苏教版初一数学数轴上的动点问题
- 格式:doc
- 大小:365.50 KB
- 文档页数:4
例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七上期末复习压轴题---数轴上的动点(难题)训练一、计算题1.如图,M是线段AB上一点,且AB=16cm,C、D两点分别从M、B同时出发,C点以1cm/s的速度向点A运动,D点以3cm/s的速度向点M运动,当一点到达终点时,另一点也停止运动.(1)当AM=6cm,点C、D运动了2s时,求这时AC与MD的数量关系;(2)若AM=6cm,请你求出点C、D运动了多少s时,点C、D的距离等于4cm;(3)若点C、D运动时,总有MD=3AC,求AM的长.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P追上点Q时,点P所表示的数是多少?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;二、解答题3.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=______cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.4.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4cm,b=6cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.5.如图,数轴上线段AB长为4个单位,线段CD长为6个单位,点A在数轴上表示的数是−12,点D在数轴上表示的数是22.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________;(2)若数轴上点P与A、B两点的距离和为5,求点P在数轴上表示的数;(3)若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动,当运动到BC长为8个单位时,直接写出点B在数轴上表示的数.6.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足|a+1|+(b−2)2=0.(1)求A,B两点之间的距离;BC,且满足c+d=0,求数d.(2)数轴上点A的左侧的点C,使AC=23(3)现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为t(秒);①t为何值时B球第二次撞向右侧挡板;②在这段时间内,A、B两小球的距离为4时,请直接写出此时处于运动状态下的小球所在位置表示的点的数值.7.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|,若a>b,则可简化为AB=a−b,线段AB的中点表示的数a+b.【问题情境】如图,数轴上点A表示的数为−2,点B表示的数为8,点P 2从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)①A、B两点间的距离AB=______;线段AB的中点表示的数为______;②用含t的代数式表示:t秒后,点P表示的数为______;点Q表示的数为______;(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.8.如图1,已知点M是线段AB上一点,点C在线段AM上,点D在线段BM上,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(Ⅰ)若AB=10 cm,当点C、D运动了2 s时,求AC+MD的值;(Ⅱ)若点C、D运动时,总有MD=3AC,则AM=____AB;(Ⅲ)如图2,若AM=14AB,点N是直线AB上一点,且AN−BN=MN,求MNAB的值.9.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=______cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.10.图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是−10,点C在数轴上表示的数是16,若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动。
苏科版数学七年级上册期末满分突破专练:数轴类动点综合题(四)1.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.2.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.3.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.4.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.6.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?7.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m到小夏家C处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?8.已知,一个点从数轴上的原点开始,先向左移动7cm到达A点,再从A点向右移动12cm 到达B点,把点A到点B的距离记为AB,点C是线段AB的中点.(1)点C表示的数是;(2)若点A以每秒2cm的速度向左移动,同时C、B点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB﹣AC的值;③试探索:CB﹣AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B 的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC 的值.10.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案1.解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.2.解:(1)AB的中点所表示的数为=2,此时点Q表示的数为2,点Q移动的时间为(6﹣2)÷4=1秒,因此,点P表示的数为﹣2+2×1=0,∴PQ=2﹣0=2,(2)设点Q移动的时间为t秒,则移动后点Q所表示的数为6﹣4t,移动后点P所表示的数为﹣2+2t,当Q为PB的中点时,有=6﹣4t,解得,t=,此时.点P表示的数为﹣2+2×=﹣.3.解:(1)MN的长为3﹣(﹣1)=4.(2)x=(3﹣1)÷2=1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.故答案为:4;1.4.解:(1)点A,B,C即为如图所示.(2)5﹣(﹣2.5)=7.5(千米).故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升).故小轿车的耗油量是1.6升..5.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.6.解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①点P在点M的左边:﹣3﹣0.5=﹣3.5,②点P在点N的右边:1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.7.解:(1)因为学校是原点,向南方向为正方向,用1个单位长度表示1000m.从学校出发南行1000m到达小华家,所以点A在1处,从A向北行3000m到达小红家,所以点B在﹣2处,从B向南行6000m到小夏家,所以点C在4处.(2)点B是﹣2,所以小红家在学校的北面,距离学校2000m.8.解:(1)由题意可得,AC=12×=6,∴点C表示的数为:0﹣7+6=﹣1,故答案为:﹣1;(2)①由题意可得,点C移动t秒时表示的数为:﹣1+t,故答案为:﹣1+t;②当t=2时,CB﹣AC=[(0﹣7+12+4t)﹣(﹣1+t)]﹣[(﹣1+t)﹣(0﹣7﹣2t)]=(5+4t+1﹣t)﹣(﹣1+t+7+2t)=6+3t﹣6﹣3t=0;③CB﹣AC的值不随着时间t的变化而改变,∵CB﹣AC=[(0﹣7+12+4t)﹣(﹣1+t)]﹣[(﹣1+t)﹣(0﹣7﹣2t)]=(5+4t+1﹣t)﹣(﹣1+t+7+2t)=6+3t﹣6﹣3t=0,∴CB﹣AC的值不随着时间t的变化而改变,CB﹣AC的值为0cm.9.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.10.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.。
期中专题复习-------数轴上动点一、例题精讲班级姓名例1:如图,数轴上A点表示数a,B点示数b,a、b满足0+-a.+b(2=5)4(1)a= ,b= ;(2)①若点P到点A,点B的距离相等,求点P对应的数为;②若点P到点A的距离是点P到点B的距离的2倍,求点P对应的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从B处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看做一个点),以原来的速度向相反的方向运动,设运动时间为t(秒),若甲、乙两小球到原点的距离相等,求t的值.例2:数轴上A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.若点P,Q同时出发,设运动时间为t秒.(1)点B表示的数为;(2)t为时,P,Q两点相遇在R点,点R表示的数是;(3)若P、Q两点相距2个单位长度,求出t的值;(4)若点Q的运动方向变为向左,速度不变.①若P、Q两点相距2个单位长度,求出t的值;②在P、Q运动的同时,点M以每秒6个单位长度的速度从点A向点B运动.当遇到点Q时,立即以同样的速度返回,并不停地往返于点P与点Q之间,求当点P与点Q重合时,求点M所经过的总路程.二、巩固练习1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”图中点A表示,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位动点P从点A出发,以2单位秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速直至运动至点C停止;同时,动点Q从点C出发,以1单位秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,当P点停止运动时,Q点也随之停止运动设运动的时间为t秒,问:动点P从点A运动至C点需要多少时间?、Q两点相遇时,求出相遇点M所对应的数是多少;求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.2.在数轴上,点A、B表示的数分别为a、b,且点C、D是数轴上的两个动点,点C在点D的左侧,且.__,__;当线段CD在数轴上移动到某一位置时,有,求此时点C表示的数;若点C、D都不与点A、B重合,线段CD从的位置以2个单位长度秒的速度向右运动;同一时刻,一个动点P从点A出发,以1个单位长度秒的速度向左运动,另一动点Q从点B出发,以3个单位长度秒的速度向左运动设运动时间为用含t的代数式分别表示出线段DP、CQ的长度;是否存在一个常数m,使得式子的值不随运动时间t的改变而改变若存在,请求出m 的值以及上述式子的值;若不存在,请说明理由下图供你探究问题时用3.在数轴上,点A代表的数是,点B代表的数是15,点Q表示的数是1.若P从点A出发,向点B运动到达点B时运动停止;每秒运动2个单位长度,M在AP之间,N在PB之间,且,,运动多长时间后?若点A以每秒1个单位长度的速度向左运动,同时,点B和点Q分别以每秒7个单位长度和3个单位长度的速度向右运动试探索的值是否随着时间秒的变化而变化?若变化,请说明理由;若不变,请求出这个值;若CD为数轴上一条线段点C在点D的左边,,当的值最小时,请直接写出点C对应的数c的取值范围.4.如图所示,数轴上依次有三点A,O,B,点A位于原点O的左侧且相距40个单位长度,个单位长度,点P从A点出发以3个单位长度秒的速度匀速向B点运动,点Q从B点出发,以a个单位长度秒的速度匀速向A点运动,两点同时出发、Q只在线段AB上运动若BO表示点O与点B之间的距离,PO表示点P与点O之间的距离,QO表示点Q与点O之间的距离.秒后点P与点Q的距离为______ ;用含a的代数式表示当时,求经过多少秒后;当且时,的值随时间t的变化而改变吗?请说明理由.5.如图,数轴上有A,B两点对应的数分别是a、已知点A到原点的距离为5,且A、B两点间的距离为12.则_________,__________;有一动点P从点A出发第一次向左运动1个单位长度到达点,第二次从点向右运动2个单位长度到达点,第三次从点向左运动3个单位长度到达点,第四次从点向右运动4个单位长度到达点,,点P按此规律不断地左右运动.当点P运动2015次后到达点时,求点所对应的有理数.当点P运动n次后到达点时,求点所对应的有理数为正奇数,用含n的式子表示;在的条件下,点P经过若干次运动到达点,点到点B的距离是点到点A的距离的3倍,请你求出点对应的有理数,并指出是点P第几次运动结束时;若不存在满足条件的点,也请说明理由.6.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b。
