该方法简单,精度可以根据 N 的大小来调节,因而在实际中 常被采用。
该方法仍然是近似算法,有时会将过多的流量分配到容量小 的路段。
N 越大,配流结果越接近均衡解,但计算工作量相应增加。 另外,非常大的 N 值也不能完全保证配流结果一定满足用户 均衡条件。
算例:
9.3.4 二次加权平均分配法 (method of successive averages)
分配步骤
分配算例:
试用二次加权平均分配法(MSA方法)求解下面的固定需求交 通分配问题(迭代2次)。
9.4 用户优化均衡交通分配模型(User Equilibrium Model) UE(用户均衡)的概念最早由Wardrop于1952年提出。User Equilibrium的基本假设有:
假设出行者都力图选择阻抗最小的路径;
假设出行者能随时掌握整个网络的状态,即能精确计算每条 路径的阻抗从而做出完全正确的路径选择决策;
假设出行者的计算能力和计算水平是相同的。
User Equilibrium的定义:当不存在出行者能单方面改变其出 行路径并能降低其阻抗时,达到了UE状态。
9.4.1 均衡分配模型的建立 Wardrop第一原理的数学描述 变量说明:
在实际应用中,对于大规模网络,通常4至6次迭代就够了。确定 迭代次数时,要综合考虑原始数据的准确性、财力约束和具体的 网络结构。
UE分配算例: 网络模型如下,试用F-W算法求两边的交通量。
9.5 系统优化均衡交通分配模型(SO Model)
9.5.1 SO模型的基本思想
Wardrop第一原理有时也称为用户均衡(UE)原理、或用户最优原理 。UE模型就是建立在UE原理上的数学模型。
Wardrop第二原理反映的是一种系统目标,即按什么样的分配是最 好的,为规划管理人员提供了一种决策方法,在实际中难以实现, 除非所有的道路使用者都相互协作为系统最优而努力。