初一数学数轴专项练(苏教版,含答案)
- 格式:docx
- 大小:52.77 KB
- 文档页数:5
2.3 数轴一、选择题1.如图,数轴上点A表示的数是( )A.-2B.2C.±2D.02.下列各数在数轴上的位置是在-2的左边的是( )A.-3B.-2C.-1D.03.在数轴上到表示3的点的距离为5个单位长度的正数是( )A.-2B.8C.-2或8D.54.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣15.关于数轴,下列说法最准确的是( )A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线6.数轴上的点A表示的数是﹣2,将点A向右移动3个单位长度,得到点B,则点B表示的数是()A.﹣5B.0C.1D.37.在数轴上,原点及原点右边的点表示的数是()A.正数B.整数C.非负数D.非正数8.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.0或5B.﹣1或5C.﹣1或﹣5D.﹣2或59.A为数轴上表示-2的点,当点A沿数轴移动4个单位长度到达点B时,点B所表示的数为( )A.2B.-6C.2或-6D.以上答案都不对10.如图,在数轴上点A表示的数最可能是()A.-2B.-2.5C.-3.5D.-2.911.有理数a,b,c在数轴上的位置如图所示,则下列说法正确的是()A.a,b,c都为正数B.b,c为正数,a为负数C.a,b,c都为负数D.b,c为负数,a为正数12.数轴上的动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.7B.3C.-3D.-2二、填空题13.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.14.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A所表示的数是15.在数轴上,点A表示的数是1,点B,C表示的数互为相反数,且点C与点A间的距离为3,则点B表示的数是___________.16.数轴上与原点的距离是5的点有个,表示的数是.17.在数轴上,表示数-6,2.1,-,0,-4,3,-3的点中,在原点左边的点有个,表示的点与原点的距离最远.18.数轴上表示-13的点在表示-1的点的____________;数轴上点P距原点5个单位长度,且在原点的左侧,则点P表示的数是____________;数轴上点Q距原点3.5个单位长度,且在原点的右侧,那么点Q表示的数是____________.三、解答题19.画数轴,并在数轴上表示下列各数:2,-2.5,0,13,-4.20.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少? 21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:;(2)观察数轴,求与点A的距离为4的点表示的数.22.数轴上有四个点A、B、C、D,它们与原点的距离分别为1,2,3,4,且点A,C在原点左边,点B,D在原点右边.(1)请分别写出点A,B,C,D表示的数;(2)比较这四个数的大小,并用”>”连接.23.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.参考答案1.A2.A3.B4.A5.D6.C7.C8.B9.C10.B11.D12.D13.答案为:-5或1.14.答案为:-6,+815.答案为:2或- 416.答案为:2,±5.17.答案为:4,-6.18.答案为:右边-5+3.519.解:如下图所示:20.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.21.解:(1)1;-2.5.(2)与点A距离为4的点有两个,一个在点A的左边,一个在点A的右边,左边的点表示的数是-3;右边的点表示的数是5.故与点A的距离为4的点表示的数是-3或5.22.解:(1)点A表示-1,点B表示2,点C表示-3,点D表示4.(2)4>2>-1>-3.23.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.。
2.3第1课时数轴知识点1数轴的概念与画法1.关于数轴,下列说法最准确的是()A.是一条直线B.是有原点、正方向的一条直线C.是有单位长度的一条直线D.是规定了原点、正方向和单位长度的直线2.图2-3-1是四位同学画的数轴,其中正确的是()图2-3-13.下列说法:①数轴的原点必须画在数轴的中间;②数轴的单位长度可以根据需要任意选择;③数轴的方向必须向右.其中不正确的是________.(填序号)知识点2数轴上的点与有理数、无理数的关系4.如图2-3-2,数轴上点M所表示的数可能是()图2-3-2A.1.5 B.-1.6 C.-2.6 D.-3.45.2017·扬州若数轴上表示-1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.-4 B.-2 C.2 D.46.2017·岳池县期中小明写作业时,不慎将墨水滴在数轴上,根据图2-3-3中的数值,请你确定墨迹盖住部分的整数共有________个.图2-3-37.如图2-3-4所示,指出数轴上点A ,B ,C ,D ,E 所表示的数.(点A ,B ,D ,E 均在两刻度线中点位置)图2-3-48.在数轴上画出表示下列各数的点: 4,-3,-312,1.9.在数轴上到原点距离等于2的点所表示的数是( ) A .-2 B .2 C .±2 D .不能确定10.2017·青山区校级模拟一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A 所表示的数是________.11.A ,B ,C ,D 四位同学的家和学校在同一条街上,以学校为中心,四位同学的家与学校之间的位置分别记作210米,-700米,300米,-450米.(1)画一条数轴,并把四位同学的家的位置标在数轴上; (2)指出谁家离学校最近,谁家离学校最远.12.数轴上的一个点表示一个数,当这个点表示的数是整数时,我们称它是整数点,假定有一条数轴,其单位长度是1 cm.(1)把一条长5 cm的线段放在数轴上,其端点不与两个整数点重合,则它可以盖住的整数点有________个;(2)把一条长5 cm的线段放在数轴上,其端点恰好与两个整数点重合,则它可以盖住的整数点有________个;(3)把一条长2018 cm的线段放在数轴上,则它可以盖住的整数点有________个.1.D 2.D .3.①③ 4.C 5.D 6.37.解:点A 表示数2.5,点B 表示数-2.5,点C 表示数1,点D 表示数-1.5,点E 表示数-0.5.8.解:如图所示:点A 表示数4,点B 表示数-3,点C 表示数-312,点D 表示数1.9. C 10.-6或811.解:(1)画数轴如下:(2)A 同学的家离学校最近,B 同学的家离学校最远. 12.(1)5 (2)6 (3)2018或2019第2课时 利用数轴比较有理数的大小知识点 1 利用数轴比较有理数的大小1.2017·南开区校级模拟已知数轴上C ,D 两点的位置如图2-3-5,那么下列说法错误的是( )图2-3-5A .点D 表示的数是正数B .点C 表示的数是负数 C .点D 表示的数比0小D .点C 表示的数比点D 表示的数小2.冬季某天,我国某三个城市的最高气温分别是-9 ℃,1 ℃,-4 ℃,通过观察温度计,可以把它们从低到高排列为____________;若是在数轴上表示-9,1,-4这三个数,通过观察数轴,可以发现,它们从左到右排列为____________.由此,我们发现,在数轴上左边的数总是________右边的数.3.结合数轴可以发现:-3________0,0________9,-3________9,5________8,而-5________-8.4.在数轴上画出表示下列各数的点,并用“<”把这些数连接起来: -3,0,1.5,-12.知识点 2 利用法则比较有理数的大小5.2017·安徽模拟在-2015,-2016,-2017,-2018四个数中,最小的数是( ) A .-2015 B .-2016 C .-2017 D .-2018 6.2017·眉山下列四个数中,比-3小的数是( ) A .0 B .1 C .-1 D .-57.据中央气象台的预报,下列三个城市某天的最低气温分别是:哈尔滨-11 ℃,石家庄0 ℃,海口27 ℃,最低气温最高的城市是________,最低气温最低的城市是________.8.比较大小(填“>”或“<”): (1)-2.1______1;(2)3.2______-4.3; (3)-14______0.9.利用数轴可知,大于-4.12的负整数有______________________________________.10.教材“练一练”第2题变式如图2-3-6所示,数a ,b ,-a ,-b 中最小的是________.图2-3-611.在数轴上表示-213和113,并根据数轴指出所有大于-213而小于113的整数.12.如图2-3-7所示,在数轴上有三个点A ,B ,C ,请回答下列问题.图2-3-7(1)将点B 向左移动3个单位长度后,三个点中,点________表示的数最小,是________; (2)将点A 向右移动4个单位长度后,三个点中,点________表示的数最小,是________; (3)将点C 向左移动6个单位长度后,点B 与点C 中,点________表示的数大,大________; (4)要使三个点表示相同的数,应如何移动其中两点?有几种移法?1.C .2.-9 ℃,-4 ℃,1 ℃ -9,-4,1 小于 3.< < < < >4.解:-3,0,1.5,-12在数轴上表示如下:-3<-12<0<1.5.5.D 6.D 7.海口 哈尔滨 8.(1)< (2)> (3)< 9. -4,-3,-2,-1. 10.-b11. 解:如图所示:根据“在数轴上表示的两个数,右边的数总比左边的数大”可知:所有大于-213而小于113的整数位置应在-213的右边,同时又在113的左边,即夹在-213和113之间,这样的整数有-2,-1,0,1.12.解:(1)B -5 (2)B -2 (3)B 1(4)点B 不动,把点A 向右移动2个单位长度,点C 向左移动5个单位长度;或点A 不动,把点B 、点C 分别向左移动2个单位长度、7个单位长度;或点C 不动,把点A 、点B 分别向右移动7个单位长度、5个单位长度.都可以使三个点表示相同的数,因此共有三种移法.。