初一数学期末复习专题-----动点问题班级:___________姓名:___________一、知识回顾:1.数轴上两点之间的距离如何表示?可用绝对值来表示,即两点所表示的数差的绝对值.如,数轴上点A ,B 所表示的数是a ,b , 则AB =|a -b|或|b -a|.2.数轴上一个动点如何字母来表示?用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减.如,数轴上点A 对应的数为-3,点P 从A 出发,以每秒2个单位长度的速度向右运动,设运动的时间是t ,则点P 所表示的数是-3+2t .3.怎样求数轴上任意两点间的线段的中点?两点所表示的数相加的和除以2,如数轴上的点所表示的数是a ,b ,则线段AB 的中点所表示的数是a +b 2. 【例题1】如图,已知数轴上原点为O ,点B 表示的数为-2,A 在B 的右边,且A 与B 的距离是5,动点P 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点Q 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,设运动时间为t (t >0)秒.写出数轴上点P 表示的数________,点Q 表示的数________(用含t 的代数式表示);2.列式:利用两点间距离的表示方法将线段用具体的数或式子表示出来数轴上两点之间的距离三种表示方式:①如果两个点所表示的数的大小已知,直接用较大的数减去较小的数;②如果两个点所表示的数的大小未知,则用两个数的差的绝对值表示;③动点的起始点和终止点之间的线段可以用动点所走的路程表示.【例题2】如图,数轴上点A 表示的数是-4,点B 表示的数是8,动点P 从点A 出发,以每秒3个单位长度的速度向点B 运动,到点B 停止;动点Q 从点B 出发,以每秒1个单位长度的速度向点A 运动,到点A 停止,点Q 运动的时间为t (秒) .(1)求线段AB 的长度;(2)在运动过程中,用含t 的代数式表示PQ 的长度.【例题3】如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.若点P 、Q 同时出发,求:(1)当点P 运动多少秒时,点P 与点Q 相遇?(2)当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?【例题4】已知在数轴上有A ,B 两点,点B 表示的数为最大的负整数,点A 在点B 的右边,AB =24.若有一动点P 从数轴上点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?(2)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?常见题型1.点的重合问题:通常是相遇与追击问题,通过点的运动状态可以判断出两个动点重合,重合则两个点表示的数相等,将两个动点用含t的式子表示出来,并令两个式子相等.【例题5】已知数轴上有A,B,C三点,分别代表-30,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)甲,乙在数轴上的哪个点相遇?(2)多少秒后,甲到A,B,C的距离和为48个单位?(3)在甲到A、B、C的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.2.中点问题:①题目中明确说明其中一个点为另外两个点的中点,如:A、B、C三点,点A是点B、C的中点,直接利用中点公式列方程②题目中说三个点有一个点是另外两个点的中点,如:A、B、C三点,有一点是另外两个点的中点,分三种情况进行讨论,然后利用中点公式列方程【例题6】如图,数轴原点为O,A、B是数轴上的两点,点A对应的数是1,点B对应的数是-4,动点P、Q同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t 秒(t>0).(1)AB两点间的距离是________;动点P对应的数是________(用含t的代数式表示);动点Q对应的数是________(用含t的代数式表示).(2)几秒后,点O恰好为线段PQ中点?(3)几秒后,恰好有OQ=2PO?3、线段长及线段的和、差、倍、比关系问题解题思路:题目中通常会说点与点之间的距离,即线段的长度,条件中会给出两条线段的和、差、倍数、或比例关系,先将题目中的线段用两点间的距离表示出来,然后根据具体的关系列方程,当动点之间的位置无法确定时,通常用绝对值来表示线段长度.(1)线段之长问题(线段之和问题、线段之比问题、线段倍数问题、线段相等问题)【例题7】已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为-40,AB=120,AC =2AB.(1)图1中点C在数轴上对应的数是________;(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.4.线段定值问题:题目中给出几条线段的关系,要求判断其是否为定值,先将所给线段都用两点间的距离表示出来,然后再将题目中所给的式子用线段表示出来,化简之后可以将t 消去,所得值为常数,因此可以确定是定值.【例题8】如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a +3|+(c -9)2=0.(1)a =________,b =________,c =________;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数________表示的点重合;(3)若点A 、点B 和点C 分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动,假设t 秒钟过后,A 、B 、C 三点中恰有一点为另外两点的中点,求t 的值;(4)若点A 、点B 和点C 分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小聪同学发现:当点C 在B 点右侧时,m ﹒BC +3AB 的值是个定值,求此时m 的值.【拓展延伸】.已知式子M =是关于x 的二次多项式,且二次项的系数为b ,在数轴上有点A 、B 、C 三个点,且点A 、B 、C 三点所表示的数分别为a 、b 、c ,如图所示已知AC =6AB .(1)a =________;b =________;c =________.(2)若动点P 、Q 分别从C 、O 两点同时出发,向右运动,且点Q 不超过点A .在运动过程中,点E 为线段AP 的中点,点F 为线段BQ 的中点,若动点P 的速度为每秒2个单位长度,动点Q 的速度为每秒3个单位长度,求BP -AQ EF的值. (3)点P 、Q 分别自A 、B 出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C 出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t (秒时,数轴上的有一点N 与点M 的距离始终为2,且点N 在点M 的左侧,点T 为线段MN 上一点(点T 不与点M 、N 重合),在运动的过程中,若满足MQ -NT =3PT (点T 不与点P 重合),求出此时线段PT 的长度.。
专题2.1 数轴上的动点问题【典例1】如图,数轴上,点A 表示的数为−11,点B 表示的数为−1,点C 表示的数为9,点D 表示的数为17,在点B 和点C 处各折一下,得到一条“折线数轴”,我们称点A 和点D 在数轴上相距28个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为_________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,求出它们在数轴上对应的数.(1)根据AB 、BC 、CD 三段的路程分别除以每段速度即可计算出答案;(2)分P 在AB ,Q 在CD ;P 在AB ,Q 在CO ,P 在BO ,Q 在CO ;P 、Q 相遇;P 在OC ,Q 在OB ;P 在OC ,Q 在BA ;进行讨论计算即可;(3)根据点Q 到A 时间,点P 位置,与点P 到C 时间,点Q 位置,得出Q 在射线CD 上追上P ,分别将P 、Q 所表示的数表示出来,列方程,解答即可.解:(1)∵点A 表示的数为−11,点B 表示的数为−1,点C 表示的数为9,点D 表示的数为17,∴AB =-1-(-11)=10,BC =9-(-1)=10,CD =17-9=8,∴动点P 从点A 运动至D 点需要时间为:102+101+82=5+10+4=19(秒),故答案为:19;(2)①当P 在AB ,Q 在CD 时,P 所表示的数为:-11+2t ,Q 所表示的数为:17-2t ∵P 、Q 两点到原点O 的距离相同,∴(-11+2t )+(17-2t )=6,此时该方程无解;②当P 在AB ,Q 在CO 时,P 所表示的数为:-11+2t ,Q 所表示的数为9−4t−=25−4t ,∵P 、Q 两点到原点O 的距离相同,∴(-11+2t )+(25-4t )=0,解得:t =7>5,此时:P 不在AB 上,故不符合题意,舍去;③当P 在BO ,Q 在CO 时,P 所表示的数为:-1+t−t−6 ,Q 所表示的数为:9−4t−=25−4t ,∵P 、Q 两点到原点O 的距离相同,∴(t -6)+(25-4t )=0,解得:t =193>6 ,此时:P 不在BO 上,故不符合题意,舍去;④当P 、Q 相遇时,P 、Q 均在BC 上,此时P 所表示的数为:-1+=t−6 ,Q 所表示的数为:9−4t−=25−4t ,∵P 、Q 两点到原点O 的距离相同,∴t -6=25-4t ,解得:t =315,∴25−4t =25−4×315=15,此时:P 所表示的数为:15,Q 所表示的数为:15;⑤当P 在OC ,Q 在OB 时,P 所表示的数为:-1+t−=t−6 ,Q 所表示的数为: 9−4t−=25−4t ,∵P 、Q 两点到原点O 的距离相同,∴(t -6)+(25-4t )=0,解得:t =193,t−6=193−6=13,此时:P 所表示的数为:13 ,Q 所表示的数为:−13 ,⑥当P 在OC ,Q 在BA ,P 所表示的数为:-1+=t−6 ,Q 所表示的数为: −1−2t−82=−1−2t +8+5=12−2t∵P 、Q 两点到原点O 的距离相同,∴(t -6)+(12-2t )=0,解得:t =6 ,此时:P 所表示的数为:0,Q 所表示的数为:0 ,Q 不在AB 上,故,故不符合题意,舍去综上所述:P 所表示的数为15或13,(3)∵Q 到达A 点所需时间为82+104+102=4+2.5+5=11.5 (秒),此时P 到达的点表示的数是:-11+5×2+1+1×(11.5-5-1)=4.5 ,又∵P 到达点所C 需时间为102+101=15 (秒),此时Q 到达的点是:-11+103×3+2×(15−11.5-103)=13 ,点Q 在BO 上,∴Q 在射线CD 上追上P ,此时P 所表示的数为:-11+10+10+2(t -15)=2t-21 ,Q 所表示的数为: −11+10+10+3t−11.5−103−5=3t−50.5,∴2t−21=3t−50.5,∴t =29.5,∴9+2(29.5-15)=9+29=38,此时P 所表示的数为:38 ,Q 所表示的数为:38.1.