第四章同步时序逻辑电路
- 格式:ppt
- 大小:1.48 MB
- 文档页数:136
同步和异步时序逻辑电路的原理
同步时序逻辑电路和异步时序逻辑电路是数字电路中常见的两种
设计方式。
同步时序逻辑电路的设计原理是基于时钟信号,即在设计电路中
需要引入一个时钟信号作为同步时序电路的控制信号。
同步电路中各
个逻辑门的输入信号只能在时钟上升沿之前稳定,而在时钟上升沿后,所有逻辑门输出信号也都会变成稳定的。
同步电路的时钟控制能够确
保电路的正确性,并且在同步时序电路中,设计师只需要考虑时序问题,简化了设计流程。
异步时序逻辑电路则没有时钟信号控制。
其设计原理是基于信号
的时序间隔,该电路中每一个逻辑门的输入信号在数学“连续性”的
要求下改变其状态,没有同步电路中严格的时钟同步。
异步电路跨越
时序间隔的时间存在一定的延迟,需要设计者考虑信号传播的速度和
稳定性等问题,所以相对来说设计复杂度较高。
综上所述,同步时序逻辑电路和异步时序逻辑电路分别适用于不
同的应用场景,设计时需要根据具体情况进行选择。
同步时序逻辑电路设计的一般步骤
设计同步时序逻辑电路的一般步骤如下:
1. 确定问题需求:明确电路的功能和性能要求,了解电路所需的输入和输出信号。
2. 分析问题需求:分析输入信号的特性和逻辑关系,了解所需实现的逻辑功能。
3. 确定电路的逻辑结构:根据问题需求,确定所需逻辑模块(如触发器、计数器、状态机等)的类型和数量,并确定它们之间的连接关系。
4. 设计逻辑电路图:根据确定的逻辑结构和所需逻辑功能,绘制逻辑电路图,包括逻辑模块的输入输出端口和信号线的连接方式。
5. 进行逻辑时序设计:根据问题需求,确定逻辑元件的时序性质,如时钟频率、延迟要求等,以及逻辑元件的输入输出关系。
6. 进行逻辑优化:分析设计电路的性能指标和优化需求,可尝试对电路进行逻辑简化、速度优化或面积优化等。
7. 进行电路模拟验证:使用电路模拟器对设计的电路进行验证,确保电路的功能和性能满足设计要求。
8. 进行电路布局布线:将设计的逻辑电路转化为物理电路,在
布局设计中,要考虑电路布局的最小化、布线的最短路径和最小功耗等因素。
9. 进行静态时序分析:进行静态时序分析,检查电路中的时序相关问题,如时钟走时、数据到达时间等,以确保电路的正确性和稳定性。
10. 进行时序验证和测试:对设计的电路进行时序验证和测试,以确保电路的功能和性能满足设计要求。
11. 进行电路仿真和验证:通过仿真和验证,确认电路的正确
性和性能,以便进一步进行优化和改进。
12. 进行后续维护和优化:根据实际应用情况,进行电路的后
续维护和优化,以适应新的功能需求或改进电路的性能。
时序逻辑电路的设计,就是从给定的逻辑功能入手,通过一系列的设计过程,最终得到电路的实现方案,即逻辑电路图。
当然,最终得到的时序电路也分两种,即同步时序电路和异步时序电路。
一般来讲,完成相同的逻辑功能,异步时序电路的整体结构要比同步时序电路简单一些,但是,其设计过程也明显较后者复杂,难以掌握。
组合逻辑电路的设计过程,基本可看做分析的逆过程,类似的,同步时序路的设计过程和分析过程之间,也有互逆的特点。
★ 同步时序逻辑电路的设计步骤◆ 逻辑抽象根据逻辑要求,进行逻辑抽象,明确该电路的状态量的含义,并确定输入、输出变量和状态数;根据电路的逻辑功能,明确状态迁移关系,从而建立原始状态图。
此过程中,重点在于找到电路的状态量,理解其含义。
◆ 状态化简在原始状态图中,若两个电路状态在相同的输入条件下,得到相同的次态结果和输出结果(即状态迁移关系相同),就称这两个状态为等价状态。
显然,等价状态是可以合并的,合并后,得到该电路的最简状态图。
◆ 状态编码根据最简状态图中,状态的数量,确定需要使用的触发器的数量,并用二进制代码表示各个状态,即对状态进行编码。
至此,最初的设计要求已完全数学化,得到了一个完全数学化的状态图。
设最简状态图中,状态个数为 ,需要使用的触发器个数为,则两者数量关系上满足: 。
同时,如果 ,则意味着是从 种状态中选取 个,对电路的状态图进行赋值,这样的选择方案是不唯一的。
如果选择的编码方案得当,则可以很大程度上简化设计过程和最终得到的电路结构,反之,如果选择不当,设计出来的电路就会比较复杂。
因此,选择编码方案是有一定技巧性的。
此外,这也意味着电路存在无效状态,那么,设计完成后,需要检查电路的自启动能力。
◆ 推导逻辑表达式根据编码后的状态图,得到逻辑表达式,即电路的输出方程和触发器的状态方程。
n n M 221≤<-n M 2≠n 2M n M这一步工作中,一般是将状态图转化为表示输出信号和次态的卡诺图,并进行卡诺图法化简,从而得到对应的输出方程和状态方程。
同步时序逻辑电路设计的一般步骤1.确定需求:首先,需要明确电路的功能和性能需求。
这包括输入和输出的规格,时钟频率,输入和输出的时序关系以及其他约束条件。
2.确定设计规范:根据需求,制定电路设计的一般规范,包括数据通路、控制器、状态机等的规范。
这些规范有助于设计过程的准确性和一致性。
3.划分功能模块:将整个电路设计划分为不同的功能模块,每个模块负责实现一个具体的功能。
根据设计规范,确定各个模块的边界和功能。