2.3 数轴一.选择题(共10小题)1.如图,数轴上表示﹣2的点A到原点的距离是()A.﹣2 B.2 C.﹣D.2.如图,数轴上蝴蝶所在点表示的数可能为()A.3 B.2 C.1 D.﹣13.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3 B.4.5 C.6 D.184.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3 B.﹣2 C.﹣1 D.15.如图,数轴上点A表示的数是()A.﹣1 B.0 C.1 D.26.如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.37.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣18.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个9.如图,在数轴上,点M点N分别表示数﹣a+2,﹣1,则表示数a﹣4的点在数轴上的位置()A.在点M的左边B.在线段MN上C.在点N的右边D.无法确定10.如图,纸上画有一个数轴,对折纸面,使数轴上表示﹣3的点与表示4的点重合,那么同时重合的还有()A.表示﹣1的点与表示3的点B.表示﹣2的点与表示2的点C.表示﹣的点与表示的点D.表示﹣的点与表示的点二.填空题(共8小题)11.数轴上表示﹣3的点到原点的距离是.12.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C 表示的数为.14.已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.数轴上的点A与点B间的距离为3,点A表示的数是﹣4,则点B表示的数是.16.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.17.如图,数轴上有O、A、B三点,点O对应原点,点A对应的数为﹣1,若OB=3OA,则点B对应的数为.18.如图,数轴上,点A表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数是.三.解答题(共8小题)19.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.20.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?答案与解析一.选择题(共10小题)1.【分析】根据绝对值的定义即可得到结论.【解答】解:数轴上表示﹣2的点A到原点的距离是2,故选:B.2.【分析】直接利用数轴得出结果即可.【解答】解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.3.【分析】根据题意列方程即可得到结论.【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.4.【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.【分析】根据数轴直接回答即可.【解答】解:数轴上点A所表示的数是1.故选:C.6.【分析】直接利用数轴结合A,B点位置进而得出答案.【解答】解:∵数轴的单位长度为1,如果点A表示的数是﹣1,∴点B表示的数是:3.故选:D.7.【分析】根据题意和数轴可以用含a的式子表示出点B表示的数,本题得以解决.【解答】解:∵O为原点,AC=1,OA=OB,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.8.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.9.【分析】根据点M在点N的左侧可知﹣a+2<﹣1,据此可得a>3,在判断a﹣4的范围即可解答.【解答】解:∵M在点N的左侧,点M点N分别表示数﹣a+2,﹣1,∴﹣a+2<﹣1,解得a>3,∴a﹣4>﹣1,∴表示数a﹣4的点在数轴上的位置在点N的右边.故选:C.10.【分析】若﹣3表示的点与4表示的点重合,则对称中心是0.5表示的点,根据对应点连线被对称中心平分,则选项中两个点到0.5的距离相等,从而求解.【解答】解:(﹣3+4)÷2=0.5,∵0.5﹣(﹣1)=1.5≠3﹣0.5=2.5,0.5﹣(﹣2)=2.5≠2﹣0.5=1.5,0.5﹣(﹣)=2≠﹣0.5=,0.5﹣(﹣)=﹣0.5=3.故同时重合的还有表示﹣的点与表示的点.故选:D.二.填空题(共8小题)11.【分析】表示﹣3的点与原点的距离是﹣3的绝对值.【解答】解:在数轴上表示﹣3的点与原点的距离是|﹣3|=3.故答案为:3.12.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣113.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C 所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.14.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C 点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.15.【分析】根据数轴上的点A与点B间的距离为3,点A表示的数是﹣4,从而可以求得点B表示的数,本题得以解决.【解答】解:∵数轴上的点A与点B间的距离为3,点A表示的数是﹣4,∴点B表示的数为:﹣4﹣3=﹣7或﹣4+3=﹣1,故答案为:﹣1或﹣7.16.【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案.【解答】解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.17.【分析】根据OB=3OA,求出OB的长度,因为B在数轴上表示正数,从而得解;【解答】解:∵点A对应的数为﹣1,OB=3OA,∴OA=1,OB=3,∴B点对应的数是3.故答案为3.18.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动3n个单位.每左移右移各一次后,点A右移3个单位,故第2018次右移后,点A向右移动3×(2018÷2)个单位,第2019次左移2019×3个单位,故点A2019表示的数是3×(2018÷2)﹣2019×3+1.【解答】解:第n次移动3n个单位,第2019次左移2019×3个单位,每左移右移各一次后,点A 右移3个单位,所以A2019表示的数是3×(2018÷2)﹣2019×3+1=﹣3029.故答案为:﹣3029.三.解答题(共2小题)19.【分析】(1)①根据以B为原点,则A,D,C所对应的数分别为:﹣2,3,4,进而得到p的值;②以D为原点,A,D,C所对应的数分别为:﹣5,﹣3,1,进而得到p的值;(2)用x的代数式分别表示A,D,C所对应的数,根据题意列方程解答即可.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,P=﹣3﹣5+1=﹣7;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.20.【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N 在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.。
a b a c §2.2 数轴一、选择题1.图1中所画的数轴,正确的是( )-1A 21543B -1210C 210D2.在数轴上,原点及原点左边的点所表示的数是( )A .正数B .负数C .非负数D .非正数3.与原点距离是2.5个单位长度的点所表示的有理数是( )A .2.5B .-2.5C .±2.5D .这个数无法确定4.关于-32这个数在数轴上点的位置的描述,正确的是( ) A .在-3的左边 B .在3的右边 C .在原点与-1之间 D .在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-96.不小于-4的非正整数有( )A .5个B .4个C .3个D .2个7.如图所示,是数a ,b 在数轴上的位置,下列判断正确的是( )A .a<0B .a>1C .b>-1D .b<-1二、填空题1.数轴的三要素是_____________.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a ,b ,c 在数轴上的位置如图所示,用“<”将a ,b ,•c•三个数连接起来________.5.大于-3.5小于4.7的整数有_______个. 6.用“>”、“<”或“=”填空.(1)-10______0;(2)32________-23;(3)-110_______-19;(4)-1.26________114; (5) 23________-12;(6)- _______3.14;(7)-0.25______-14;(8)-14________15. 7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起来.-312,4,2.5,0,1,7,-5. 2.如图所示,根据数轴上各点的位置,写出它们所表示的数. -2-4F ED C B A3.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A 队:-50分;B 队:150分;C 队:-300分;D 队:0分;E 队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A 队与B 队相差多少分?C 队与E 队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、•玩具店的位置,以及小明最后的位置.五、竞赛题1.比较a 与-a 的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,•D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是哪一点?D C B A六、中考题1.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是( )A .-10℃,-7℃,1℃;B .-7℃,-10℃,1℃C .1℃,-7℃,-10℃;D .1℃,-10℃,-7℃2.比较大小:-1_______-2; -23_______-34; -3________2答案一、1.D 2.D 3.C 4.D 5.C 6.A 7.D二、1.原点、正方向和单位长度 2.右 左 3.右 6 左 8 14 4.c<a<b • 5.86.(1)< (2)> (3)> (4)< (5)> (6)< (7)= (8)< 7.6或-10三、1.画图(略) -5<-312<-112<0<1<2.5<4<7 2.A0 B-1 C413 D-2.5 E213 F-4 3.如图所示:(1)3(2)-4(3)-4(4)-4四、1.(1)C 队 A 队 D 队 E 队 B 队;(2)如图所示:100-200200-100E D CB A(3)A 队与B 队相差200分,C 队与E 队相差400分.2.如图所示,小明位于超市西边10米处.玩具店书店超市五、1.(1)当a>0时,a>-a ;(2)当a=0时,a=-a ;(3)当a<0时,a<-a .2.B 为原点.六、1.C 2.> 3.> 4.-3<2.。
苏科版七年级数学上册《2.2数轴》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________基础过关全练知识点1 数轴的概念及画法1.以下是四位同学画的数轴,其中正确的是( )A B CD2.定义:数轴上表示整数的点称为整点,若在单位长度是1 cm 的数轴上随意画出一条长为2 022 cm 的线段AB ,请问这条线段盖住的整点的个数是( ) A.2 021 B.2 021或2 022 C .2 022 D.2 022或2 023 知识点2 数轴上的点与有理数和无理数的关系3.(2022江苏南通期中)一滴墨水洒在数轴上,根据图中标出的数值判断墨迹盖住的整数个数是( )A.14B.13C.12D.114.(2023江苏南京鼓楼期中)已知点A 和点B 在同一条数轴上,点A 表示数-2,点B 与点A 相距3.5个单位长度,那么点B 表示的数是( ) A.-1.5 B.5.5C.-1.5或3.5D.1.5或-5.55.如图,将刻度尺放在数轴上,刻度尺上“0 cm”和“2 cm”分别对应数轴上的6和4,那么刻度尺上“5.4 cm”对应数轴上的数为 .6.在如图所示的数轴上表示下列各数:0,-4.2-2,+7,113.知识点3 利用数轴比较有理数的大小7.画一条数轴,然后在数轴上画出表示下列各数的点:-20,-14-412并用“<”把这些数连接起来.能力提升全练8.在数轴上,点A表示-2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.-6B.-4C.2D.49.下列数轴表示正确的是()A BC D10.在数轴上到原点的距离小于4的点表示的整数可以为.(写出一个即可)11.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上02先让圆周上表示数字0的点与数轴上表示-1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2 023的点重合.素养探究全练12.如图,一个点从数轴上原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示数-2.请参照图中数轴,填空:已知A、B是数轴上的点.