(2022秋·吉林松原·七年级统考期末)如图,已知数轴上点A 表示的数为10,点B 与A 点距离16个单位,且在点A 的左边,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B表示的数为___________,点P表示的数为___________(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.①求点P运动多少秒追上点Q?②求点P运动多少秒时与点Q相距6个单位?并求出此时点P表示的数.【思路点拨】(1)由已知得OA=10,则OB=AB−OA=6,即得出数轴上点B所表示的数;由动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,即可求出AP=5t,从而可求出点P表示的数;(2)①设点P运动t秒时和Q相遇,根据等量关系得到5t=16+3t,然后求解即可;②分点P未超过点Q和点P超过点Q两种情况讨论,设运动时间为t,根据题意得到16+3t−5t=6和16+3t+6=5t两个方程,求解即可.【解题过程】(1)∵数轴上点A表示的数为10,∴OA=10,∴OB=AB−OA=6.∵点B在原点左边,∴数轴上点B所表示的数为−6;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴AP=5t,∴点P所表示的数为10−5t.故答案为:−6,10−5t;(2)①设点P运动t秒时和Q相遇,则5t=16+3t,解得:t=8,∴点P运动8秒追上点Q;②设当点P运动时间为t秒时,点P与点Q间的距离为6个单位长度,当P不超过Q,则16+3t−5t=6,解得:t=5;此时点P表示的数为10−5t=−15当P超过Q,则16+3t+6=5t,解得t=11;此时点P表示的数为10−5t=−45综上所述:t=5点P表示的数为−15或t=11点P表示的数为−45.2.(2023秋·重庆大渡口·七年级重庆市第九十五初级中学校校考期末)数轴上有A,B,C三个点,分别表示有理数−30,−16,4,两条动线段PQ和MN,PQ=2,MN=3,如图,线段MN以每秒1个单位的速度从点B开始一直向右匀速运动,线段PQ同时以每秒2个单位的速度从点A开始向右匀速运动,当点Q运动到C 时,线段PQ立即以相同的速度返回,当点P运动到点A时,线段MN,PQ立即同时停止运动,设运动时间为t 秒(整个运动过程中,线段PQ和MN保持长度不变,且点P总在点Q的左边,点M总在点N的左边)(1)当t为何值时,点Q和点N重合?(2)在整个运动过程中,线段PQ和MN重合部分长度能否为1,若能,请求出此时点P表示的数;若不能,请说明理由.【思路点拨】(1)分两种情况讨论,追及时等量关系为:点Q行走的路程−N行走的路程=AB;返回后相遇等量关系为:点Q行走的路程+N行走的路程=AC+BC;(2)分两种情况讨论,追及时点Q超过点M一个单位长度和点Q超过点N一个单位长度时都符合线段PQ和MN重合部分长度能为1;返回后相遇时点Q离点N一个单位长度和点Q离点M一个单位长度时都符合线段PQ 和MN重合部分长度能为1;据此求得t的值,从而求得点P的范围.【解题过程】(1)解:①追及时,Q到达点C的时间为[4−(−30)]÷2=17(秒)依题意得:2t−t=−16−(−30),解得:t=14,符合题意②返回后相遇,依题意得:2t+t=4−(−16)+4−(−30),即:3t=54,解得:t=18,符合题意;答:当t=14或t=18时,点Q和点N重合;(2)解:①追及时点Q超过点M一个单位长度:2t−t=−16−3−(−30)+1,即,解得:t=12,此时P点表示的数为:−30−2+2×12=−6;②追及时点Q 超过点N 一个单位长度:2t−t =−16−(−30)+1,解得:t =15,此时P 点表示的数为:−30−2+2×15=−2;③返回后相遇时点Q 离点N 一个单位长度:2t +t =4−(−30)+4−(−16)−1,即:3t =53,解得:t =533,此时P 点表示的数为:4−2−2×−17=23④返回后相遇时点Q 离点M 一个单位长度:2t +t =4−(−30)+4−(−16)+2,即:3t =56,解得:t =563,此时P 点表示的数为:4−2−2×−17=−43综上:点P 表示的数为:−6、−2、23或−43.3.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)如图、点A 、B ,C 是数轴上分别表示数-6,2,13的点,两只电子蚂蚁甲乙分别以3个单位秒和1个单位秒的速度同时从点A 、点B 出发,其中甲刚开始沿数轴的正方向运动,当运动到点C 时,立即以相同的速度反向运动,乙始终沿数轴的负方向运动.(1)求电子蚂蚁甲与乙从开始出发到第一次相遇所经过的时间.(2)当电子蚂蚁甲反向运动追上电子蚂蚁乙时,求此时乙在数轴上所表示的数.(3)在电子蚂蚁甲、乙开始运动的同时,若在点C 处存在一只电子蚂蚁丙以2个单位秒的速度沿数轴的负方向运动,求经过多少秒后甲恰好位于乙、丙的正中间?【思路点拨】(1)先求出AB 的长度,然后利用路程=速度×时间,即可求出时间;(2)先求出甲到达点C 时的时间和甲乙相距的路程,然后求出甲追上乙的时间,再求出乙表示的数即可;(3)根据题意,需要分类讨论,然后分别求出每一种情况的时间,即可得到答案.【解题过程】解:(1)根据题意,则AB =2−(−6)=8,∴甲乙第一次相遇的时间为:8÷(3+1)=2s ;(2)根据题意,AC =13−(−6)=19,∴甲到达点C的时间为:19÷3=193s,∴此时甲乙之间的距离为:13−2+193×1=523;∴甲与乙第二次相遇的时间为:193+523÷(3−1)=193+263=15s;∴此时乙在数轴上所表示的数为:2−15×1=−13;(3)根据题意,可分为两种情况进行分析:当甲向数轴正方向运动时,则设时间为t,得甲的位置是:−6+3t,乙的位置是:2−t;丙的位置是:13−2t,∵甲恰好位于乙、丙的正中间,∴(−6+3t)−(2−t)=(13−2t)−(−6+3t),解得:t=3s;当甲向数轴负方向运动时,则由(2)可知,当甲追上乙时,时间为15秒,且此时乙所在的位置为−13,∴丙所在点表示的数为:13−15×2=−17,∴此时丙和乙的距离为:−13−(−17)=4,设甲追上乙后,再过m秒达到乙和丙的中间,则甲的位置为:−13−3m,乙的位置为:−13−m,丙的位置为:−17−2m,∴(−13−3m)−(−17−2m)=(−13−m)−(−13−3m),解得:m=43,∴时间为:15+43=1613s;综合上述,则经过t=3或t=1613秒后甲恰好位于乙、丙的正中间.4.(2022秋·四川绵阳·七年级校考期中)已知多项式−m2n2−2中,含字母的项的系数为a,多项式的次数为b,常数项为c,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C;(2)若甲、乙、丙三个动点分别以A、B、C三点同时出发沿着数轴负方向运动,它们的速度分别是12,2,34(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么?(3)在数轴上是否存在一点P ,使P 到A 、B 、C 的距离和等于10?若存在,请求出点P 对应的数;若不存在,请说明理由.【思路点拨】(1)根据单项式的系数,多项式的次数,常数项的定义即可求解;(2)先求出AB =5,AC =1,BC =6,设乙追上甲用了x 秒,列方程2x−12x =5,解得x =103,设乙追上丙用了y 秒,列方程2y−34y =6,解得y =245,根据103<245,即可得到当乙追上丙时,乙已经追上了甲;(3)设点P 表示的数为m ,分点P 在点C 左侧、点P 在A 、C 之间、点P 在A 、B 之间、点P 在点B 右侧四种情况分类讨论,求出m 的值,并进行检验,问题得解.【解题过程】(1)解:由题意得多项式−m 2n 2−2含字母项为−m 2n 2,系数为-1,多项式次数为4,常数项为-2,所以a =−1,b =4,c =−2,数轴上点A 、B 、C 位置如图:(2)解:由题意得,AB =4−(−1)=5,AC =−1−(−2)=1,BC =4−(−2)=6,设乙追上甲用了x 秒,由题意得2x−12x =5,解得x =103,设乙追上丙用了y 秒,由题意得2y−34y =6,解得y =245,因为103<245,所以当乙追上丙时,乙已经追上了甲;(3)解:设点P 表示的数为m ,①当点P 在点C 左侧时,由题意得(−2−m )+(−1−m )+(4−m )=10,解得m =−3;②当点P 在A 、C 之间时,由题意得[m−(−2)]+(−1−m )+(4−m )=10,解得m =−5,因为−5<−2,所以m =−5不合题意;③当点P 在A 、B 之间时,由题意得[m−(−2)]+[m−(−1)]+(4−m )=10,解得m =3;④当点P 在点B 右侧时,由题意得[m−(−2)]+[m−(−1)]+(m−4)=10,解得m =113,因为113<4,所以m =113不合题意.所以点P 对应的数是-3或3.5.(2022秋·重庆·七年级校联考期中)已知数轴上有A 、B 两点,分别用a 、b 表示,且关于x 、y 的多项式2x a +5y 2+(b−3)y 为三次单项式.(1)求出a 、b 的值,并在数轴上标注A 、B 两点;(2)若动点Q 从B 点出发,以每秒2个单位长度的速度向左运动;同时动点P 从A 点出发,以每秒3个单位长度的速度向右运动,动点P 到达原点后立即向左运动(只改变方向,不改变速度大小),则经过多长时间动点P 与动点Q 到原点的距离相等;(3)在(2)的条件下,P 、Q 出发的同时,又有一动点M 从B 点出发,以每秒3.5个单位长度的速度向左运动,则经过多长时间,动点P 、Q 、M 互为余下两点的中点?(请直接写出答案)【思路点拨】(1)根据单项式的概念,求出字母a 、b 的值,然后在数轴上标注A 、B 两点即可;(2)分两种情况讨论:①当t ≤43秒时,点P 是向右运动;②当t >43秒时,点P 是向左运动;分别列式计算即可;(3)当t =1413秒时,点P 与Q 相遇,当t >43秒时,点P 开始向左运动;故分三种情况进行讨论:①当t ≤1413秒时,点P 是向右运动,此时点M 为中点;②当1413<t ≤43秒时,点P 是向右运动,此时点P 为中点;③当t >43秒时,点P 是向左运动,此时点P 为中点;分别列方程进行求解即可.【解题过程】(1)解:∵关于x 、y 的多项式2x a +5y 2+(b−3)y 为三次单项式,∴a +5+2=3, b−3=0,∴a =−4, b =3,如图所示,在数轴上标注的A 、B 两点;(2)解:设经过时间为t 秒,①当t ≤43秒时,点P 是向右运动,若动点P 与动点Q 到原点的距离相等,则4−3t =3−2t ,解得,t =1(秒);②当t >43秒时,点P 是向左运动,若动点P 与动点Q 到原点的距离相等,则3t−4=3−2t ,解得,t =75;故,经过1秒或75秒时,动点P 与动点Q 到原点的距离相等;(3)解:依题,当−4+3t =3−3.5t 时,即当t =1413秒时,点P 与M 相遇,当t >43秒时,点P 开始向左运动;①当t ≤1413秒时,点P 是向右运动,点P 表示−4+3t ,点M 表示3−3.5t ,点Q 表示3−2t ,此时点M 为中点,∴3−3.5t−(−4+3t)=3−2t−(3−3.5t),∴t =78(秒);②当1413<t ≤43秒时,点P 是向右运动,此时点P 为中点,∴−4+3t−(3−3.5t)=3−2t−(−4+3t),∴t =2823(秒);③当t >43秒时,点P 是向左运动,此时点P 为中点,点P 表示4−3t ,∴4−3t−(3−3.5t)=3−2t−(4−3t),∴t =4(秒)综上所述,当经过78秒时,点M 为P 、Q 中点,当经过2823秒或4秒时,点P 为M 、Q 中点.6.