结构的刚度柔度系数(1)
- 格式:ppt
- 大小:898.01 KB
- 文档页数:22
刚架的刚度系数计算过程计算公式:k=P/δ,P是作用于结构的恒力,δ是由于力而产生的形变。
刚度的国际单位是牛顿每米(N/m)。
在自然界,动物和植物都需要有足够的刚度以维持其外形。
在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。
因此在设计中,必须按规范要求确保结构有足够的刚度。
但对刚度的要求不是绝对的,例如,弹簧秤中弹簧的刚度就取决于被称物体的重量范围,而缆绳则要求在保证足够强度的基础上适当减小刚度。
扩展资料
构件变形常影响构件的工作,例如齿轮轴的过度变形会影响齿轮啮合状况,机床变形过大会降低加工精度等。
影响刚度的因素是材料的弹性模量和结构形式,改变结构形式对刚度有显著影响。
刚度计算是振动理论和结构稳定性分析的基础。
在质量不变的情况下,刚度大则固有频率高。
静不定结构的应力分布与各部分的刚度比例有关。
在断裂力学分析中,含裂纹构件的应力强度因子可根据柔度求得。
刚度测量有静态测量和动态测量两种测量法。
静态测量方法是通过确定施加于弹挠性零上的力矩和转角(或力和位移)的大小,直接用胡克定律算出刚度系数K值,可得出扭矩一转角力-位移的特性曲线。
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度、柔度、刚性、柔性、泊松比、剪切应变、体积应变“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Y oung's Modulus):杨氏模量是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
1807年因英国医生兼物理学家托马斯·杨(Thomas Y oung, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。
弹性模量和杨氏模量很相似,弹性模量有拉伸和剪切的两个方向,杨氏主要指的是拉伸的。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
弹性模量(Elastic Modulus):弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
用柔度法求自振频率的特征方程用柔度法求自振频率的特征方程1. 引言自振现象是物体在受到外力作用后出现的特定频率的振动现象。
为了研究物体的自振频率,我们可以使用柔度法来求解它的特征方程。
柔度法是运用力学基本原理和概念,将结构物件视为一个弹簧和质点系统,并通过柔度系数来描述结构的刚度。
本文将从柔度法的基本原理、具体求解步骤和应用等方面进行全面评估和探讨。
2. 柔度法基本原理柔度法的基本原理是将结构物体近似地看作由一系列弹簧和质点组成的系统。
对于每一个质点,我们可以写出它受力平衡的方程。
假设系统中有n个自由度,我们可以得到n个未知的平衡方程,这些平衡方程可以进一步组成一个关于未知变量的线性方程组。
柔度系数是描述结构物体刚度的参数,它可以通过力和位移的关系来确定。
在柔度法中,我们通过对结构物体施加单位力后测量其对应的位移,从而得到柔度系数。
通过测量不同点的柔度系数,我们可以得到结构物体的柔度矩阵,并可以将其转化为刚度矩阵进行分析。
3. 求解步骤(1)建立结构的柔度矩阵根据结构物体的几何形状和材料参数,我们可以推导出其柔度矩阵。
柔度矩阵描述了结构物体在单位力作用下的位移响应,它是一个对称的矩阵。
(2)建立平衡方程根据柔度矩阵,我们可以建立结构物体的平衡方程。
平衡方程是根据质点和弹簧的受力平衡条件建立的,通过推导可以得到一个关于位移响应和力的线性方程组。
(3)求解特征方程通过对平衡方程进行变量分离和整理,我们可以得到一个特征方程。
