump centrifugal wheel labyrinth seal eccentricity, tip clearance, number of teeth and tooth thickness?effects on sealing dynamic coefficients are investigated and results indicate that the dynamic performance promotion by changing structural parameters is limited. On this basis ^labyrinth seal is optimized to hole-pattern seal and the new seal is analyzed likewise. Results show that the dynamic coefficients and leakage of hole-pattern seal are greatly superior to labyrinth seal. Furthermore,the circumferential’ s hole number, hole depth, seal gap and hole arrangement of the hole-pattern seal are optimized and results find that when the circumferentially staggered arrangement hole number is 80 and hole depth is 3. 3 mm, seal performance is the optimal. Finally,a group of dynamic coefficients of honeycomb seal are calculated, and the results indicate that the dynamic coefficients of honeycomb seal are slightly better than hole-pattern seal.Keywords:dynamic seal coefficients;labyrinth seal;hole-pattern seal;honeycomb seal;CFD液体火箭发动机涡轮泵通常在高速、高压和强 振动工况下工作,因此保证转子运行稳定性十分关 键。
第35卷第3期哈尔滨工程大学学报V ol.35No.3 2014年3月Journal of Harbin Engineering University Mar. 2014 泵用不可压缩流体密封刚度系数分析张盟1,王晓放1,徐胜利1,万学丽2(1.大连理工大学能源与动力学院,辽宁大连 116023;2.大连深蓝泵业有限公司,辽宁大连 116031)摘要:针对不可压缩流体密封弹性支承的问题,分析了负刚度产生的原因。
选用三维流动模型,数值求解Navier-Stokes方程。
采用k-ε湍流模型,计算LNG泵的节流衬套和口环密封的动力特性系数,分析在LNG泵不同转速工况下,不可压缩流体密封的动特性变化,并与2倍间隙密封的动特性相比较。
模拟了密封腔内部流场,通过分析比较密封圆周上压力和速度分布,研究等截面环形产生负直接刚度的原因和影响因素。
研究结果表明:等截面环形密封和槽道式密封的1倍间隙直接刚度小于2倍间隙,1倍间隙交叉刚度大于2倍间隙,密封磨损后稳定性反而提高;转速升高使等截面环形密封和槽道式密封的直接刚度下降,交叉刚度增大,造成稳定性下降;等截面环形小间隙密封,在高转速工况下容易产生负直接刚度,影响转子的稳定性,工程上建议采用槽道式密封控制不可压缩流体泄漏。
关键词:动力特性;不可压缩流体密封;负直接刚度;密封腔Doi:10.3969/j.issn.1006-7043.201301026中图分类号:TB42文献标识码:A 文章编号:1006-7043 (2014) 03-xxxx-xAnalysis of the stiffness of the incompressible seal in pumpZHANG Meng1,WANG Xiaofang1,XU Shengli1,WAN Xueli2(1.School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning 116023, china; 2.DalianDeep Blue Pump Co., Ltd., Dalian, Liaoning 116031, china)Abstract:To investigate theflexible supportofincompressible seal, negative stiffnesscharacteristic was analyzed.Therotordynamic coefficients in the neck bush and the ring seal in the LNG pump were predicted by employing three-dimensional flow model, the κ-ε turbulence model and numerically solving the Navier-Stokes equations. The dynamic characteristics were compared in the incompressible seals over a range of rotating speed and between nominal clearance and twice clearance seals. The incompressible flow and distributions of pressure and velocity were predicted. Understanding the reason of the negative direct stiffness in the annual seal was improved and the influences on the negative direct stiffness were also found. Direct stiffness