(1)如果点A表示数-5,将A向右移动7个单位长度,那么终点表示数;(2)如果点A表示数2,将A向左移动7个单位长度,再向右移动5个单位长度,那么终点表示数;(3)如果将点B向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是0,那么点B所表示的数是.13.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的A 点重合,右端点与数轴上的B点重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上表示的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所表示的数为5,由此可得木棒的长为cm;(2)图中点A 表示的数为 ,点B 表示的数为 ;(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在的年龄.参考答案基础过关全练1.D 根据数轴的定义进行判断,只有选项D 正确.2.D ①当线段端点与整数点重合时,盖住的整点的个数是2 023;②当线段端点与整数点不重合时,盖住的整点的个数是2 022.3.B 在-9.2和3(包括3)之间的整数有-9,-8,-7,-6,-5,-4,-3,-2,-113,共13个.4.D 数轴上到点A 距离为3.5的点有两个,一个是点A 向左移动3.5个单位长度得到的点,表示的数是-5.5;另一个是点A 向右移动3.5个单位长度得到的点,表示的数是1.5. 5.0.6解析 刻度尺上5.4 cm 对应的数轴上的点与数轴上原点(刻度尺上6 cm 对应的点)之间的距离为6-5.4=0.6(cm),且该点在原点的右侧,故刻度尺上“5.4 cm”对应数轴上的数为0.6. 6.解析 如图所示.7.解析 如图所示.根据在数轴上表示的数,右边的数总是大于左边的数,可知-412<-2<-14<0<1<312<512.能力提升全练8.C 由题意,得点B 表示的数为2,故选C.9.D 根据数轴的三要素以及在数轴上,右边的数总比左边的数大来判断,选项D 正确. 10.3(答案不唯一20,-1,-2,-3中任意一个均可)解析 在数轴上到原点的距离小于4的点表示的整数有-3-2-10,从中任选一个即可. 11.0解析圆周上表示0的点与数轴上表示-1的点重合,滚动到数轴上表示2 023的点,圆滚动了2 024个单位长度,用2 024除以4,余数为0,所以圆周上表示0的点与数轴上表示2 023的点重合.素养探究全练12.(1)2(2)0(3)2解析(1)如图,数轴上点A表示数-5,将点A向右移动7个单位长度,得到点A1,点A1表示的数是2.(2)如图,数轴上点A表示数2,将点A向左移动7个单位长度,得到点A1,点A1向右移动5个单位长度,得到点A2,点A2表示的数是0.(3)假设终点为O点,将O点向右移动5个单位长度,得到点B1,将点B1向左移动3个单位长度即可得到点B,故点B表示的数是2.13.解析(1)观察题中数轴可知,三根这样的木棒长为20-5=15(cm),则此木棒长为15÷3=5(cm).(2)题图中点A所表示的数为5+5=10,点B所表示的数为20-5=15.(3)如图,设数轴上小木棒的A端表示的数是爷爷现在的年龄B端表示的数为小红现在的年龄,小红与爷爷年龄的差可以看成木棒AB的长度,因为小红爷爷像小红现在这么大时,小红还要40年才出生,所以将木棒沿数轴水平向左移动,当A 端移动到B端原来的位置时,B端表示的数为-40.因为小红像她爷爷那样大时,小红爷爷已经125岁,所以将木棒沿数轴水平向右移动,当B 端移动到A端原来的位置时,A端表示的数为125可知爷爷比小红大(125+40)÷3=55(岁)可知爷爷现在的年龄为125-55=70(岁).故爷爷现在的年龄是70岁.。
最新苏教版七年级数学上册 压轴解答题练习(Word 版 含答案)一、压轴题1.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.2.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?3.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由. 4.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)5.尺规作图是指用无刻度的直尺和圆规作图。
2.3数轴一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣12.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.43.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣74.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣75.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣56.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.20157.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣18.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.810.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?答案解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣1【分析】由题意得AB=5,即﹣2+5即为点B表示的数.【解析】﹣2+5=3,故选:A.2.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解析】点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.3.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣7【分析】分点在﹣2的左边和右边两种情况讨论求解.【解析】若点在﹣2的左边,则﹣2﹣5=﹣7,若点在﹣2的右边,则﹣2+5=3,所以,在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是﹣7或3.故选:D.4.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣7【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解析】由M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N可列:﹣2+5=3,故选:A.5.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣5【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解析】数轴上与表示﹣2的点距离等于3的点所表示的数是﹣5或1,故选:D.6.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.2015【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数可能正好是2016个,也可能不是整数,而是有两个半数那就是2015个.【解析】依题意得:①当线段AB起点在整点时覆盖2016个数,②当线段AB起点不在整点,即在两个整点之间时覆盖2015个数,综上所述,盖住的点为:2015或2016.故选:A.7.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【分析】分点在原点左边与右边两种情况讨论求解.【解析】①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.8.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解析】在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.8【分析】根据数轴上点的表示方法,直接判断即可.【解析】刻度尺上5.8cm对应数轴上的点距离数轴上原点(刻度尺上表示3的点)的距离为2.8,且该点在原点的左侧,故刻度尺上“5.8cm”对应数轴上的数为﹣2.8.故选:B.10.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【分析】理解两地国际标准时间的差简称为时差.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解析】汉城与多伦多的时差为9﹣(﹣4)=13小时;汉城与纽约的时差为9﹣(﹣5)=14小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是±2.【分析】根据数轴上两点间距离的定义进行解答即可.【解析】设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得,x=±2.故答案为:±2.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为7.【分析】根据数轴上两点距离公式进行计算即可.【解析】AB=|﹣2﹣5|=7,故答案为:7.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是﹣6或﹣2.【分析】根据题意,分两种情况:(1)点B在点A的左边;(2)点B在点A的右边;求出点B表示的数为多少即可.【解析】(1)点B在点A的左边时,点B表示的数为:﹣4﹣2=﹣6.(2)点B在点A的右边时,点B表示的数为:﹣4+2=﹣2.∴点B表示的数为﹣6,﹣2.故答案为﹣6或﹣2.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数﹣3或7.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.【解析】在A点左边与A点相距5个单位长度的点所对应的有理数为﹣3;在A点右边与A点相距5个单位长度的点所对应的有理数为7.故答案为:﹣3或7.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解析】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是﹣1和5.【解析】2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.【分析】根据向右为“+”、向左为“﹣”分别表示为+5和﹣8,再相加即可得出答案.【解析】点从数轴的原点开始,向右移动5个单位长度,表示为+5,在此基础上再向左移动8个单位长度,表示为﹣8,则到达的终点表示的数是(+5)+(﹣8)=﹣3,故答案为:﹣3.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:﹣2,﹣1.【分析】把和1之间的负整数在数轴上表示出来,通过观察数轴来解答,正整数、0、负整数统称为整数.【解析】如图所未,通过数轴观察,可以确定出和1之间的负整数为:﹣2,﹣1.故答案为:﹣2,﹣1.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1.【分析】根据题意画出数轴,借助数轴找出点N的位置即可.【解析】根据题意画图如下:M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1;故答案为:﹣1.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是2﹣2π.【分析】因为圆形纸片从2沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解析】∵半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在2的左边,∴A′点对应的数是2﹣2π.