(2022秋·江苏·七年级期中)已知数轴上两点A、B对应的数分别为-4和8.(1)A、B两点之间的距离为_______;(2)若数轴上点C到A的距离是到B的距离的3倍,则称点C为A、B两点的伴侣点,求A、B两点的伴侣点C在数轴上对应的数是多少?(3)如图,如果点P和点Q分别从点A、B同时出发,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①当P、Q两点相向而行相遇时,点P在数轴上对应的数是________;②求点P出发多少秒后,与点Q之间相距3个单位长度?【思路点拨】(1)根据两点间的距离公式即可求解;(2)设A、B两点的伴侣点C在数轴上对应的数是x.根据CA=3CB列出方程|x+4|=3|x−8|,解方程即可;(3)①先求出P、Q两点相向而行相遇时所需的时间,再求出点P在数轴上对应的数即可;②设点P出发t秒后,与点Q之间相距3个单位长度.由于AB=12>3,由于点P和点Q分别从点A、B同时出发,且点P的运动速度小于点Q的运动速度,所以它们同时向右运动时P、Q两点之间的距离>3.然后分两种情况进行讨论:Ⅰ)P、Q两点相向而行,Ⅱ)P、Q两点都向左运动.根据PQ=3列出方程,求解即可.【解题过程】解:(1)∵数轴上两点A、B对应的数分别为−4、8,∴A、B两点之间的距离为:8−(−4)=12.故答案为12;(2)设A、B两点的伴侣点C在数轴上对应的数是x.∵数轴上点C到A的距离是到B的距离的3倍,∴CA=3CB,∴|x+4|=3|x−8|,∴x+4=3(x−8),或x+4=−3(x−8),解得x=14,或x=5.故A、B两点的伴侣点C在数轴上对应的数是14或5;(3)①当P、Q两点相向而行相遇时,所需时间为:1226=32(秒),此时点P 在数轴上对应的数是:−4+2×32=−1.故答案为−1;②设点P 出发t 秒后,与点Q 之间相距3个单位长度.分两种情况:(Ⅰ)P 、Q 两点相向而行,此时点P 对应的数为−4+2t ,点Q 对应的数为8−6t ,∵PQ =3,∴|−4+2t−(8−6t)|=3,∴8t−12=3,或8t−12=−3,解得t =158,或t =98;(Ⅱ)P 、Q 两点都向左运动,此时点P 对应的数为−4−2t ,点Q 对应的数为8−6t ,∵PQ =3,∴|−4−2t−(8−6t)|=3,∴4t−12=3,或4t−12=−3,解得t =154,或t =94.综上所述,点P 出发158或98或154或94秒后,与点Q 之间相距3个单位长度.7.(2022秋·全国·七年级专题练习)如图,在数轴上点A 表示的数是−1;点B 在点A 的右侧,且到点A 的距离是6;点C 在点A 与点B 之间,且到点B 的距离是到点A 距离的2倍.(1)点B 表示的数是________;点C 表示的数是__________;(2)若点P 从点A 出发,沿数轴以每秒2个单位长度的速度向右匀速运动;同时,点Q 从点B 出发,沿数轴以每秒1个单位长度的速度向左匀速运动.设运动时间为t 秒、在运动过程中.当t 为何值时点P 与点Q 之间的距离为2?(3)在(2)的条件下,若点P 与点C 之间的距离表示为PC ,点Q 与点B 之间的距离表示为QB .在运动过程中,是否存在某一时刻使得PC−QB =1?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【思路点拨】(1)根据两点间的距离公式可求点B 表示的数;根据线段的倍分关系可求点C 表示的数;(2)分点P 与点Q 相遇前,点P 与点Q 相遇后两种情况讨论即可求解;(3)分点P 在点C 左侧时,点P 在点C 右侧时两种情况讨论即可求解.【解题过程】(1)解:(1)点B 表示的数是−1+6=5;∵CB =2CA ,设点C 表示的数为c ,∴5−c =2[c−(−1)],解得c =1,故答案为:5,1;(2)点P 与点Q 相遇前,由题意得,2t +t =6−2,解得t =43;点P 与点Q 相遇后,由题意得,2t +t =6+2解得t =83.故当t 为43或83时,点P 与点Q 之间的距离为2;(3)当点P 在点C 左侧时,PC =2−2t ,QB =t ,∵PC−QB =1,∴2−2t−t =1,解得t =13.∴PC =2−2t =43此时点P 表示的数是1−43=−13;当点P 在点C 右侧时,PC =2t−2,QB =t ,∵PC−QB =1,∴2t−2−t=1,解得t=3.∴PC=2t−2=4,此时点P表示的数是1+4=5.或5.综上所述,在运动过程中,存在某一时刻使得PC−QB=1,此时点P表示的数为−138.(2023秋·湖北武汉·七年级统考期末)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示−12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,记为L AC=32.动点M从点A出发,沿着“折线数轴”的正方向运动,同时,动点N从点C出发,沿着“折线数轴”的负方向运动,它们在水平轴AO,BC上的速度都是2单位/秒,在O,B之间的上行速度为1单位/秒,下行速度为3单位秒.设运动的时间为t秒.(1)当t=4秒时,M,N两点在数轴上相距多少个单位长度?(2)当M,N两点相遇时,求运动时间t的值.(3)若“折线数轴”上定点P与O,B两点相距的长度相等,且存在某一时刻t,使得两点M,N与点P相距的长度之和等于6,请直接写出t的值为____________.【思路点拨】(1)先计算出AO,BC的长度,再计算出经过4秒,点M和点N运动的路程,即可求解;(2)根据相遇时,两点的路程和等于总路程,即可求解;(3)根据题意,进行分类讨论即可.【解题过程】(1)解:根据题意可得:AO=0−(−12)=12,BC=20−12=8,当t=4秒时,点M的运动路程:2t=8<12,点N的运动路程:2t=8,∴经过4秒,点M在AO上,点N和点B重合,∴点M表示的数为:−12+8=−4,点N表示的数为:20−8=12,∴M、N两点距离为:12−(−4)=16.∴M,N两点在数轴上相距16个单位长度.(2)由(1)可得:AO=12,BC=8,∴点M到点O需要时间:122=6秒,点N到点B需要时间:82=4秒,当相遇时:12+3(t−6)+8+(t−4)=32,解得:t=8.5.(3)∵P与O,B两点相距的长度相等,∴点P为表示的数为6,∴点A与点P距离为6−(−12)=18,点C与点P距离为20−6=14,∵M,N与点P相距的长度之和等于6,∴点M和点N都在OB上,①当点M在OP上,点N在BP上时:∵PM=18−12−3(t−6),PN=14−8−(t−4),∴18−12−3(t−6)+14−8−(t−4)=6,解得:t=3,②当点M在PB上,点N在BP上时:∵PM=12+3(t−6)−18,PN=14−8−(t−4),∴12+3(t−6)−18+14−8−(t−4)=6,解得:t=10;综上:t=3或t=10.9.(2022秋·全国·七年级专题练习)已知数轴上有A、B、C三个点,分别表示有理数−24,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=____,PC=____.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,则点P出发17秒后QA=____,PQ=_____.(3)在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.【思路点拨】(1)先求出点P表示的数为−24+t,然后用数轴上两点间的距离公式计算即可;(2)先分别求出QA=3(t−14),PA=t,然后再计算,当t=17s时QA、PQ的距离即可;(3)分四种情况讨论:①当点P在Q右侧,点Q没有追上点P时;②当点P在Q左侧,点Q追上点P 后;③当点Q到达点C后,点P在Q左侧时;④当点Q到达点C后,点P在Q右侧时.然后分别进行计算求解即可.【解题过程】(1)解:∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,∴点P表示的数为−24+t,∴PA=−24+t−(−24)=t,PC=10−(−24+t)=34−t;故答案为:t, 34−t;(2)解:∵当点P运动到B点时,∴t=14,此时点Q从A点出发,以每秒3个单位的速度向C点运动,∴QA=3(t−14),∴当t=17s时,QA=3(t−14)=3×(17−14)=9,PQ=t−3(t−14)=42−2t=42−2×17=8;故答案为:9,8;(3)解:分四种情况进行讨论:①当点P在Q右侧,点Q没有追上点P时,点P:−24+t,点Q:−24+3(t−14),依题,有−24+t−[−24+3(t−14)]=2,解得t=20,∴−24+t=−24+20=−4,∴点P表示的数为:−4;②当点P在Q左侧,点Q追上点P后,依题有,−24+3(t−14)−(−24+t)=2,解得t=22,∴−24+t=−24+22=−2,③当点Q到达点C后,点P在Q左侧时,QA=34−[3(t−14)−34]=110−3t,∴110−3t−t=2,解得t=27,∴−24+t=−24+27=3,∴点P表示的数为:3;④当点Q到达点C后,点P在Q右侧时,∴t−(110−3t)=2,解得t=28,∴−24+t=−24+28=4,∴点P表示的数为:4;综上所述,在点Q开始运动后,P、Q两点之间的距离能够为2个单位,此时点P表示的数为:−4,−2, 3, 4.10.(2022秋·全国·七年级专题练习)如图,A、B分别为数轴上的两点,A点对应的数为−2,B点对应的数为4.(1)A、B间的距离是______;若数轴上点M到点B的距离是4,则点M对应的数为______;(2)若点N也是数轴上的点,点N到点A的距离是点N到原点的距离的1,求点N对应的数;2(3)若动点P从B点出发,以2个单位长度/秒的速度在数轴上运动,同时另一动点Q从A点出发,以4个单位长度/秒的速度在数轴上运动,若两动点经过t秒时,PQ=8,求此时点P对应的数是多少?【思路点拨】(1)根据两点间的距离公式可求出A、B间的距离,分两种情况可求出点M对应的数;(2)分两种情况可求出点N对应的数;(3)先由(1)得到AB=6,再分6种情况根据两点距离公式列出方程可得答案.【解题过程】(1)解:AB=4−(−2)=6,当点M在点B左侧时,点M对应的数为4−4=0,当点M在点B右侧时,点M对应的数为4+4=8,故答案为6,8或4.(2)解:∵“点N 到点A 的距离是点N 到原点的距离的12”,∴点N 在负半轴上,设点N 表示的点为x ,当点N 在点A 右侧时,x−(−2)=12(0−x ),解得x =−43,当点N 在点A 左侧时,−2−x =12(0−x ),解得x =−4,∴点N 对应的数为−43或−4.(3)解:由(1)得AB =6,当P ,Q 都向左运动时,4t +6−2t =8,解得t =1,此时P 运动了2个单位长度,点P 对应的数是4−2=2;当P ,Q 都向右运动时,P ,Q 相遇前,2t +6−4t =8,解得t =−1,故不存在,P ,Q 相遇后,4t−2t−6=8,解得t =7,此时P 运动了14个单位长度,点P 对应的数是4+14=18;当Q 向左运动, P 向右运动时,4t +6+2t =8,解得t =13,此时P 运动了23个单位长度,点P 对应的数是4+23=143;当P 向左运动, Q 向右运动时,P ,Q 相遇前,∵AB =6,∴P ,Q 相遇前不存在PQ =8,P ,Q 相遇后,4t +2t−6=8,解得t =73,此时P 运动了143个单位长度,点P 对应的数是4−143=−23;综上可知,此时点P 对应的数是2或18或143或−23.11.(2022秋·湖南永州·七年级校考期中)如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式(a +3)x 3+4x 2+9x +2是关于x 的二次多项式,一次项系数为c .(1)a = ,b = ,c = ;(2)动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向右运动,动点Q 从点C 出发,以每秒2个单位长度的速度沿数轴向左运动,则当点P 与Q 相遇时,它们运动了多少秒?相遇点对应的数是多少?