of twice clearance sealwashigher than normal clearance seal. But cross stiffness of twice clearance seal was smaller than normal clearance seal. It indicated that rotor stability was improved after seal wear. Direct stiffnessdropped and cross stiffness increased with whirling speed. It causedrotor stability reduction.In the high rotating speed condition, the annual seal with a small clearance was vulnerable to perform a characteristic of negative stiffness which destroyed the stability of the rotor system. The grooved seals are recommended to be applied in the pump to control the incompressible flow instead of the annual seal.Keywords:dynamic characteristics; incompressible seal; negative direct stiffness1泵叶轮入口轮盖与进口导流管间存在动静间隙。
部分高压流体经叶轮出口间隙外泄,并重新回流至泵入口,这股回流既消耗主泵的功率,也干扰主流场流动,同时减小有效通流面积,降低泵的流动效收稿日期:2013-01-16.基金项目:国家973计划资助项目(2009CB724303);辽宁省博士启动基金资助项目(20131019).作者简介:张盟(1984-),男,博士研究生;王晓放(1960-),女,教授,博士生导师通信作者:张盟,E-mail:zhangmeng@. 率和性能。
为了尽量降低这种泄漏,在动静间隙上设置非接触式不可压缩流体密封。
非接触式密封技术广泛应用在泵等旋转机械中,它能够有效控制旋转部件与静止部件间的泄漏。
对于转子动力系统,密封会提供附加的刚度和阻尼,这对转子的稳定性造成一定的影响[1]。
Childs等[2-4]对控制体方法不断改进。
Arghir等[5-7]发展了CFD方法,并计算动力特性系数。
Benckert等[8]做了大量的关于动力特性的实验,并网络出版时间:2014-01-08 09:37网络出版地址:/kcms/doi/10.3969/j.issn.1006-7043.201301026.html- 2 - 哈尔滨工程大学学报 第35卷证明密封的交叉刚度是由密封周向流动引起的,他们在实验中测量了不同类型密封的直接刚度,发现较长密封的直接刚度为负值。
Leong 等[9]蒸汽轮机迷宫密封做了大量试验,结果与Benckert 等的测量结果很吻合,多数密封直接刚度为负,少量短密封为正。
Mihai 等[10]发现进出口压差较小时,出口有回堵现象,动力特性系数中的直接刚度系数出现负值,影响转子的对中效应,转子稳定性差。
国内何立东等[11-13]用实验和数值方法研究动力特性系数。
模拟仿真方面,孙婷梅等[14-15]利用CFD 有限元软件Fluent 计算迷宫密封三维流场,研究了偏心率、入口预旋、涡动速度对密封动力特性的影响,密封直接刚度维持在负值范围,他们计算出密封周向压力分布曲线,但是没有分析产生负直接刚度的原因。
本文应用数值模拟结合工程实际,利用CFD 有限元软件Fluent 计算LNG 泵的节流衬套和口环密封的动力特性系数,模拟在LNG 泵不同转速工况下,不可压缩流体密封的动特性变化,通过分析比较密封圆周上压力和速度分布,研究等截面环形密封产生负直接刚度的原因和影响因素。
1密封模型1.1 涡动转子数学模型本文假设整体计算域为湍流,湍流模型采用标准的k-ε模型[16],近壁面采用标准壁面函数:ð ρk ðt+ð ρk u i ðx i=ððx jμ+μt σkðkðx j+G k −ρε (1)ð ρε ðt +ð ρεu i ðx i =ððx j μ+μt σε ðεðx j +C 1εk G k −C 2ερε2k(2) 式中:k G 表示由平均速度梯度产生的湍动能项,b G 表示由浮力产生的湍动能项,M Y 表示由可压缩湍流中,耗散率的波动项,方程常数项中1=1.44C ε,2 1.92C ε=,=0.09C μ,还有=1.0k σ,=1.3εσ分别是湍动能k 和湍动能耗散率ε的湍流普朗特数,k S 和S ε是自定义源项,标准k-ε湍流模型是半经验公式。
1.2涡动转子动力学模型本文采用旋转坐标系,在转子中心定义坐标系,转子与静子的相对位置不变,坐标系变换把非定常问题转换成定常问题。
图1所示偏心转子在静子中涡动受力,e 为转子偏心距,本文假设转子绕静子中心以圆形轨迹涡动,涡动半径是转子偏心距e ,涡动角速度是Ω,转子的旋转角速度是ω,转子的旋转角速度与涡动角速度比值定义为涡动比。
涡动轨迹的径向力和切向力F r 、F t 。
(a) 转子受力径向示意图(b) 转子受力轴向示意图 图1 偏心转子在静子中涡动受力示意图Fig.1 Force on eccentric rotor in stator1.3 动力学方程当转子受到小扰动,以小圆形轨迹绕静子中心涡动,转子受到的水动力可以由刚度、阻尼和惯性系数的反对称矩阵和转子的位移、速度、加速度的线性关系表示,矩阵中包括6个独立参数(K ,k ,C ,c ,M ,m ),K 为直接刚度,k 为交叉刚度,C 为主阻尼,c 为交叉阻尼,M 主惯性系数,m 耦合惯性系数。
−F X −F Y = K −k k K ∙ ∆x ∆y + C −c c C ∙ ∆x ∆y + M −m m M ∙ ∆x∆y(3)在不同的涡动比下,积分转子表面压力生成转子涡动轨迹的径向力和切向力F r 、F t ,径向力和切向力的二阶方程:F rϵ=K +cω−Mω2(4) F t ϵ=k −Cω−mω2(5)本文求解密封线性动力特性,偏心距选取径向间隙的10%,Moore 等[17]验证过此值在模拟小轨迹涡动的准确性。