故答案是:2﹣2π.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?【分析】(1)利用数轴上点的移动规律:左减右加得出点P、Q各表示什么数即可;(2)根据得出Q点表示的数与原点的位置,回答问题即可.【解析】(1)点M表示﹣2,P点表示﹣2+3=1,Q点表示1﹣5=﹣4;(4)﹣4在原点的左边,距离原点4个单位,所以向右移动4个单位,才能回到原点.22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是 1.5;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是﹣1.5,0,1.5,5.5.【分析】(1)在数轴上描出四个点的位置即可;(2)根据两点之间的距离公式可求B、C两点的距离;(3)原点取在B处,相当于将原数加上1.5,从而计算即可.【解析】(1)如图所示:(2)B、C两点的距离=0﹣(﹣1.5)=1.5;(3)点A表示的数为:﹣3+1.5=﹣1.5,点B表示的数为0,点C表示的数为0+1.5=1.5,点D表示的数为4+1.5=5.5.故答案为:1.5;﹣1.5,0,1.5,5.5.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴把邮递员骑行的路程相加即可求解.【解析】(1)如图所示:(2)C村离A村的距离为2+2=4(km);(3)邮递员一共行驶了2+3+7+2=14(千米).故邮递员一共骑行了14千米.24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?【分析】(1)画出数轴,然后根据题意标注点A、B、C即可;(2)根据图形列出算式计算即可得解.【解析】(1)A,B,C三个村庄的位置,如图所示;(2)小明一共行:4+3+10+3=20km.。
2.3 数轴一、单选题1.在数轴上,原点表示的数是()A. 1B. 0C. ﹣1D. 不能确定2.下列各图中,是数轴的是()A. B.C. D.3.如图所示,a和b的大小关系是()A. a>bB. a<bC. 2a=bD. 2b=a4.在数轴上表示-12的点与表示3的点,这两点间的距离为()A. 9B. -9C. -15D. 155.在数轴上与原点的距离等于2 的点表示的数是()A. 2B. ﹣2C. ﹣1 或3D. ﹣2 或26.小明在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,此时点A与点B也重合,若数轴上A,B两点之间的距离为2018(A在B的左侧),则A点表示的数为()A. ﹣1008B. ﹣1009C. ﹣1010D. ﹣10117.如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数2020将与圆周上的数字()重合.A. 0B. 1C. 2D. 38.如图,将一刻度尺放在数轴上.①若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为 1 和5,则1cm 对应数轴上的点表示的数是2;②若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为1 和9,则1cm 对应数轴上的点表示的数是3;③若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为-2 和2,则1cm 对应数轴上的点表示的数是-1;④若刻度尺上0cm 和 4 cm 对应数轴上的点表示的数分别为-1 和1,则1cm 对应数轴上的点表示的数是-0.5. 上述结论中,所有符合题意结论的序号是()A. ①②B. ②④C. ①②③D. ①②③④二、填空题9.在数轴上,与表示数﹣1的点的距离是三个单位长度的点表示的数是________.10.一个点从数轴上的原点开始,先向左移动6个单位,再向右移动4个单位长度,这时该点所对应的数是__.11.如图:点M、N在数轴上,线段MN的长度为4,若点M表示的数为-1,则点N表示的数为________.12.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有________个.13.探究思考:(本题直接填空,不必写出解题过程)问题:在数轴上,点A表示的数为,则到点A的距离等于3的点所表示的数是________;变式思考一:如图1,在数轴上有六个点A、B、C、D、E、F,且相邻两点间距离相等,若点A 表示的数是,点F表示的数为11,则与点C表示的数最近的整数是________;变式思考二:已知数轴上有A、B、C三点,分别代表,电子蚂蚁从A向点C方向以4个单位/秒的速度爬行.则爬行到________秒时,电子蚂蚁到A、B、C的距离和为40个单位.14.电影《哈利•波特》中,小哈利波特穿越墙进入“ 站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“________站台”.三、解答题15.把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣4,﹣2,﹣,0,3,3 .16.如图,小明在写作业时不慎将一滴墨水滴在数轴上,根据图中的数值,试确定墨迹盖住的整数共有哪几个?17.写出数轴上所有大于-4,且小于2的整数;四、综合题18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m。
2.2 数轴 同步训练一、单选题1.在下图中,数轴表示正确的是( )A .B .C .D .2.数轴上表示的点在原点的( )A .右侧B .左侧C .原点上D .不能确定3.有理数在数轴上的对应点的位置如图所示,则是( ).A .非负数B .负数C .正数D .04.数轴上表示数的点和表示数的点之间的整数点个数为( )A .5B .6C .7D .85.在数轴上,位于和3之间的点表示的有理数有( )A .5个B .4个C .3个D .无数个6.A 为数轴上表示的点,将点A 在数轴上平移3个单位长度到点B ,则点B 所表示的数为( )A .3B .2C .或4D .2或7.如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系正确的是( )A .B .C .D .8.如图,数轴上点表示的数是2,点,到点的距离均为4个单位长度,则数轴上表示的点落在( )A .点左侧B .线段上C .线段上D .点右侧4-a a 2.3-1383-1-2-4-a b c <<-b c a <-<a c b -<<a c b <-<-C A B C 3-A AC BC B二、填空题9.数轴的三个要素是:原点、 和单位长度.10.数轴上到0距离为3的点表示的数为11.如图,数轴上的三个点中,表示负数的是点 .12.实数,在数轴上的位置如图所示,则-a -b(填“”,“”或“”)13.用长为个单位长度的线段放在数轴上,能覆盖 个整数点.三、解答题14.在数轴上画出表示下列各数的点.1,,,2,,4,0,.15.老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来.16.在数轴上有三个点,,,如图所示.(1)点表示的数是________;(2)将点向左平移4个单位,此时该点表示的数是________;(3)将点向左平移3个单位得到数,再向右平移2个单位得到数,则,分别是多少?a b ><=2020AB 5- 2.5- 1.5132-A B C A B C m n m n参考答案:1.D 2.B 3.C 4.B 5.D 6.D 7.B 8.A 9.正方向10.11.M 12.13.或14.15.16.(1)(2)(3),3±<2020202112,11,10,9,8,11,12,13,14,15,16,17-----2-2-0m =2n =。
一、单选题1. 实数在数轴上对应点的位置如图所示,则正确的结论是()A.B.C.D.2. 若有理数a、b在数轴的对应位置如图所示,则下列正确的是()A.|b|>﹣a B.|a|>﹣b C.b>a D.|a|>|b|3. 如图,下列数轴表示正确的是()A.B.C.D.4. 若一个数的相反数是,则这个数是()A.B.-C.D.5. 若实数在数轴上的位置如图所示,则下列判断错误的是( )A.B.C.D.互为倒数二、填空题6. 如图,在数轴上表示-1,的对应点为A,B,若点A是线段BC的中点,则点C表示的数为______.7. 如图,一只蚂蚁从点沿数轴向右爬2个单位到达点,点表示,则表示的数为______.8. 利用数轴比较大小:发现:下表是某一天5个城市的最低气温:城市北京上海哈尔滨长沙广州气温把上述5个城市这一天的最低气温表示在数轴上,如图所示:观察这5个数在数轴上的位置,发现:_______的温度最低,_____的温度最高,温度越高,它对应数轴上的点越向_______(填“左”或“右”).三、解答题9. 1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8(1)写出点A和点B表示的数;(2)写出与点B距离为9.5厘米的直尺左端点C表示的数;(3)在数轴上有一点D,其到A的距离为2,到B的距离为4,求点D关于原点点对称的点表示的数.10. 在数轴上表示下列各数,并把下列各数用“<”号连接起来﹣,﹣3,4,11. 定义:若数轴上两点分别对应实数,则两点之间的距离记作,且.已知点在数轴上对应数字、点在数轴上对应数字、点在数轴上对应数字、点在数轴上对应数字、点在数轴上对应数字.根据信息完成下列各题:(1)=_____________.(2)若数轴上点对应实数,则①当时=_____________;②当取最小值时,的取值范围为_____________.。
姓名:日期:2.3数轴【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示. (2)一般地,在数轴上表示的两个数,右边的数总比左边的数大. 【典型例题】类型一、数轴的概念及画法例1.下列各图中,能正确表示数轴的是( ) A . B .C .D .例2.一只蚂蚁沿数轴从点A 向右直爬15个单位到达点B ,点B 表示的数为﹣2,则点A 所表示的数为( )A. 15B. 13C. -13D.-17类型二、利用数轴比较大小例3.在数轴上表示2.5,0,,-1,-2.5,,3有理数,并用“<”把它连接起来.例4.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.①p______q; ②-p______0; ③-p______-q ; ④-p______q ;34 114【基础巩固】1.画一条数轴,并在数轴上画出表示下列各数的点:-3,0,1,-32,1.5,+5,162,-103.2.下列图形中,不是数轴的是( )3.如图,在数轴上A、B两点所表示的有理数分别为( )A.3.5和3 B.3.5和-3 C.-3.5和3 D,-3.5和-3 4.在数轴上,原点及原点右边的点表示( )A.正数B.整数C.非负数D.有理数5. 如图,在数轴上到原点的距离为3个单位长度的点是( )A.D点B.A点C.A点和D点D.B点和C点6.有理数a、b在数轴上的位置如图所示,则下列判断中,正确的是( ) A.a>1 B.b>1C.a<-1 D.b<07.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为 ( )A .2B .-6C .2或-6D .不同于以上答案 8.在数轴上表示+2的点在原点的_______侧,它距原点的距离为_______个单位长度;表示-3的点在原点的_________侧,它距原点的距离为________个单位长度;表示+2的点在表示-3的点的________侧,它们之间的距离为________个单位长度. 9. 比0小2的数是________,比-4大5的数是_________, 比2小4的数是________.10.写一个负数,它所对应的点到原点的距离小于5:_______. 11.在-100、-120、-0.01、-116中,最大的数是_______.12.用“<”或“>”填空.