4.设计每个功能模块:对于每个功能模块,进行详细的设计。
这包括选择适当的逻辑元件,如逻辑门、触发器等,进行逻辑电路设计。
根据需要,可能需要使用编码器、解码器、计数器等组件。
5.进行时序分析:对于整个电路,进行时序分析以确保时序正确性。
这包括设计验证、时序约束分析、时钟域划分和检查等步骤。
时序分析可通过模拟、仿真或形式化验证实现。
6.进行综合与布局布线:将设计转化为物理实现。
这包括综合工具的使用,将设计转换为标准单元表述。
然后进行布局布线,将标准单元放置在芯片上,并通过金属线端口互连。
这个过程需要综合工具和布局布线工具的支持。
7.进行时序优化:根据实际硬件资源和时序约束,对设计进行优化。
目标是满足时序要求并最小化资源使用。
优化方法包括逻辑重写、时钟树优化、功耗优化等。
8.进行后仿真和验证:对设计进行后仿真和验证,以确保设计的正确性和功能性。
这可以通过模拟或仿真来完成。
如果发现问题或错误,需要进行相应的调整和修改。
9.实现和测试:将优化后的设计转化为实际的电路板或芯片。
然后进行测试和验证以确保设计的正确性、可靠性和性能。
10.文档编写和更新:为了方便后续的维护和理解,对设计过程进行文档编写。
这包括设计规范、电路原理图、时序约束、布局布线规则等的文档。
同时,需要根据实际使用情况对设计进行更新和维护。
总之,同步时序逻辑电路设计是一个系统性的过程,涉及到多个步骤和环节。
这些步骤的顺序和重要性可能会因实际情况而有所不同,但总体原则是确保设计的正确性、功能性和可靠性。
数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。
CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。
设触发器的初始状态为Q0=0,Q1=0。
D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。
CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。
(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。
图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。
CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。
Y图4-67.分析图4-7所示电路的逻辑功能。
(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。
CP图4-78.时序逻辑电路分析。
电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。
并说明电路的功能。
1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。
1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。
(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。
自我测验题1.图T4.1所示为由或非门构成的基本SR锁存器,输入S、R的约束条件是。
A.SR=0B.SR=1C.S+R=0D.S+R=1QG22QRS图T4.1 图T4.22.图T4.2所示为由与非门组成的基本SR锁存器,为使锁存器处于“置1”状态,其RS⋅应为。
A.RS⋅=00C.RS⋅=10D.RS⋅=113.SR锁存器电路如图T4.3所示,已知X、Y波形,判断Q的波形应为A、B、C、D 中的。
假定锁存器的初始状态为0。
XYXYABCD不定不定(a)(b)图T4.34.有一T触发器,在T=1时,加上时钟脉冲,则触发器。
A.保持原态B.置0C.置1D.翻转5.假设JK触发器的现态Q n=0,要求Q n+1=0,则应使。
A.J=×,K=0B.J=0,K=×C.J=1,K=×D.J=K=16.电路如图T4.6所示。
实现AQQ nn+=+1的电路是。
4 时序逻辑电路习题解答63A AA AA .B .C .D .图T4.67.电路如图T4.7所示。
实现n n Q Q =+1的电路是 。
CPCPCPA .B .C .D .图T4.78.电路如图T4.8所示。
输出端Q 所得波形的频率为CP 信号二分频的电路为 。
1A . B . C .D .图T4.89.将D 触发器改造成T 所示电路中的虚线框内应是 。
TQ图T4.9A .或非门B .与非门C .异或门D .同或门 10.触发器异步输入端的作用是 。
A .清0 B .置1 C .接收时钟脉冲 D .清0或置1 11.米里型时序逻辑电路的输出是 。
A .只与输入有关B .只与电路当前状态有关C .与输入和电路当前状态均有关D .与输入和电路当前状态均无关12.摩尔型时序逻辑电路的输出是 。
A .只与输入有关 B .只与电路当前状态有关C .与输入和电路当前状态均有关D .与输入和电路当前状态均无关13.用n 只触发器组成计数器,其最大计数模为 。