(3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:m ⋅BC +3AB 的值是个定值,求此时m 的值.【思路点拨】(1)根据多项式与单项式的概念即可求出答案;(2)由(1)中数据求出AC 长度,设当点P 与Q 相遇时,它们运动了x 秒,列方程求解即可;(3)分两种情形讨论解答:①当点C 在点B 右侧时,②当点C 在点B 左侧时,设三点运动的时间为t 秒,依据图形分别表示出线段BC ,AB 的长度,代入m ⋅BC +3AB 中,整理后利用m ⋅BC +3AB 的值是个定值可令t 的系数为0即可求出答案.【解题过程】(1)解:∵b 是最小的正整数,∴b =1,∵多项式(a +3)x 3+4x 2+9x +2是关于x 的二次多项式,∴a +3=0,∴a=−3,∴多项式为:4x2+9x+2,∵它的一次项系数为c,∴c=9,∴a=−3,b=1,c=9,故答案为:−3,1,9;(2)解:由(1)知线段AC长为9−(−3)=12,∵设当点P与Q相遇时,它们运动了x秒,则4x+2x=12,解得x=2,∴当点P与Q相遇时,它们运动了2秒;9-2×2=5,∴相遇点对应的数是5;(3)解:当点C在点B右侧时:设三点运动的时间为t秒,则m⋅BC+3AB=m(9−4t−1+t)+3(1−t+3+2t)=8m+12+3t(1−m),∵m⋅BC+3AB的值是个定值,∴1−m=0,∴m=1,即当m=1时,m⋅BC+3AB为定值20,当点C在点B左侧时:设三点运动的时间为t秒,则m⋅BC+3AB=m[1−t−(9−4t)]+3(1−t+3+2t)=−8m+12+3t(1+m),∵m⋅BC+3AB的值是个定值,∴1+m=0,∴m=−1,即当m=−1时,m⋅BC+3AB为定值20,综上所述:当m=±1时,m⋅BC+3AB为定值20.12.(2022秋·福建泉州·七年级统考期中)我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.如图,A、B两点在数轴上对应的数分别为−20、24,(1)直接写出:AB=______;(2)若有M、N两个小球分别从A、B两处同时出发,两小球的运动速度分别为2个单位/秒、5个单位/秒,设运动时间为t秒钟.①若N小球从点B向右运动,则此时点N表示的数为______,NA=______;(请用含t的代数式表示)②若M、N两小球同时向左运动,MN=4,求t的值?③若M小球向右运动,N小球向左运动,同时D小球从原点出发,以6个单位/秒的速度向左运动,在M小球和D小球相遇前的运动过程中,是否存在数m,使得DM+mDN为定值?若存在,请求出m的值;若不存在,请说明理由.【思路点拨】(1)直接用点B表示的数减去点A表示的数即可;(2)①根据N小球运动的速度和时间计算即可;②根据题意,用含t的代数式分别表示出点M和点N的数,再由MN=4即可解出t的值;③表示出点D表示的数,算出当M和N小球相遇时的时间,由此表示出DM、DN,根据DM+mDN为定值求出m即可.【解题过程】(1)解:由题意得AB=24−(−20)=24+20=44,故答案为:44;(2)解:∵小球从点B向右运动,运动速度为5个单位/秒,运动时间为t秒钟,∴此时点N表示的数为24+5t,∴NA=24+5t−(−20)=44+5t,故答案为:24+5t,44+5t;②∵M、N两小球同时向左运动,M小球从A处出发,运动速度为2个单位/秒,运动时间为t秒钟,N小球从B 处出发,运动速度为5个单位/秒,运动时间为t秒钟,∴点M表示的数为−(20+2t),点N表示的数为24−5t,∴MN=|44−3t|,当44−3t=4时,解得t=40,3当44−3t=−4时,解得t=16,∴当MN=4时,t=40或t=16;3③∵D小球从原点出发,以6个单位/秒的速度向左运动,∴点D 表示的数为−6t ,当M 和N 小球相遇时,有2t +6t =20,解得t =52,在M 小球和D 小球相遇前的运动过程中,有DM =−6t−(−20+2t )=20−8t ,DN =24−5t−(−6t )=24+t ,则DM +mDN =20−8t +m (24+t )=20+24m +(m−8)t ,∵DM +mDN 为定值,∴m−8=0,∴m =8,∴当m =8时,DM +mDN 为定值.13.(2022秋·全国·七年级专题练习)探究与发现:|a−b |表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如|x−3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =20,则数轴上点B 表示的数 ;(1)若|x−8|=2,则x = .(2)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(3)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以 同样的速度返回,点P 到达点C 后,运动停止.设运动时间为t (t >0)秒.问当t 为多少秒时?P ,Q 之间的距离为4【思路点拨】(1)利用数轴上两点间的距离公式,找出点B 表示的数;(2)利用绝对值的定义(绝对值是指一个数在数轴上所对应点到原点的距离),去掉绝对值符号;(3)找准等量关系,正确列出一元一次方程;(4)分0<t <215,215≤t <6或t ≥6三种情况,找出关于t 的一元一次方程.【解题过程】(1)数轴上点B 表示的数=8−20=−12.。
数轴与数轴动点问题提高专题一.【数轴基础知识】:⒈【数轴的概念】:规定了原点,单位长度,正方向的直线叫做数轴。
2.【数轴的画法】:(1)画一条直线(一般画成水平的直线)。
(2)在直线上选取一个点为原点,并用这个点表示零(在原点下标0)。
(3)确定正方向(一般规定向右为正),并用箭头表示出来。
(4)选取适当的单位长度,以原点为界点,从原点向右,每隔一个单位长度取一点,依次标上1,2,3,…,从原点向左,依次标上-1,-2,-3,…。
3.【归纳数轴上的点的意义】:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。
【结论】:所有的有理数和无理数都可以用数轴上的点来表示,但数轴上的点表示的数不一定都是有理数。
我们规定:(1)数轴上的原点表示0;(2)数轴上原点右边的点表示正数;(3)原点左边的点表示负数4.【在数轴上比较有理数】:利用数轴比较有理数的大小:①数轴上右边的点表示的数大于左边的点表示的数;②正数都大于0,负数都小于0,正数都大于负数;③两个负数比较,距离原点远的数比距离原点近的数小。
【重要结论】:数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数5.【数轴上点的移动规律】:根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
6.【相反数,绝对值与数轴的关系】:①一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的②绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离二.【知识应用】:Eg1.【数形结合思想】:有3个单位长度的点所表示的数是【例1】:在数轴上距2(注意:在数轴上到某个定点距离为定值的点有两个)【例2】:a,b为两个有理数,表示在数轴上的位置如图所示,把-a,-b在数轴上表示出来,再把a,b,-a,-b,0按从大到小的顺序排列出来。
专题08 数轴上动点返回多解问题类型一 数轴上动点返回一解问题1.已知数轴上有三点A ,B ,C 分别表示有理数26-,10-,10,动点P 从点A 出发,以1个单位长度/s 的速度向终点C 移动,设点P 移动时间为s t .(1)用含t 的代数式表示点P 分别到点A 和点C 的距离:PA =______,PC ______.(2)当点P 运动到点B 时,点Q 从点A 出发,以3个单位长度/s 的速度向点C 运动,点Q 到达点C 后,再立即以同样的速度返回,当点P 运动到点C 时,两点运动停止.当点P ,Q 运动停止时,求点P ,Q 间的距离.2.如图,数轴上A ,B 两点表示的有理数分别为a 、b ,满足()2840a b ++-=,原点O 是线段AB 上的一点.(1)a = ,b = ,AB = ;(2)若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,设运动时间为t 秒,当t 为何值时,BP =2BQ ?(3)若点P 、Q 仍按(2)中速度运动,当点P 与点Q 重合时停止运动,当点P 到达点O 时,动点M 从点O 出发,以每秒3个单位长度的速度也向右运动,当点M 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返回,以同样的速度向点Q 运动,如此往返,直到点P ,Q 停止时,点M 也停止运动,求在此过程中M 点行驶的总路程,并直接写出点M 最后位置在数轴上所对应的有理数. 类型二 数轴上动点返回两解问题3.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).(1)当0.5=t 时,求点Q 到原点O 的距离;(2)当 2.5t =时求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.4.已知数轴上点A 与点B 相距12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒(1)点A 表示的数为_____________,点C 表示的数为__________(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,回到点A 处停止运动①点Q 运动过程中,请直接写出点Q 运动几秒后与点P 相遇②在点Q 从点A 向点C 运动的过程中,P 、Q 两点之间的距离能否为4个单位?如果能,请直接写出此时点P 表示的数;如果不能,请说明理由类型三 数轴上动点返回三解问题5.如图,A ,B 是数轴上的两点,A 对应的数为-2,B 对应的数为10,O 是原点.动点P 从点O 出发向点B 匀速运动,速度为每秒1个单位长度,动点Q 从点A 出发向点B 匀速运动,速度为每秒3个单位长度,到达点B 后立即返回,以原来的速度向点O 匀速运动,当点P ,Q 再次重合时,两点都停止运动.设P ,Q 两点同时出发,运动时间为t (s ).(1)当点Q 到达点B 时,点P 对应的数为 ;(2)在点Q 到达点B 前,点Q 对应的数为 (用含t 的代数式表示);(3)在整个运动过程中,当t 为何值时,P ,Q 两点相距32个单位长度.6.如图,数轴上A ,B 两点对应的数分别-4,8.有一动点P 从点A 出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动.(1)A ,B 两点之间的距离为 .(2)当运动到第2021次时,求点P 所对应的有理数.(3)在数轴上有一动点C 从点A 出发,以每秒2个单位长度的速度沿着数轴向右匀速移动,点C 向右运动到B 点立即返回,返回到A 点停止.在数轴上有一动点D 从点B 出发,以每秒1个单位长度的速度沿着数轴向左匀速移动,到A 点停止.设运动时间为t 秒.是否存在t 使得CD 的长度为2;若存在,请求出t 的值;若不存在,请说明理由.7.数轴上点A 表示-12,点B 表示12,点C 表示24,如图,将数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离,那么我们称点A 和点C 在折线数轴上的和谐距离为36个单位长度.动点M 从点A 出发,以3个单位/秒的速度沿着折线数轴的正方向运动,从点O 运动到点B 期间速度变为原来的两倍,过点B 后继续以原来的速度向正方向运动;点M 从点A 出发的同时,点N 从点C 出发,以4个单位/秒的速度沿着“折线数轴”的负方向运动,从点B 运动到点O 期间速度变为原来的一半,过点O 后继续以原来的速度向负方向运动.设运动的时间为t 秒.(1)当3t =秒时,求M ,N 两点在折线数轴上的和谐距离;(2)当M ,N 两点在折线数轴上的和谐距离为4个单位长度时,求运动时间t 的值;(3)当点M 运动到点C 时,立即以原速返回,从点B 运动到点O 期间速度变为原来的一半;当点N 运动到点A 时,点M 、N 立即停止运动,是否存在某一时刻t 使得M 、O 两点在折线数轴上的和谐距离与N 、B 两点在折线数轴上的和谐距离相等?