(1)5________0; (2)32_______ 0; (3)2 ________-3; (4)77_______89; (5)-6________-8; (6)-13________. 13.在0与-3.5之间的负整数是_______. 14.在-2、0、1、3这四个数中比0小的数是( )A .-2B .0C .1D .315.在数轴上表示-3、0、5、2、25、-3.5的点中,不在原点右边的有 ( ) A .0个 B .1个 C . 2个 D .3个 16.实数x 、y 在数轴上的位置如图所示,则( )A .x>y>0B .y>x>0C . x<y<0D .y<x<0 17.在数轴上-1与2之间的有理数有 ( )A .3个B .2个C . 1个D .无数个1218.在数轴上点A 和点B 所表示的数分别为-2和1,若使点A 表示的数是点B 表示数的3倍,应将点A ( )A .向左平移5个单位B .向右平移5个单位C .向右平移4个单位D .向左平移1个单位或向右平移5个单位19.将-0. 01,-2,0、0.01四个数从大到小用“>”号连接,正确的是 ( ) A .-0.01>-2>0>0.01 B .-0.01>0>-2>0.01 C .0.01>0>-0.01>-2 D .0.01>-0.01>0>-2 20.在数轴上表示下列各数:+5,-3.5,,-1,-4,0,2.5,并用“<”号把这些数连接起来.【拓展提优】21.数轴上的点M 表示-5,在同一数轴上与点M 相距3个单位的点表示的数是________.22.一个点从原点开始,先向右移动1个单位,再向左移动5个单位到达终点,这个终点表示的数是________.23.如图,如果点A 、B 、C 、D 所表示的数分别为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为 ( )A .a<c<d<bB .b<d<a<cC .b<d<c<aD .a<b<c<d 24.如图,5个城市4月30日的国际标准时间(单位:时)在数轴上的表示如图所示,那么北京时间4月30日20时应是 ( )A .伦敦时间4月30日11时B .巴黎时间4月30日13时C .纽约时间4月30日5时D .首尔时间4月30日19时121225.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<1326.实数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( )A.-a<a<-1 B.-a<-1<a C.a<-1<-a D.a<-a<-1的线段,则此线段在这条数轴上最多能盖27.在数轴上任取一条长度为201719住的整数点的个数是( )A.2 016 B.2 017 C.2 018 D.2 01928.如图,数轴上A、B、C三点分别表示数a、b、c,试比较-1、1、a、b、c 的大小关系.30.在一条东西走向的马路上,有一棵桃树,在桃树东面的4m和6.5 m处分别有一棵柳树和一棵杨树,在桃树西4m和4.8 m处分别有一棵槐树和一根电线杆,将桃树当做数轴的原点,并设向东方向为正,用数轴上的点表示柳树、杨树、电线杆与槐树的相对位置关系.课后练习1.用“>”或“<”填空:(1)1________-2;(2)-4_________0.2.写出所有比-5大的负整数:______________________.3.两个同号的数中,较大的负数所表示的点离原点较________,较大的正数所表示的点离原点较_________.(填“近”或“远”)4.比较下列各组数的大小:(1)58和38-;(2)311-和0.5.用“>”或“<”填空:(1)-5__________0;(2)-7_________-9:(3)5__________-10;(4)-4___________4:(5)-0.5__________-2.5.6.在0与-3.5之间的负整数是__________________________.7.据中央气象台2018年1月8日的预报,下列四个地区的最低气温分别是:哈尔滨-11℃,杭州6℃,兰州-5℃,海口27℃,则其中气温最高的地区是_________,气温最低的地区是__________.8.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是_____________(用含m,n的式子表示).9.如图,如果点A、B、C、D所表示的数分别为a、b、c、d,则a、b、c、d 的大小关系为( )A.a<c<d<b B.b<d<a<c C.b<d<c<a D.a<b<c<d 10.在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为( )A.7 B.3 C.-3 D.-211.在数轴上,A 、B 两点的位置如图所示,那么下列说法中,错误的是 ( )A .点A 表示的数是负数B .点B 表示的数是负数C .点A 表示的数比点B 表示的数大D .点B 表示的数比0小 12.将四个数-0.01,-2,0,0.01从大到小用“>”连接,正确的是 ( ) A .-0.01>-2>0>0.01 B .-0.01,>0>-2>0.01 C .0.01>0>-0.01>--2 D .0.01>-0.01>0>-213.数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知点A 在点B 的左侧,点C 在点B 的左侧,点D 在点B 、C 之间,则下列式子中,可能成立的是 ( )A .a<b<c<dB .b<c<d<aC .c<d<a<bD .c<d<b<a 14.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab >C .0a b ->D .||||0a b ->15.在数轴上画出表示下列各数的点,并将它们按照从小到大的顺序排列.2,-1.5,0,4.16.画一条数轴,并在数轴上画出表示下列各数的点,并将它们按照从小到大的顺序排列.52,-3,0.4,-32,1.5,-2.5.BA10 a b17.如图,在数轴上有A、B、C三个点.请回答下列问题:(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(4)怎样移动点A、B、C中的两个点,使三个点表示的数相同?有几种移动的方法?预习:2.4绝对值与相反数1.若3a =,则a 的值是 ( )A .-3B .3C .13 D .±32.如果一个有理数的绝对值是4,那么在数轴上表示这个数的点位于原点的 ( )A .左边B .右边C .左边或者右边D .以上都不正确 3.如图,点A 所表示的有理数的绝对值是 ( )A .-1B .1C .±1D .以上都不对 4.下列说法中,错误的是 ( ) A .任何数的绝对值都是正数 B .一个正数的绝对值还是正数 C .一个负数的绝对值是正数 D .任何数的绝对值都不是负数 5.下列说法中,不正确的是 ( ) A .正数的相反数一定是负数 B .有理数都有相反数C .3.5与72-互为相反数 D .符号不同的两个数互为相反数6.如图,互为相反数的点是 ( )A .点A 与点CB .点B 与点DC .点B 与点CD .点A 与点D 7.若一个数的相反数是非负数,则这个数一定是 ( ) A .负数 B .正数 C .非负数 D .非正数 8.下列判断中,正确的有 ( ) (1)22+=;(2)22-=;(3)55--=;(4)0a >.(a 表示任何一个有理数) A .4个 B .3个 C .2个 D .1个 9.-5的绝对值是 ( )A .5B .-5C .15D .15-10.如果a 与1互为相反数,则2a +等于 ( )A .2B .-2C .1D .-1。
2.3 数轴一.选择题1.若数轴上表示﹣1 和3 的两点分别是点A 和点B,则点A 和点B 之间的距离是()A.﹣4 B.﹣2 C.2 D.42.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.3.数轴上一点A,一只蚂蚁从A 出发爬了4 个单位长度到了原点,则点A 所表示的数是()A.4 B.﹣4 C.±8 D.±44.表示a,b 两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|5.如图,数轴上的A,B,C 三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在()A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点B 与点C 之间(靠近点C)或点C 的右边6.已知数轴上C、D 两点的位置如图,那么下列说法错误的是()A.D 点表示的数是正数B.C 点表示的数是负数C.D 点表示的数比0 小D.C 点表示的数比D 点表示的数小7.如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C8.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a <c<b;②﹣a<b;③a+b>0;④c﹣a<0 中,错误的个数是()A.1 B.2 C.3 D.49.如图,数轴上的A、B、C 三点所表示的数分别为a、b、c,AB=BC,则下列关系正确的是()A.a+c=2b B.b>c C.c﹣a=2(a﹣b)D.a=c10.数轴上点A 表示a,将点A 沿数轴向左移动3 个单位得到点B,设点B 所表示的数为x,则x 可以表示为()A.a﹣3 B.a+3 C.3﹣a D.3a+311.如图,把半径为0.5 的圆放到数轴上,圆上一点A 与表示1 的点重合,圆沿着数轴正方向滚动一周,此时点A 表示的数是()A.ð B.ð+1 C.2ð D.ð﹣112.如图,数轴上点P 对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点BC.点C D.点D13.如图,有理数a,b,c,d 在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定二.填空题14.已知A,B,C 是数轴上的三个点,且C 在B 的右侧.点A,B 表示的数分别是1,3,如图所示.若BC=2AB,则点C 表示的数是.15.一只蚂蚁从数轴上一点A 出发,爬了7 个单位长度到了+1,则点A 所表示的数是.16.已知点A 和点B 在同一数轴上,点A 表示数﹣1,又点B 和点A 相距2 个单位长度,则点B 表示的数是.17.如图,半径为1 个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B,则AB 的长度为;若点A 对应的数是﹣1,则点B 对应的数是.18.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2 向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n 与原点的距离不小于20,那么n 的最小值是.三.解答题(共8 小题)19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1 个单位长度表示1km,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?20.阅读材料,并回答问题如图,有一根木棒MN 放置在数轴上,它的两端M、N 分别落在点A、B.将木棒在数轴上水平移动,当点M 移动到点B 时,点N 所对应的数为20,当点N 移动到点A 时,点M 所对应的数为5.(单位:cm)由此可得,木棒长为cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40 年才出生呢,你若是我现在这么大,我已经是老寿星了,116 岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.21.如图,点A、B 在数轴上表示的数分别为﹣12 和8,两只蚂蚁M、N 分别从A、B 两点同时出发,相向而行.M 的速度为2 个单位长度/秒,N 的速度为3 个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P 在数轴上表示的数是;(2)若运动t 秒钟时,两只蚂蚁的距离为10,求出t 的值(写出解题过程).22.如图,在数轴上点A 表示的有理数为﹣4,点B 表示的有理数为6,点P 从点A 出发以每秒2 个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2 个单位长度的速度运动至点A 停止运动.设运动时间为t(单位:秒).(1)求t=2 时点P 表示的有理数;(2)求点P 是AB 的中点时t 的值;(3)在点P 由点A 到点B 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);(4)在点P 由点B 到点A 的返回过程中,点P 表示的有理数是多少(用含t 的代数式表示).23.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A,B 两点间的距离为10.动点P 从点A 出发,以每秒6 个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B 表示的数是,点P 表示的数是(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒4 个单位长度的速度沿数轴向左匀速运动,若点P、Q 时出发.求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8 个单位长度?24.已知数轴上,点O 为原点,点A 对应的数为11,点B 对应的数为b,点C 在点B 右侧,长度为3 个单位的线段BC 在数轴上移动,(1)如图1,当线段BC 在O,A 两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b 的值;(2 )线段BC 在数轴上沿射线AO 方向移动的过程中,是否存在AC﹣OB= AB?若存在,求此时满足条件的b 的值;若不存在,说明理由.参考答案一.选择题1.(2017•扬州)若数轴上表示﹣1 和3 的两点分别是点A 和点B,则点A 和点B 之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.如图所示的图形为四位同学画的数轴,其中正确的是()A. B .C.D.【分析】根据数轴的概念判断所给出的四个数轴哪个正确.【解答】解:A 没有原点,故此选项错误;B、单位长度不统一,故此选项错误;C、没有正方向,故此选项错误;D、符合数轴的概念,故此选项正确.故选D.【点评】本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.3.数轴上一点A,一只蚂蚁从A 出发爬了4 个单位长度到了原点,则点A 所表示的数是()A.4 B.﹣4 C.±8 D.±4【分析】根据绝对值的意义得:到原点的距离为4 的点有4 或﹣4,即可得到A 表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A 所表示的数是±4.故选D.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的意义是解本题的关键.4.表示a,b 两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0 B.a﹣b>0 C.a×b>0 D.a<|b|【分析】先根据a、b 两点在数轴上的位置判断出a、b 的符号及绝对值的大小,再对各选项进行逐一分析即可.【解答】解:由图可知,b<0<a.|b|>|a|,A、∵b<0<a,|b|>|a|,∴a+b<0,故本选项正确;B、∵b<0<a,∴a﹣b>0,故本选项正确;C、∵b<0<a,∴a×b<0,故本选项错误;D、∵b<0<a.|b|>|a|,∴a<|b|,故本选项正确.故选C.【点评】本题考查的是数轴,先根据a、b 两点在数轴上的位置判断出a、b 的符号及绝对值的大小是解答此题的关键.5.如图,数轴上的A,B,C 三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在()A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点B 与点C 之间(靠近点C)或点C 的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C 到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小,又∵AB=BC,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边,故选:D.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.已知数轴上C、D 两点的位置如图,那么下列说法错误的是()A.D 点表示的数是正数B.C 点表示的数是负数C.D 点表示的数比0 小D.C 点表示的数比D 点表示的数小【分析】根据数轴的特点进行解答即可.【解答】解:A、∵点D 在原点的右侧,∴D 点表示的数是正数,故本选项正确;B、∵点C 在原点的左侧,∴C 点表示的数是负数,故本选项正确;C、∵D 点表示的数是正数,∴D 点表示的数比0 大,故本选项错误;D、∵C 点在D 点的左侧,∴C 点表示的数比D 点表示的数小,故本选项正确.故选C.【点评】本题考查的是数轴,熟知数轴上右边的数总比左边的数大是解答此题的关键.7.如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【分析】根据数轴上表示数a 的点与表示数﹣a 的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A 表示的数为﹣2,点D 表示的数为2,根据数轴上表示数a 的点与表示数﹣a 的点到原点的距离相等,∴点A 与点D 到原点的距离相等,【点评】此题主要考查了数轴,关键是掌握互为相反数的两个数,它们分别在原点两旁且到原点距离相等.8.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a <c<b;②﹣a<b;③a+b>0;④c﹣a<0 中,错误的个数是()A.1 B.2 C.3 D.4【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<0<c,|b| >|a|,|b|>|c|,再由相反数、有理数的加减法法则得出结果.【解答】解:由数轴可得:b<a<0<c,|b|>|a|,|b|>|c|,①a<c<b,错误;②﹣a<b,错误;③a+b>0,错误;④c﹣a<0,错误;错误的个数为4 个,【点评】本题考查了数轴,利用了有理数的乘法,有理数的加法,有理数的减法,有理数的大小比较.9.如图,数轴上的A、B、C 三点所表示的数分别为a、b、c,AB=BC,则下列关系正确的是()A.a+c=2b B.b>c C.c﹣a=2(a﹣b)D.a=c【分析】根据数轴可得a<b<c,再根据AB=BC,逐一判定,即可解答.【解答】解:A、∵AB=BC,∴点B 为AC 的中点,∴,∴a+c=2b,故正确;B、由数轴可得a<b<c,故错误;C、c﹣a=2(b﹣a),故错误;D、a≠c,故错误.故选:A.【点评】本题考查了数轴,解决本题的关键是由数轴可得a<b<c.10.数轴上点A 表示a,将点A 沿数轴向左移动3 个单位得到点B,设点B 所表示的数为x,则x 可以表示为()A.a﹣3 B.a+3 C.3﹣a D.3a+3【分析】根据B 点表示的数比点A 表示的数小3,即可表示出点B 表示的数.【解答】解:由题意得,把点A 向左移动3 个单位长度,即点A 表示的数减小3.故B 点所表示的数为a﹣3.故选A.【点评】本题主要考查了数轴,点在数轴上移动的时候,对应的数的大小变化规律是:左减右加.11.如图,把半径为0.5 的圆放到数轴上,圆上一点A 与表示1 的点重合,圆沿着数轴正方向滚动一周,此时点A 表示的数是()A.ð B.ð+1 C.2ð D.ð﹣1【分析】首先根据圆的周长公式,求出半径为0.5 的圆的周长是多少;然后用它加上1,求出点A 表示的数是多少即可.【解答】解:2ð×0.5+1=ð+1∴点A 表示的数是ð+1.故选:B.【点评】此题主要考查了数轴的特征和应用,以及圆的周长的求法,要熟练掌握.12.(2016•常州)如图,数轴上点P 对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点BC.点C D.点D【分析】根据图示得到点P 所表示的数,然后求得﹣的值即可.【解答】解:如图所示,1<p<2,则<<1,所以﹣1<﹣<﹣.则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P 所表示的数是解题的关键.13.(2016•莱芜)如图,有理数a,b,c,d 在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定【分析】由a+c=0 可知a 与c 互为相反数,所以原点是AC 的中点,利用b、d 与原点的距离可知b+d 与0 的大小关系.【解答】解:∵a+c=0,∴a,c 互为相反数,∴原点O 是AC 的中点,∴由图可知:点D 到原点的距离大于点B 到原点的距离,且点D、B 分布在原点的两侧,故b+d<0,故选(B).【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.二.填空题14.(2017•福建)已知A,B,C 是数轴上的三个点,且C 在B 的右侧.点A,B 表示的数分别是1,3,如图所示.若BC=2AB,则点C 表示的数是7 .【分析】先利用点A、B 表示的数计算出AB,再计算出BC,然后计算点C 到原点的距离即可得到C 点表示的数.【解答】解:∵点A,B 表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C 表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.一只蚂蚁从数轴上一点A 出发,爬了7 个单位长度到了+1,则点A 所表示的数是﹣6 或8 .【分析】由于没有说明往哪个方向移动,故分情况讨论.【解答】解:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8,故答案为:﹣6 或+8;【点评】本题考查数轴,涉及分类讨论思想.16.已知点A 和点B 在同一数轴上,点A 表示数﹣1,又点B 和点A 相距2 个单位长度,则点B 表示的数是﹣3 或1 .【分析】分点B 在点A 的左侧和右侧两种情况,利用两点间的距离公式求解可得.【解答】解:当点B 在点A 左侧,相距2 个单位长度时,点B 表示﹣1﹣2=﹣3,当点B 在点A 右侧,相距2 个单位长度时,点B 表示﹣1+2=1,故答案为:﹣3 或1.【点评】本题主要考查数轴和两点间的距离公式,根据题意分类讨论是解题的关键.17.如图,半径为1 个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B,则AB 的长度为ð ;若点A 对应的数是﹣1,则点B 对应的数是ð ﹣1 .【分析】运用圆的周长公式求出周长即可.【解答】解:AB 的长度为:C=ðd=ð,点B 对应的数是ð﹣1,故答案为:ð,ð﹣1.【点评】本题主要考查了圆的周长及实数与数轴,解题的关键是求了出C.18.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2 向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n 与原点的距离不小于20,那么n 的最小值是13 .【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A13 表示的数为﹣17﹣3=﹣20,A12 表示的数为16+3=19,则可判断点A n 与原点的距离不小于20 时,n 的最小值是13.