特征方程是一个关于自振频率的方程,通过求解特征方程的根,可以得到结构物体的自振频率。
4. 应用实例柔度法可以应用于不同领域的结构物体动力学分析中。
在机械工程中,我们可以使用柔度法来研究弹簧系统、摆线机构等的自振现象。
在土木工程中,柔度法可以用于研究桥梁、楼房等结构物体的自振频率。
柔度法也可以应用于电工、航空航天等领域。
5. 总结与回顾通过使用柔度法求解自振频率的特征方程,我们可以研究结构物体的振动现象。
柔度系数符号1. 什么是柔度系数?柔度系数是一种用于描述材料柔软性的物理量。
它是指材料在受到外力作用后发生变形的程度。
柔度系数通常用符号表示,可以用于定量比较不同材料的柔软性。
2. 柔度系数的符号表示柔度系数一般用小写字母表示,常见的符号有:•ε:表示材料的应变(strain),是指材料在受到外力作用后相对于初始状态的变形程度。
应变可以是线性的,也可以是非线性的,取决于材料的性质。
•σ:表示材料的应力(stress),是指材料单位面积上受到的力的大小。
应力可以是拉伸应力、剪切应力等不同类型的应力。
•E:表示材料的弹性模量(Young’s modulus),是指材料在拉伸或压缩时的应力和应变之间的比例关系。
弹性模量可以用来描述材料的刚度。
•G:表示材料的剪切模量(shear modulus),是指材料在剪切应力下的变形程度。
剪切模量可以用来描述材料的刚度。
•ν:表示材料的泊松比(Poisson’s ratio),是指材料在拉伸或压缩时在垂直方向上的收缩或伸长程度与拉伸方向上的应变之间的比例关系。
3. 柔度系数的计算方法柔度系数可以通过应力和应变之间的关系来计算。
对于线性弹性材料,柔度系数可以用弹性模量和泊松比来表示:柔度系数 = 弹性模量 / (2 * (1 + 泊松比))对于非线性材料,柔度系数的计算相对复杂,需要考虑材料的应力-应变曲线。
4. 柔度系数的应用柔度系数在材料科学和工程中有广泛的应用。
它可以用来比较不同材料的柔软性,帮助工程师选择合适的材料。
柔度系数还可以用来设计和优化结构,以确保其在受力时具有良好的变形性能。
在纺织工业中,柔度系数可以用来评估织物的柔软性和弹性。
这对于设计舒适的服装和纺织品非常重要。
在建筑工程中,柔度系数可以用来评估建筑材料的变形能力和抗震性能。
它可以帮助工程师设计出更安全、更稳定的建筑结构。
在医学领域,柔度系数可以用来评估组织和器官的柔软性。
例如,在眼科学中,柔度系数可以用来评估角膜的弹性,帮助医生诊断角膜病变。
钢筋混凝土结构中的刚度和柔度混凝土结构太刚则变形能力差,强大的地震力瞬间袭来时,没有足够的延性来缓冲,依靠结构的刚度来硬碰硬,容易造成局部受损进而导致整体破坏;结构太柔的体系当强大的地震力瞬间袭来时,没有足够的刚度抗衡,只有依靠延性变形来消减外力。
但是钢筋混凝土位移过大,和扭转失稳,对建筑物的影响是致命的。
构的刚度是指结构体系抵抗由外载引起变形的能力,由刚度系数及由它们组成的刚度矩阵定量。
结构刚度通常指静刚度,与结构的材料、几何形状以及边界条件相关;在大变形几何非线性情况下与应力大小、方向及分布以及位移量值与分布相关。
结构刚度与柔度是相对的概念,它们互逆。
结构设计必须有一定刚度要求才能使结构在正常工作载荷下保持必要的外形,在抵抗受压与剪力时不致于屈曲。
20世纪70年代后期,新西兰的T.Paulay和R.Park提出了保证钢筋混凝土结构具有足够弹塑性变形能力的设计方法。
该方法是基于对非弹性性能对结构抗震能力贡献的理解和超静定结构在地震作用下实现具有延性破坏机制的控制思想提出的,可有效保证和达到结构抗震抵抗强大破坏力,又使结构设计做到刚柔并济,经济合理。
第一原则:柱刚梁柔:框架结构或框架—剪力墙(核心筒)结构在地震作用下形成梁铰机构,即控制塑性变形能力大的梁端先于柱出现塑性铰,即所谓“强柱弱梁”;通俗的理解就是柱刚梁柔。
验研究表明,梁先屈服,可使整个框架有较大的内力重分布和能量消耗能力,极限层间位移增大,抗震性能较好。