若存在,请直接写出t 的取值;若不存在,请说明理由.8.如图,O 为原点,在数轴上点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足22(3)0a a b +++=.(1)a =________,b =__________.(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t 秒. ①当点P 运动到线段OB 上,且PO =2PB 时,求t 的值.②若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当PQ =1时,求t 的值.类型四 数轴上动点返回四解问题9.已知数轴上有A ,B ,C 三个点,分别表示有理数﹣16,﹣6,8,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离: P A = ,PC = ;(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.10.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AC=,BE=;(2)当线段CE运动到点A在C、E之间时.①设AF长为x,用含x的代数式表示BE=(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以每秒2个单位长度的速度返回;同时点Q从A出发,以每秒2个单位长度的速度向终点B运动;当点Q到达点B时,P、Q两点都停止,设它们运动的时间为t秒,求t为何值时,P、Q两点间的距离为1个单位长度.11.已知数轴上A、B、C三个点对应的数分别为a、b、c,且满足|a+10|+|b+4|+(c﹣5)2=0;动点P在数轴上从A出发,以每秒1个单位长度的速度向终点C移动.(1)求a、b、c的值;(2)当点P到B点的距离是点A到B点距离的一半时,求P点移动的时间;(3)当点P移动到B点时,点Q从点A出发以每秒3个单位长度的速度在数轴上向C点移动,Q点到达C 点后,再立即以同样的速度返回,移动到终点A.当P、Q两点之间的距离为3个单位长度时,求Q点移动的时间.12.在如图所示的不完整的数轴上,相距30个单位长度的点A和点B表示的数互为相反数,将点B向右移动15个单位长度,得到点C.点P是该数轴上的一个动点,从点C出发,以每秒3个单位长度的速度匀速向左运动至点A,然后立即返回以每秒5个单位长度的速度匀速向右运动.设点P的运动时间为t秒.(1)点A表示的数是_______,点C表示的数是________;(2)当点P与点A的距离是点P与点C的距离的2倍时,求点P表示的数及对应t的值;(3)点Q为该数轴上的另一动点,与点P同时开始,以每秒2个单位长度的速度从点A出发匀速向右运动,直接写出......)....P,Q两点之间距离为5个单位长度时的t的值(不写计算过程13.如图1,在数轴上从左到右依次是A、B、C三个点,且A、B两点位于原点O的两侧,A点所表示的数为﹣4,B点所表示的数为2,且BC=3AB;(1)求出数轴上C点所表示的数;(2)如图2,动点P从A点出发,以2个单位长度每秒的速度沿AC方向运动,与此同时,另一动点Q从B出发,以1个单位长度每秒的速度沿BC方向运动;当点P到达B点后原地休息2秒钟,然后继续向C运动,到达C点后,点P停止运动;动点Q中途不休息,到达C后,点Q也停止运动.从运动开始到P、Q 两点都停止运动,整个运动过程结束.在运动过程中,点Q的运动时间记为t(秒),当PQ=4时,求出满足条件的t的值;(3)在第(2)问的条件下,有另一动点,M与P、Q同时出发,从点C以3个单位长度每秒的速度沿CA 方向运动到A点后,立即原速沿AC返回到C,中途不休息,当M回到点C时,点M停止运动.从运动开始到P、Q、M三点都停止运动,整个运动过程结束.在运动过程中,点Q的运动时间记为t(秒),当PQ+QM+PM =10时,请直接写出满足条件的t的值.。
数轴上的动点问题【知识概要】“数轴上的动点问题”是初中数学中的动点问题的基础,它的解决离不开数轴上两点之间的距离.为了便于我们对这一类问题的学习和分析,不妨先明确以下两个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,或用右边的数减去左边的数的差.用式子表示为:数轴上两点间的距离=右边点表示的数—左边点表示的数;2.点在数轴上运动时,由于数轴向右的方向为正方向,因此将向右运动的速度看作正速度,对应地,将向左运动的速度看作负速度.这样,在起点的基础上加上点的运动路程,就可以直接得到运动后点的坐标.例如:一个点表示的数为a ,向左运动)0(≥b b 个单位后表示的数为b a -;向右运动)0(≥c c 个单位后所表示的数为c a +.【例题讲解】【例1】一个动点A 在数轴上跳动,点n A (n 为正整数)表示点A 第n 次跳动后的位置.若点1A 在原点的左边,且11=O A ,点2A 在点1A 的右边,且221=A A ,点3A 在点2A 的左边,且332=A A ,点4A 在点3A 的右边,且443=A A ,……,依照上述规律确定点2012A 和点2013A 所分别表示的数.【例2】如图,已知A 、B 分别为数轴上两点,A 点对应的数为20-,B 点对应的数为100.(1)AB 中点M 对应的数;(2)现有一只电子蚂蚁甲从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;(3)若当电子蚂蚁甲从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.【例3】已知数轴上两点A 、B 对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数;(2)数轴上是否存在点P ,使它到点A 、点B 的距离之和为5?若存在,请求出x 的值.若不存在,请说明理由?(3)当点P 以每分钟1个单位长度的速度从原点向左运动时,点A 以每分钟5个单位长度向左运动,点B 以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等? 归纳:对于(3)这种问题,“到点A 、点B 的距离相等”意味着分类讨论.【例4】已知数轴上有A 、B 、C 三点,对应的数分别是24-,10-,10.还是那两只电子蚂蚁甲、乙分别从A 、C 两点出发,甲的速度为4个单位/秒.(1)请问:多少秒后,甲到A 、B 、C 的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,那么甲、乙在数轴上的哪个点相遇?(3)在(1)、(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回.在这种情况下,甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【例5】数轴上A 点对应的数为5-,B 点在A 点右边,电子蚂蚁甲、乙(我们今天的主角)在B 点处分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙(我们今天的配角)在A 点以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t ,使丙到乙的距离是丙到甲的距离的两倍?若存在,求出t 值;若不存在,说明理由.【随堂练习】1、电子跳蚤落在数轴上的某点0K ,第一步从0K 向左跳1个单位到1K ,第二步由1K 向右跳2个单位到2K ,第三步由2K 向左跳3个单位到3K ,第四步由3K 向右跳4个单位到4K ,…….按以上规律跳了100步时,电子跳蚤落在数轴上的100K 所表示的数恰是06.20.试求电子跳蚤的初始位置点0K 表示的数.2、已知数轴上A 、B 两点对应数分别为2-、4,P 为数轴上一动点,对应数为x .(1)若点P 为线段AB 的三等分点,求点P 对应的数;(2)数轴上是否存在到A 、B 两点的距离和为10的点P ?若存在,求出x 的值;若不存在,请说明理由.(3)若A 、B 两点和P 点(P 点在原点)同时向左运动.它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P 点为线段AB 的中点?3、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x .(1)若P 为AB 线段的三等分点,求P 对应的数;(2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由.(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几分钟时,P为AB 的中点.【提升训练】1、如图,已知数轴上有三点A 、B 、C ,AB = 12AC ,点C 对应的数是200. (1)若BC =300,求A 点所对应的数;(2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR =4RM (不考虑点R 与点Q 相遇之后的情形)P A R Q C200(3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC -AM 的值是否发生变化?若不变,求其值;若变化,说明理由. E A D C3、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x .-2 -1 0 1 2 3 4(1) 若P 为AB 线段的三等分点,求P 对应的数;(2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由.(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几分钟时,P为AB 的中点.4、已知数轴上有顺次三点A, B, C .其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每秒2个单位的速度向左移动.(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少?(2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟?(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标。
七年级上册代数动点题目总结一、解答题1.某超市在春节期间对顾客实行优惠,规定如下:(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款______元,当x大于或等于500元时,他实际付款______元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?2.某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动.活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款。