【解答】解:第一次点A 向左移动3 个单位长度至点A1,则A1 表示的数,1﹣3=﹣2;第2 次从点A1 向右移动6 个单位长度至点A2,则A2 表示的数为﹣2+6=4;第3 次从点A2 向左移动9 个单位长度至点A3,则A3 表示的数为4﹣9=﹣5;第4 次从点A3 向右移动12 个单位长度至点A4,则A4 表示的数为﹣5+12=7;第5 次从点A4 向左移动15 个单位长度至点A5,则A5 表示的数为7﹣15=﹣8;…;则A7 表示的数为﹣8﹣3=﹣11,A9 表示的数为﹣11﹣3=﹣14,A11 表示的数为﹣14﹣3=﹣17,A13 表示的数为﹣17﹣3=﹣20,A6 表示的数为7+3=10,A8 表示的数为10+3=13,A10 表示的数为13+3=16,A12 表示的数为16+3=19,所以点A n 与原点的距离不小于20,那么n 的最小值是13.故答案为:13.【点评】本题考查了规律型:认真观察、仔细思考,找出点表示的数的变化规律是解题关键.三.解答题19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1 个单位长度表示1km,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?【分析】(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.【解答】解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36 分钟长时间.【点评】本题考查了数轴,有理数的加减运算,正数和负数,绝对值等知识点的应用,此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.20.阅读材料,并回答问题如图,有一根木棒MN 放置在数轴上,它的两端M、N 分别落在点A、B.将木棒在数轴上水平移动,当点M 移动到点B 时,点N 所对应的数为20,当点N 移动到点A 时,点M 所对应的数为5.(单位:cm)由此可得,木棒长为 5 cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40 年才出生呢,你若是我现在这么大,我已经是老寿星了,116 岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.【分析】(1)由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N 点移动到A 点时,此时M 点所对应的数为﹣40,美羊羊比村长爷爷大时看做当M 点移动到B 点时,此时N 点所对应的数为116,所以可知爷爷比美羊羊大[116﹣(﹣40)]÷3=52,可知爷爷的年龄.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15,则此木棒长为:15÷3=5,故答案为:5.(2)如图,点A 表示美羊羊现在的年龄,点B 表示村长爷爷现在的年龄,木棒MN 的两端分别落在点A、B.由题意可知,当点N 移动到点A 时,点M 所对应的数为﹣40,当点M 移动到点B 时,点N 所对应的数为116.可求MN=52.所以点A 所对应的数为12,点B 所对应的数为64.即美羊羊今年12 岁,村长爷爷今年64 岁.【点评】此题考查了数轴,解题的关键是把村长爷爷与美羊羊的年龄差看做一个整体(木棒MN),而后把此转化为上一题中的问题.21.如图,点A、B 在数轴上表示的数分别为﹣12 和8,两只蚂蚁M、N 分别从A、B 两点同时出发,相向而行.M 的速度为2 个单位长度/秒,N 的速度为3 个单位长度/秒.(1)运动 4 秒钟时,两只蚂蚁相遇在点P;点P 在数轴上表示的数是﹣4 ;(2)若运动t 秒钟时,两只蚂蚁的距离为10,求出t 的值(写出解题过程).【分析】(1)利用两蚂蚁的速度表示出行驶的路程,进而得出等式求出即可;(2)分别利用在相遇之前距离为10 和在相遇之后距离为10,求出即可.【解答】解:(1)设运动x 秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4 秒钟时,两只蚂蚁相遇在点P;点P 在数轴上表示的数为:﹣4;(2)运动t 秒钟,蚂蚁M 向右移动了2t,蚂蚁N 向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t 的值为2 或6.故答案为:4;﹣4.【点评】此题主要考查了一元一次方程的应用以及数轴的应用,利用分类讨论得出是解题关键.22.如图,在数轴上点A 表示的有理数为﹣4,点B 表示的有理数为6,点P 从点A 出发以每秒2 个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2 个单位长度的速度运动至点A 停止运动.设运动时间为t(单位:秒).(1)求t=2 时点P 表示的有理数;(2)求点P 是AB 的中点时t 的值;(3)在点P 由点A 到点B 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);(4)在点P 由点B 到点A 的返回过程中,点P 表示的有理数是多少(用含t 的代数式表示).【分析】(1)根据P 点的速度,有理数的加法,可得答案;(2)根据两点间的距离公式,可得AB 的长度,根据路程除以速度,可得时间;(3)根据速度乘以时间等于路程,可得答案;(4)根据速度乘以时间等于路程,可得答案.【解答】解:(1)点P 表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P 是AB 的中点时t=2.5 或7.5;(3)在点P 由点A 到点B 的运动过程中,点P 与点A 的距离为2t;(4)在点P 由点B 到点A 的返回过程中,点P 表示的有理数是6﹣2(t﹣5)=16﹣2t.【点评】本题考查了数轴,利用了速度与时间的关系,分类讨论是解题关键.23.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A,B 两点间的距离为10.动点P 从点A 出发,以每秒6 个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B 表示的数是﹣4 ,点P 表示的数是6﹣6t (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒4 个单位长度的速度沿数轴向左匀速运动,若点P、Q 时出发.求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8 个单位长度?【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B 在原点左边,从而写出数轴上点B 所表示的数;动点P 从点A 出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P 所表示的数是6 ﹣6t;(2)①点P 运动t 秒时追上点Q,由于点P 要多运动10 个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P 运动a 秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A 表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B 在原点左边,∴数轴上点B 所表示的数为﹣4;点P 运动t 秒的长度为6t,∵动点P 从点A 出发,以每秒6 个单位长度的速度沿数轴向左匀速运动,∴P 所表示的数为:6﹣6t;(2)①点P 运动t 秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P 运动5 秒时,点P 与点Q 相遇;②设当点P 运动a 秒时,点P 与点Q 间的距离为8 个单位长度,当P 不超过Q,则10+4a﹣6a=8,解得a=1;当P 超过Q,则10+4a+8=6a,解得a=9;答:当点P 运动1 或9 秒时,点P 与点Q 间的距离为8 个单位长度.【点评】此题考查的知识点是两点间的距离及数轴,根据已知得出各线段之间的关系等量关系是解题关键.24.已知数轴上,点O 为原点,点A 对应的数为11,点B 对应的数为b,点C 在点B 右侧,长度为3 个单位的线段BC 在数轴上移动,(1)如图1,当线段BC 在O,A 两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b 的值;(2 )线段BC 在数轴上沿射线AO 方向移动的过程中,是否存在AC﹣OB= AB?若存在,求此时满足条件的b 的值;若不存在,说明理由.【分析】(1)由题意可知B 点表示的数比点C 对应的数少3,进一步用b 表示出AC、OB 之间的距离,联立方程求得b 的数值即可;(2)分别用b 表示出AC、OB、AB,进一步利用AC﹣0B=AB 建立方程求得答案即可.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b 的值是4.(2)由题意得:①11﹣(b+3)﹣b= (11﹣b),解得:b= .②11﹣(b+3)+b= (11﹣b),解得:b=﹣5.答:若AC﹣0B=AB,满足条件的b 值是或﹣5.【点评】本题考查了一元一次方程的应用,考查了数轴与两点间的距离的计算,根据数轴确定出线段的长度是解题的关键.。
《数轴》同步练习1.四位同学画数轴如下图所示,你认为正确的是( )2.如图,在数轴上点M表示的数可能是( )A.1.5 B.-1.5 C.-2.4 D.2.43.已知有理数a,b在数轴上表示如图,现比较a,b,-a,-b的大小,正确的是( )A.-a<-b<a<b B.a<-b<b<-aC.-b<a<-a<b D.a<b<-b<-a4.一个点从数轴上表示-3的点开始,先向左移动a个单位长度,再向右移动b个单位长度,那么终点表示的数是( )A.-3-a +b B.-3+ a + b C.3+ a + b D.3-a + b5.已知数轴上一点A,一只蚂蚁从A出发按某一方向爬了4个单位长度到原点,则点A所表示的数是( )A.4 B.-4 C.±4 D.±86.如图所示,数轴上所标出的点中,相邻两点间的距离相等,则点A表示的数为( ),A.30 B.50 C.60 19.807.在数轴上表示的数,的数总比的数大.8.大于-3而不超过2的所有整数是.9.在数轴上,通过观察可以发现,表示与原点相距3个长度单位以内 (包括3个长度单位)的整数点共有______.10.在数轴上,—个点从原点开始,先向左移动5个单位,再向右移动7个单位,这个终点表示的数是_____.11.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250 m到小明家,后又向东走350 m到小兵家,再向西行800 m到小颖家,最后又回到学校.(1) 以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.(2) 小明家距离小颖家多远?(3) 这次家访,老师共行了多少千米的路程?12.如图,在数轴上有三个点A,B,C,请回答:(1) 将点B向左移动3个单位后,三个点所表示的数谁最小?(2) 将点A向右移动4个单位后,三个点所表示的数谁最小?(3) 将C点向左移动6个单位后,这时B点所表示的数比C点表示的数大多少?答案和解析一、选择题1.C【解析】数轴必须具有原点、正方向和单位长度三要素,据此分析各同学画的数轴可知答案是C.2.C【解析】在数轴上点M在-3和-2之间,所以点M表示的数可能是-2.4,所以答案是C.3.C【解析】观察数轴可知有理数a<0,b>0且点a到原点的距离小于点b到原点的距离,所以-a>0,-b<0,所以-b<a<-a<b.4.A【解析】一个点从数轴上表示-3的点开始,先向左移动a个单位长度后的点表示的数是-3-a,再向右移动b个单位长度后的点表示的数是-3-a+b,所以终点表示的数是-3-a+b.5.C【解析】数轴上一点A,一只蚂蚁从A出发按某一方向爬了4个单位长度到原点,如果是向左爬到原点,点A表示的数是4;如果是向右爬到原点,点A表示的数是-4;所有点A所表示的数是±4.所以答案为C.6.C【解析】数轴上所标出的点中,相邻两点间的距离相等,说明此数轴的单位长度是20,则点A表示的数60,所以答案为C.二、填空题7. 右边左边【解析】在数轴上表示的数,右边的数总比左边的数大,所以答案为右边、左边.8. -2,-1,0,1,2【解析】大于-3不超过2的整数有-2、-1、0、1、2,据此可知答案.9.7【解析】在数轴上,表示与原点相距3个长度单位以内 (包括3个长度单位)的整数点有-3、-2、-1、0、1、2、3,据此可知答案.10. 2【解析】在数轴上,—个点从原点开始,先向左移动5个单位,表示的数是-5,再向右移动7个单位表示的数是2,所以这个终点表示的数是2.三、简答题11.(1) 以向东为正,100 m为单位长度,可建立数轴如(2) 小明家距离小颖家450 m;(3) 250+350+800+200=1 600(米),∴这次家访,老师共行了1.6千米的路程.【解析】(1) 数轴必须具有原点、正方向和单位长度三要素,由题已知,原点是学校,令向东为正方向,100 m为单位长度;(2) 借助数轴读出小明家和小颖家距离的单位长度数,然后再转化成实际距离;(3) 路程没有方向,不管向东,还是向西都要记作路程,最后还要加上回到学校的那段路程.12.(1)B点表示的数最小;(2)B点表示的数最小;(3)B点所表示的数比C点表示的数大1【解析】(1) 因为点B向左移动3个单位后,B点表示的数是-5,又A点表示的数是-4,C点表示的数是3,所以在A,B,C三点中B点表示的数最小;(2) 因为点A向右移动4个单位后,A点表示的数是0,又B点表示的数是-2,C 点表示的数是3,所以在A,B,C三点中B点表示的数最小;(3) 因为点C向左移动6个单位后,C点表示的数是-3,又B点表示的数是-2,所以B点所表示的数比C点表示的数大1;。