在建筑结构中,框架柱破坏,梁会跟着变形破坏;而梁破坏了,柱还可以不破坏,甚至在梁破坏倒塌的间隙中还有可能存在缝隙,从而形成安全通道。
因此可见柱承担的功能责任比梁大,柱不能先破坏。
为了保证柱是在最后失效,我们要有意识把梁设计成相对薄弱的环节,使其破坏在先,以最大限度减少可能出现的损失。
如果梁柱等同看待,企图让他们都“坚不可摧”,则可能会造成同时破坏,后果会更糟糕,损失会更大。
实现强柱弱梁的优点有三:(1)梁的破坏一般只影响本层与相邻上层,梁属于局部性构件;而柱子的破坏要影响其上各层,相对来说柱是全局构件。
《结构动力学》试题B 卷 参考答案及评分标准一、填空题。
(11分)1、2(3分)2、 < (3分)3、 14(3分)4、 小 鞭梢效应 (3分)二、判断以下说法是否正确,对错误的说法加以改正。
(6×3分=18分) 1、(× )改正:可简单地在“都是”前加上“不”;或改为“大小、方向、作用点位置随时间变化的荷载,只有使结构的质量产生显著加速度的在结构动力计算中才看作动力荷载。
” 2、( ×) 改正:将“一定”改为“不”;或将“一定等于其超静定次数”改为“与其超静定次数无关” 3、(×)改正:将“改变激励频率”改为“改变结构固有频率”;或将“改变激励频率”改为“改变结构的刚度” 4、(√) 5、(× ) 改正:将“刚度法”与“柔度法”对调;或将“静定”改为“超静定” 6、(×) 改正:将“不高”改为“很高”三、选择题。
(6×3分=18分) 1、(B ) 2、(B ) 3、( D ) 4、(C ) 5、(A )6、(B )四、解:1) 梁中点的柔度系数为EIl k EI l k EI l 19254148212148333=+=⨯+=δ (4分) 固有频率s ml EI m 116.1344300510919251921363=⨯⨯⨯⨯===δω (3分) 动力系数55.116.13480111122=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=ωθβ (3分)梁中点总位移幅值为mm P mg Pmg y mg A mg y st t 3.6)102055.110300(10919245)(363max =⨯⨯+⨯⨯⨯⨯=+=⋅+⋅=+⋅=+⋅=βδδβδβδδ (5分) 2) 动力系数为545.116.1348005.0216.1348011)2()1(1222222=⎪⎭⎫⎝⎛⨯⨯+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-=ξγγβ (3分)梁的最大动弯矩为m kN PlM d ⋅=⨯⨯==9.304420545.14max β (3分)五、解:质量矩阵kg M ⎥⎦⎤⎢⎣⎡=4.15.210][5 (1分) 柱的侧移刚度mN k m N k /108.110412122/103.610418122104241227622762621⨯=⨯⨯⨯=⨯=⨯⨯⨯+⨯⨯⨯= (3分)刚度矩阵m N k k k k k K /8.18.18.13.610][722221⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+= (4分) ⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡----=-004.11801801805.2630}0{}]){[]([21222A A A M K ωωω (2分) 0180180)4.1180)(5.2630(22=⨯---ωωsrad s rad /45.17,/72.808100013325.32124===+-ωωωω (4分)振型为:73.018045.175.263044.218072.85.2630212222211211-=-⨯--===-⨯--==A A A A ρρ (4分){}{}{}{}TT73.01,44.2121-==φφ (1分)振型图表示为:六、解:截面惯性矩⎪⎭⎫ ⎝⎛=x l h I 2cos 1233π,单位长度质量x l h m 2cos πρ=-, (2分)取第一振型试函数2)(⎪⎭⎫⎝⎛=l x a x y ,满足左端位移边界条件0)0()0(='=y y , (3分)()32302233029422cos 12)()(l a Eh dx l a l x h E dx x y x EI llππ⎰⎰=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛='' (2分) ()320420222cos )()(l ha dx l x a l x h dx x y x m llπρπρ⎰⎰=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=-(2分) 因此基频近似值为ρωρπρπωEhEh l hal a Eh 471.0,922942323232=== (2分)。
结构力学柔度计算公式
柔度系数为刚度系数的倒数,计算方法为:刚度系数为EA/L,其中E—杆件的弹性模量,A—杆件截面面积,L—杆件的长度。
柔度系数为:1/(EA/L)=L/EA
柔度系数,表示的是物体杆件在单位力的作用下,杆件顶部产生的位移,在单自由度体系或振动方程互不耦合的多自由体系,其值与刚度系数互为倒数。
刚度系数是用以描述材料在外力作用下弹性变形形态的基本物理量。
更通俗的讲是使杆端产生单位位移时所需施加的杆端力。
物体杆件在单位力的作用下,杆件顶部产生的位移,在单自由度体系或振动方程互不耦合的多自由体系,其值与刚度系数互为倒数。
柔度=uL/i(u为长度系数,与杆的约束形式有关;L为杆长;i为杆截面的惯性半径)。
由于轧机零部件间存在的间隙和接触不均匀是一个不稳定因素,弹性曲线的非线性部分是经常变化的,在实际生产中,为了消除非线性段的影响,往往采用人工零位法。
理论力学中的刚度与柔度分析理论力学是研究物体在外力作用下的力学性质和相互作用的学科。
在力学中,刚度和柔度是描述物体对外力响应的重要参数。
本文将重点介绍刚度和柔度的概念、计算方法以及在工程中的应用。
一、刚度的概念与计算方法刚度是指物体抵抗形变的能力。
当物体受到外力作用时,如果能够保持形状不发生变化,即具有很高的抵抗形变能力,我们称该物体具有高的刚度。
刚度可以用来衡量物体对力的响应程度,是一个标志物体强度和刚性的指标。
在理论力学中,刚度通常用弹性系数表示。
最常见的是弹性模量,也称为杨氏模量,用E表示。
弹性模量描述了物体受力时的应变与应力之间的关系。
弹性模量越大,物体的刚度就越高。
计算刚度的方法有多种,其中最常用的是针对杆件和弹簧的刚度计算公式。
对于杆件,刚度可以通过杨氏模量和截面形状来计算。
例如,对于长度为L、截面面积为A的杆件,其刚度可以通过以下公式计算:刚度 = 弹性模量 ×截面积/长度对于弹簧,刚度可以通过弹性系数和弹簧的形状参数来计算。
例如,对于线性弹簧,其刚度可以表示为:刚度 = 弹性系数 ×弹簧长度/形变刚度的计算方法因物体的形状和材料特性而异,需要根据具体情况进行选择和计算。
二、柔度的概念与计算方法柔度是指物体在受到外力作用时发生形变的程度。
与刚度相反,柔度越高,物体对外力的响应越灵敏,形变程度越大。
在理论力学中,柔度可以用来衡量物体的柔软度和弯曲性。
柔度的计算方法与刚度类似,同样涉及物体的形状、尺寸和材料特性。
对于弹性材料,柔度可以用杨氏模量的倒数来表示。
也就是说,柔度可以表示为:柔度 = 1/弹性模量柔度越高,即弹性模量越小,物体的弯曲性越大,形变程度越严重。
对于弹簧,柔度可以通过弹性系数的倒数来表示。
即:柔度 = 1/弹性系数柔度的计算方法类似于刚度,需要根据具体情况进行选择和计算。
三、刚度与柔度在工程中的应用刚度和柔度在工程中具有广泛的应用。
它们在结构设计、材料选择以及机械性能评估等方面发挥着重要的作用。