现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法和所需费用.3.如图,四边形ABCD和ECGF都是正方形.(1)用代数式表示阴影部分的面积;(结果要求化简)(2)当a=4时,求阴影部分的面积.4.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?5.点A、B、C在数轴上表示的数分别为a,b,c,且a,b,c满足(b+2)2+(c-24)2=0,多项式x|a+3|y2-ax3y+xy2-1是五次四项式.(1)a的值为______,b的值为______,c的值为______;(2)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发在数轴上运动,速度分别为每秒1个单位长度、7个单位长度3个单位长度.①若点P向左运动,点M向右运动,点N先向左运动,遇到点M后回头再向右运动,遇到点P后又回头再向左运动,……,这样直到点P遇到点M时三点都停止运动,求点N所走的路程;②若点M、N向右运动,点P向左运动,点Q为线段PN中点,在运动过程中,OQ-MN 的值是否发生变化?若不变,求其值;若变化,说明理由.6.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式﹣2x2﹣4x+1的一次项系数,b是最小的正整数,单项式﹣的次数为c.(1)a=_____,b=_____,c=_____;(2)若将数轴在点B处折叠,则点A与点C_____ 重合(填“能”或“不能”);(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=_____,BC=_____(用含t的代数式表示);(4)请问:3AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)8.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是______ 元;如果小红家每月用水20吨,则水费是______ 元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?9.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c-9)2=0.(1)a=______,c=______;(2)如图所示,在(1)的条件下,若点A与点B之间的距离表示为AB=|a-b|,点B与点C之间的距离表示为BC=|b-c|,点B在点A、C之间,且满足BC=2AB,则b=______;(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式|x-a|+|x-b|+|x-c|取得最小值时,此时x=______,最小值为______;(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示).10.阅读下列两材料,并解决相关的问题.【材料一】按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为,依此类推,排在第位的数称为第项,记为.一般地,若果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母表示,如数列为等比数列,其中,公比.【材料二】为了求的值. 可令则, 因此,所以,即(1)等比数列的公比为_________,第6项是________(2)如果一个数列是等比数列,且公比为,那么根据定义可得到,,,由此可得(用和的代数式表示)(3)若某等比数列的公比,第2项,则它的第1项,第4项,并求出的值.11.已知是最大的负整数,是多项式的次数,是单项式的系数,且分别是点A,B,C在数轴上对应的数.(1)求的值,并在数轴上标出点A,B,C;(2)若动点P从点A出发沿数轴正方向运动,动点Q从点B出发沿数轴负方向运动,点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点P,Q可以相遇?(3)在数轴上找一点M,使点M到A,B两点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由)12.如图,在长方形ABCD中,AB=6,BC=4,P以2个单位长度/秒的速度沿着A B C运动,Q以1个单位长度/秒的速度沿着B C D运动,P、Q同时出发,任一点到达终点时两个点都停止运动,设运动时间为t.(1)用t的代数式直接表示AP的长度;(2)APQ的面积能否为2?能的话求出t的值,不能请说明理由.13.已知:c是最小的两位正整数,且a,b满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c的值:a=______,b=______,c=______;(2)在数轴上a、b、c所对应的点分别为A、B、C①记A、B两点间的距离为AB,则AB=______,AC=______;②点P为该数轴的动点,其对应的数为x,点P在点A与点C之间运动时(包含端点),则AP=______,PC=______;(3)在(1)(2)的条件下,若点M从A出发,以每秒1个单位长度的速度向终点C 移动,当点M运动到B点时,点N从A出发,以每秒3个单位长度向C点运动,N点到达C点后,再立即以同样的速度返回点A,设点M移动时间为t秒,当点N开始运动后,请用含t的代数式表示M,N两点间的距离.14.甲、乙两家批发商出售同样品牌的茶壶和茶杯,定价相同,茶壶每把30元,茶杯每只5元.两家都在进行优惠销售:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠(按实际价格的90%收费).某茶具店需茶壶5把,茶杯若干只(不少于5只).(1)若设购买茶杯x只(x>5),则在甲店购买需付_____元,在乙店购买需付_____元;(用含x的代数式表示)(2)当茶具店需购买10只茶杯时,到哪家商店购买较便宜?试加以说明;(3)试求出当茶具店购买多少只茶杯时,在两家商店购买所需付的款一样多?15.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.16.阅读下面的材料:如图①,若线段AB在数轴上,A,B两点表示的数分别为a,b(b>a),则线段AB 的长(点A到点B的距离)可表示为AB=b-a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm 到达B点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B两点的位置;(2)若将点A向左移动xcm,则移动后点A表示的数为__________(用含x的代数式表示);(3)若点M从原点O出发以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t(秒),同时,另一动点N从点B出发,以每秒2个单位长度的速度向左匀速运动,到达原点O后立即原速度返回向右匀速运动,当MN=1cm时,求t 的值.17.综合与探究:问题情境:已知:点M,N分别是线段AC,BC的中点.初步探究:(1)如图1,点C在线段AB上,且AC=9,CB=6,求线段MN的长;问题解决:(2)若点C为线段AB上任一点,且AC=a,CB=b,求出线段MN的长度.(用含有a,b的代数式表示)类比应用:(3)若点C在线段AB的延长线上,且AC=a,CB=b,请你画出图形,并直接写出线段MN的长度.(用含有a,b的代数式表示)拓展延伸:(4)已知:如图2,C为线段AB的中点,D为线段AC的中点,E为线段BC上任意一点,M为线段EB的中点,DM=m,CE=n,请你直接写出线段AB的长度.(用含有m,n的代数式表示)18.先阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A 到点B的距离记为AB,线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.图(1)解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.图(2)(1)若数轴上有一点D,且AD=3,则点D表示的数为________;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则点A表示的数是________(用含t的代数式表示),BC=________(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.19.已知a是最大的负整数,b是多项式的次数,c是单项式的系数,且a、b、c分别是点A、B、C在数轴上对应的数(1)求a、b、c的值,并在数轴上标出点A、B、C(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒0.5个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请问这样的点存在吗?如存在,请找出来,如不存在,请说明理由答案和解析1.【答案】(1)530;(2)0.9x;(0.8x+50;(3)0.9a+0.8(820-a-500)+450=0.1a+706.【解析】解:(1)500×0.9+(600-500)×0.8=530;(2)0.9x;500×0.9+(x-500)×0.8=0.8x+50;(3)0.9a+0.8(820-a-500)+450=0.1a+706.(1)让500元部分按9折付款,剩下的100按8折付款即可;(2)等量关系为:购物款×9折;500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-第二次购物款500)×8折,把相关数值代入即可求解.解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.2.【答案】解:(1)方案一购买,需付款:20×200+40(x-20)=40x+3200(元),按方案二购买,需付款:0.9(20×200+40x)=3600+36x(元);(2)把x=30分别代入:40x+3200=40×30+3200=4400(元),3600+36×30=4680(元).因为4400<4680,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买(x-20)条领带,共需费用:20×200+0.9×40(x-20)=36x+3280,当x=30时,36×30+3280=4360(元).【解析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30分别代入求得的代数式中即可得到方案一和二的费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考虑可以先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.3.【答案】解:(1)观察图形可知S阴影=S ABCD+S CEFG-S ABD-S BGF.∵正方形ABCD的边长是a,正方形CEFG的边长是6,∴S ABCD=a2,S CEFG=62,S ABD=a2,S BGF=×(a+6)×6.∴S阴影=a2+62-a2-×(a+6)×6=a2-3a+18.(2)当a=4时,S阴影=×42-3×4+18=14.【解析】(1)依据阴影部分的面积=两个正方形的面积之和减去两个直角三角形的面积列出代数式即可;(2)将a=4代入进行计算即可.本题主要考查的是列代数式,明确阴影部分的面积=两个正方形的面积之和减去两个直角三角形的面积是解题的关键.4.【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a-)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【解析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.【答案】-6 -2 24【解析】解:(1)∵(b+2)2+(c-24)2=0,∴b=-2,c=24,∵多项式x|a+3|y2一ax3y+xy2-1是五次四项式,∴|a+3|=5-2,-a≠0,∴a=-6;故答案是:-6,-2,24;(2)①点P,M相遇时间t==7.5,∴N点所走路程:7.5×7=52.5(单位长度);②OQ-MN的值不发生变化;理由如下:设运动的时间为t秒,则MN=(7-1)t+4=6t+4,∵动点M、N、P,分别从点A、B、C开始同时出发在数轴上运动,B、C在数轴上表示的数分别为-2,24,∴运动t秒时点N、P分别位于数轴上-2+7t、24-3t的位置,∴PN中点Q位于:(-2+7t+24-3t)÷2=11+2t,∴OQ=11+2t,∴OQ-MN=11+2t-(6t+4)=11+2t-2t-=,∴在运动过程中,OQ-MN的值不发生变化.