初一数学上册《1人教初一数学上册1.2数轴同步检测(含详解)5分钟训练(预习类训练,可用于课前)1.判定题:(1)直线确实是数轴;()(2)数轴是直线;()(3)任何一个有理数都能够用数轴上的点来表示;()(4)数轴上到原点距离等于3的点所表示的数是+3.()思路解析:规定了原点、单位长度、正方向的直线才是数轴,因此,直线不一定是数轴,而数轴必是直线任何有理数都能够用数轴上的点表示.答案:(1)×(2)√(3)√(4)×2.下列各图中,表示数轴的是()思路解析:数轴的三要素——原点、正方向、单位长度是缺一不可的,因此应当用这三要素检查每个图形,判定是否画的正确.答案:D3.在下面数轴上,A,H,D,E,O各点分别表示什么数?解析:判定数轴上的点表示的数,第一看该点在原点的右边依旧左边,判定正负;再看该点与原点的距离,判定数量答案:4,-1,-3,2,010分钟训练(强化类训练,可用于课中)1.数轴的三要素是________,________和_________.答案:原点正方向单位长度2.下面说法中错误的是()A.数轴上原点的位置是任意取的,不一定要居中B.数轴上单位长度的大小要依照实际需要选取.1厘米长的线段能够代表1个单位长度,也能够代表2个、5个、10个、100个…单位长度,但一经取定,就不可改动C.假如a<b,那么在数轴上表示a的点比表示b的点距离原点更近D.所有的有理数都能够用数轴上的点表示,但不能说数轴上所有的点都表示有理数思路解析:依照定义可知A、B正确;对D,我们明白数轴上的点还能够表示无限不循环小数(无理数),故D正确对C,我们可举反例,如-1 002,但表示2的点距原点更近.答案:C3.指出数轴上A、B、C、D、E各点分别表示什么数.思路解析:在数轴上的每一个数都表示一个数,注意刻度数的意义.答案:O表示0,A表示-2,B表示1,C表示3,D表示-4,E表示-0. 5.4.画一条数轴,并画出表示下列各数的点.2,-5,0,+3.2,-1.4.思路解析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,每一个负有理数都可用数轴上原点左边的一个点来表示答案:欢乐时刻借力爱迪生在住宅搞了许多有用发明.有个朋友来看他,推门时十分费劲,推了好几下才到里面去.客人向爱迪生埋怨:“你这门也太紧了,竟使我出了一身汗.”“感谢,你有力的推门差不多给我屋顶上的水箱压进了几十升水.”爱迪生快乐地说.30分钟训练(巩固类训练,可用于课后)1.以下四个数,分别是数轴上A、B、C、D四个点可表示的数,其中数写错的是()A.-3.5B.-1C.0D.1思路解析:明显,从数轴上看,B点表示-1.答案:B2.下列各语句中,错误的是()A.数轴上,原点位置的确定是任意的B.数轴上,正方向能够是从原点向右,也能够是从原点向左C.数轴上,单位长度1的长度的确定,可依照需要任意选取D.数轴上,与原点的距离等于36.8的点有两个思路解析:依照数轴的意义来判定.答案:B3.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是()A.3B.1C.-2D.-4思路解析:依照题意,实际是从原点开始向左移动了4个单位长度,即该点为-4.答案:D4.下列所画数轴对不对?假如不对,指出错在哪里?思路解析:依照数轴定义判定答案:①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轴上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.5.(1)在数轴上距原点3个单位长度的点表示的数是_________.(2)在数轴上表示-6的点在原点的_________侧,距离原点_______ _个单位长度,表示+6的点在原点的________侧,距离原点_________个单位长度.思路解析:依照数轴的意义判定,注意原点左、右的数到原点的距离.答案:(1)±3(2)左6右66.(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.思路解析:(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了(2)在数轴上画出大于-4但不大于2的数的范畴,那个范畴内整数点所表示的整数确实是所求.“不大于2”的意思是小于或等于2.答案:(1)由图看出:-4.5<-3<3<4.5.(2)在数轴上画出大于-4但不大于2的数的范畴.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.7.比较下列各组数的大小:(1)-536与0;(2)与0;(3)0.2%与-21;(4)-18.4与-18.5.思路解析:依据“正数都大于0,负数都小于0;正数大于一切负数”和“在数轴上表示的两个数,右边的数总比左边的数大”,比较两个数的大小.答案:(1)-5360;观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
2.3数轴(含答案)
一、选择题
1.下列图形中,不是数轴的是( )
2.将四个数-0.01,-2,0,0.01从大到小用“>”连接,正确的是( )
A.-0.01>-2>0>0.01 B.-0.01,>0>-2>0.01
C.0.01>0>-0.01>--2 D.0.01>-0.01>0>-2
3.如图,在数轴上A、B两点所表示的有理数分别为( )
A.3.5和3 B.3.5和-3C.-3.5和3 D.-3.5和-3
4.下列说法中,正确的是( )
A.数轴是一条规定了原点、正方向和单位长度的射线
B.离原点近的点所表示的有理数较小
C.数轴可以表示任意有理数
D.原点在数轴的正中间
5.在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若
点C表示的数为1,则点A表示的数为( )
A.7 B.3 C.-3 D.-2
6.将一刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0”和“l5”分别对应数轴上表示-3.6和x的点,则( )
A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13
7.小于5.4而又不小于-3.1的整数有( )
A.6个B.7个C.8个D.9个
8.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( )
A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<1
二、填空题
9.两个同号的数中,较大的负数所表示的点离原点较_______,较大的正数所表示的点离原点较________(填“近”或“远”).
10.给出下列各数:2,-3,-21
3
,3.5,0,-4.6,其中最小的有理数为_______;最大的
有理数为______
11.数轴上表示-4的点在原点_______侧,距原点的距离是_____
12.在数轴上,点A表示-1
3
,点B表示
1
2
,则这两个点中,离原点较近的点是_______
13.在数轴上,到点A的距离是5的点有2个,它们表示的数是2和-8,那么点A表示的数是________.
14.数轴上的点M表示-5,在同一数轴上与点M相距3个单位的点表示的数是_____
15.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长2022cm的线段AB,则线段AB盖住的整点的个数是
16.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位长,在圆的4等分
点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合……),则数轴上表示-2022的点与圆周上表示数字的点重合.
三、解答题
17.画一条数轴,并在数轴上画出表示下列各数的点,再将它们按从小到大的顺序用“<”连
接起来.-5,0,2,1
2
,-0.5,-
3
2
18.如图,数轴上A、B、C三点分别表示数a、b、c,试比较-1、1、a、b、c的大小关系.
19.如图,在数轴上有A、B、C三个点,请回答下列问题:
(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?
(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?
(3)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?
(4)怎样移动点A、B、C中的两个点,使三个点表示的数相同?有几种移动的方法?
20.有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去救人,当他爬到梯子正中一级时,二楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬了7级,这时屋顶有砖掉下来,他又往后退了2级,幸好没事,他又爬了8级,这时他距梯子最高层还有1级,问这个梯子共有几级?
21.如图,一只蚂蚁从原点出发,先向右爬行了2个单位长度到达点A,再向右爬行了4个
单位长度到达点B,然后向左爬行了10个单位长度到达点C.
(1)写出点A、B、C表示的数;
(2)根据点C在数轴上的位置,回答:蚂蚁实际上是从原点出发,向什么方向爬行了多
少个单位长度?
22.已知数轴上有A和B两点,A、B之间的距离为2,点A与原点O的距离为4,那么所有满足条件的点B与原点O的距离之和等于多少?
23.操作与探究:
已知在纸面上有数轴(如图),折叠纸面.
例如:若数轴上数2表示的点与数-2表示的点重合,则数轴上数-4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:
(1) 若数轴上数1表示的点与-1表示的点重合,则数轴上数3表示的点与数表
示的点重合.
(2) 若数轴上数-3表示的点与数1表示的点重合.
①则数轴上数3表示的点与数表示的点重合.
②若数轴上A,B两点之间的距离为7(A在B的左侧),并且A,B两点经折叠后重合,
则A,B两点表示的数分别是.
参考答案
1.B
2.C
3.C
4.C
5.D
6.C
7.D
8.A
9.近远
10.-4.6;3.5
11.左,四个单位长度
12.点A
13.-3
14.-2或-8
15.2022或2023
16.3
17.
18.c<-1<a<1<b
19.(1)点B -5 (2)点B -2 (3)大1(4)将点A、B移到点C处,或将点A、C移到点B 处,或将点B、C移到点A处,共有3种移法,
20.23级
21.(1)A:2 B:6 C:-4;(2)向左爬行了4个单位长度.
22.16
23.(1)-3,(2)①-5,②2.5,-4.5。