(1)利用非负数的性质求出b与c的值,根据多项式为五次四项式求出a的值;(2)①由题意求出点P遇到点M的时间,也就是点N的运动时间,首先求出AC的距离,设相遇时间为t,分别表示出两点行驶的距离,建立方程解决问题即可;②设运动的时间为t秒,则MN=(7-1)t+4=6t+4,用含t的式子分别表示出点N和点P,进而表示出点Q,由于点N运动的快,且点N运动的初始位置离点O近,故点Q一直位于点O右侧,用OQ减去MN,化简即可得结论.本题综合考查了方程、多项式、动点在数轴上的表示的数及线段长之间的关系等问题,综合性较强,难度较大.6.【答案】解:(1)-4,1,6;(2)能;(3)t+5,3t+5;(4)3AB﹣BC=3(t+5)﹣3t﹣5=3t+15﹣3t﹣5=10∴3AB﹣BC的值不会随着时间t的变化而改变,故答案为(1)﹣4,1,6;(2)能;(3)t+5,3t+5;(4)3AB-BC=3(t+5)-3t-5=3t+15-3t-5=10∴3AB-BC的值不会随着时间t的变化而改变.【解析】【分析】本题考查实数与数轴,涉及整式的概念,追及问题,列代数式等问题,综合程度较高,属于难题.(1)根据多项式与单项式的概念即可求出答案.(2)只需要判断A、C是否关于B对称即可.(3)根据A、B、C三点运动的方向即可求出答案.(4)将(3)问中的AB与BC的表达式代入即可判断.【解答】解:(1)由题意可知:a=-4,b=1,c=6,(2)能重合,由于-4与6的中点为1,故将数轴在点B处折叠,则点A与点C能重合;(3)由于点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,∴t秒钟后,AB=3t+1-(-4)-2t=t+5由于点C以每秒1个单位长度的速度向右运动,∴t秒钟后,BC=2t+6-1+t=3t+5故答案为(1)-4,1,6;(2)能;(3)t+5,3t+5;(4)见答案.7.【答案】解:(1)10×2+(16-10)×2.5=35(元),答:应交水费35元;(2)设黄老师家6月份用水x吨,由题意得10×2+2.5×(x-10)=30,解得x=14,答:黄老师家6月份用水14吨;(3)①当0<a≤10时,应交水费为2a(元),②当a>10时,应交水费为:20+2.5(a-10)=2.5a-5(元).【解析】此题主要考查了列代数式,代数式的值,一元一次方程的应用,分类讨论思想,关键是正确理解题意,分清楚如何计算水费.(1)根据题意可得水费应分两部分:不超过10吨的部分的水费+超过10吨部分的水费,把两部分加起来即可;(2)首先根据所交的水费讨论出用水是否超过了10吨,再根据水费计算出用水的吨数;(3)此题要分两种情况进行讨论:①当0<a≤10时,②当a>10时,分别进行计算即可.8.【答案】(1)16;45(2)①如果每月用水x≤10吨,水费为:(2x)元②如果每月用水x>10吨,水费为:2.5(x-10)+20=2.5x-5元;【解析】解:(1)每月用水8吨时,水费为:8×2=16元,每月用水20吨时,水费为:2.5(20-10)+20=45元;故答案为:(1)16,45.(2)见答案【分析】(1)每月用水8吨时,水费为:16元;超过10吨,超过部分每吨水收费2.5元,于是可得:每月用水20吨时,水费为:2.5(20-10)+20=45元,(2)分类讨论:①如果每月用水x≤10吨,水费为:(2x)元,②如果每月用水x>10吨,水费为:2.5(x-10)+20元;本题主要考查列代数式和代数求值的知识点,解答本题的关键是理解题意,列出代数式,此题难度一般.9.【答案】-3 9 1 1 12【解析】解:(1)∵|a+3|+(c-9)2=0,∴a+3=0,c-9=0,解得,a=-3,b=9;(2)数轴上点B表示的数为b.∵BC=2AB,∴|c-b|=2|b-a|,即9-b=2[b-(-3)]解得:b=1;(3)当x=b=1时,|x-a|+|x-b|+|x-c|=|x-(-3)|+|x-1|+|x-9|=12为最小值;(4)当t不超过4秒(或表述为0≤t≤4或4秒以前),d=12-t;当t超过4秒(或表述为t>4或4秒以后),d=3t-4.(1)根据非负数的性质求得a=-3,b=9;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)当P与点B重合时,|x-a|+|x-b|+|x-c|即当x=b时,取得最小值;(4)分当0<t≤4时,当t>4时,表示出甲、乙两小球之间的距离d即可.此题考查是列代数式,数轴上两点之间的距离,掌握两地之间的距离求法是解决问题的关键.10.【答案】解:(1)2;96;(2);(3)1;125;∵++++=,令①,由①×5得:②,由②-①得:,,∴ =.【解析】【分析】本题主要考查数字字母规律和整式的知识.解决本题的关键是读懂材料给的知识和解题方法.然后运用这些知识和方法来解题.【解答】解:(1)∵,,,∴公比q=2,∴a6=a1q5=3×25=96,故答案为2;96;(2)∵ ,,,由此可得:,故答案为;(3)∵ ,,,∴ ,即:,a1=1,∴ ,故答案为1;125;见答案.11.【答案】解:(1)∵a是最大的负整数,∴a=-1,∵b是多项式2m2n-m3n2-m-2的次数,∴b=3+2=5,∵c是单项式-2xy2的系数,∴c=-2,如图所示:(2)∵动点P从点A出发沿数轴正方向运动,动点Q从点B出发沿数轴负方向运动,点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度和为:1+2=3,∴63=2,答:运动2秒后,点P、Q能相遇;(3)存在点M,使P到A、B、C的距离和等于10,M对应的数是2或者.【解析】本题考查数轴有关计算以及单项式和多项式问题,注意数轴的三要素:原点、正方向、单位长度是解题关键;(1)根据题意写出a、b、c即可;(2)计算PQ两点距离后除以总速度即可得出答案;(3)假设坐标是x=m,用数轴上两点距离公式即可得出答案.12.【答案】解:(1);(2)①当时,,t=或t=-(舍去),②当时,PQ=t-(2t-6)=6-t,,t=(舍去),③当时,,t=5或t=8(舍去),综上所述,t=或5时,APQ的面积能否为2.【解析】本题考查动点问题,熟练运用动点问题是解答的关键,(1)由题意可得AP的不等式;(2)根据t的取值情况分3种情况讨论.13.【答案】解:(1)-26,-10,10;(2)①16,36 ;②x+26,10-x;(3)点N运动的总时间为:2(36÷3)=12×2=24,24+16=40,设t秒时,M、N第一次相遇,3(t-16)=t,t=24,分五种情况:①当0≤t≤16时,如图2,点M在运动,点N在A处,此时MN=t,②当16<t≤24时,如图3,M在N的右侧,此时MN=t-3(t-16)=-2t+48,③M、N第二次相遇(点N从C点返回时):t+3(t-16)=36×2,t=30,当24<t≤30时,如图4,点M在N的左侧,此时MN=36×2-t-3(t-16)=-4t+120,④当30<t≤36时,如图5,点M在N的右侧,此时MN=3(t-16)-36-(36-t)=4t-120,⑤当36<t≤40时,如图6,点M在点C处,此时MN=3(t-16)-36=3t-84,【解析】解:(1)∵c是最小的两位正整数,a,b满足(a+26)2+|b+c|=0,∴c=10,a+26=0,b+c=0,∴a=-26,b=-10,c=10,故答案为:-26,-10,10;(2)①∵数轴上a、b、c三个数所对应的点分别为A、B、C,∴点A表示的数是-26,点B表示的数是-10,点C表示的数是10,所画的数轴如图1所示;∴AB=-10+26=16,AC=10-(-26)=36;故答案为:16,36;②∵点P为点A和C之间一点,其对应的数为x,∴AP=x+26,PC=10-x;故答案为:x+26,10-x;(3)见答案.【分析】(1)根据题意可以求得a、b、c的值,从而可以解答本题;(2)①根据数轴上两点的距离公式:AB=x B-x A,可得AB和AC的长;②同理可以表示AP和PC的长;(3)先计算t的取值,因为点M从A出发,以每秒1个单位长度的速度向终点C移动,且AC=36,所以需要36秒完成,又因为当点M运动到B点时,即16秒后,点N从A 出发,以每秒3个单位长度向C点运动,所以点N还需要运动24秒,所以一共需要40秒,再分别计算M、N两次相遇的时间,分五种情况讨论,根据图形结合数轴上两点的距离表示MN的长.本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长,有难度,属于中考常考题型.14.【答案】解:(1)设购买x只茶杯时,在两家商店所需付款分别为:甲店:;乙店:.(2)把x=15分别代入(1)中的代数式得:甲店需付款为:125+5×15=200元,乙店需付款为:135+4.5×15=202.5元,答:当需购买15只茶杯时,选择去甲店购买更合算.(3)设购买茶杯x只时,两种优惠办法付款一样,由题意得:,即,所以x=20.答:购买茶杯20只时,两种优惠办法付款一样.【解析】本题考查了一元一次方程的应用.(1)设购买x只茶杯时,甲商场收费为,在乙商场收费为;(2)把x=15分别代入(1)中的两店表达式,款数较少的甲店为所选;(3)利用两种优惠办法付款一样建立方程,计算得结论.15.【答案】解:(1)1;(2)设点P运动x秒时,在点C处追上点R,则:AC=6x,BC =4x,AB=10,∵AC-BC=AB,∴6x-4x=10,解得x=5,∴点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,理由如下:分两种情况:①当点P在A、B之间运动时(如图①),MN=MP+NP=AP+BP=(AP+BP)=AB=5.②当点P运动到点B左侧时(如图②),MN=PM-PN=AP-BP=(AP-BP)=AB=5;综上所述,线段MN的长度不发生变化,其长度为5.【解析】【分析】此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x,BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时;②当点P运动到点B左侧时,求得线段MN的长度不发生变化.【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1.故答案为1;(2)见答案;(3)见答案.16.【答案】解:(1)(2);(3)根据题意,分类讨论:第一种情况如图:,解得;第二种情况如图:,解得 ;第三种情况如图:,解得;第四种情况如图:,解得.综上可知.【解析】【分析】本题考查了数轴,列代数式,两点间的距离等.(1)根据点的移动方向确定,一个点向左移动2厘米,说明A点在数轴上的位置为-2,再向右移动7cm,点B表示的数是﹣2+7=5,最后在数轴上表示出A,B两点的位置即可;(2)点A表示的点为-2,再向左移动xcm,说明移动后点A表示的数为-2-x;(3)需要分情况讨论,根据题意要分四种情况分别讨论,直至得出全部结论.【解答】解:(1)一个点向左移动2厘米,说明A点在数轴上的位置为-2,再向右移动7cm,点B表示的数是﹣2+7=5,在数轴上表示出A,B两点的位置即可;(2)点A表示的点为-2,再向左移动xcm,说明移动后点A表示的数为-2-x;(3)见答案.17.【答案】解:(1)∵AC=9,点M是AC的中点,∴CM=AC=4.5,∵BC=6,点N是BC的中点,∴CN=BC=3,∴MN=CM+CN=7.5,∴线段MN的长度为7.5;(2)MN=,∵点M,N分别是线段AC,BC的中点.∴MC=AC=a,CN=CB=b,∴MN=;(3)当点C在线段AB的延长线时,如图:得:MN=;(4)AB=2m-n.【解析】本题考查了线段两点间的距离及中点的性质.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度;(2)由M,N分别是AC,BC的中点,可表示线段MC、CN的长度,再利用MN=CM+CN,求得MN=;(3)点C在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN=MC-NC=问题的解;(4)由D为线段AC的中点,M为线段EB的中点,CE=n,得,整理得AC+BE=2m-2n,所以AB=2m-2n+n=2m-n问题得解.18.【答案】(1)-7或-1;(2)-4-t,t+4;(3)解:3BC-AB的值不随着时间t的变化而改变,理由如下:∵3BC-AB=3(t+4)-(3t+6)=3t+12-3t-6=6.∴3BC-AB的值不随着时间t的变化而改变.【解析】【分析】本题考查了数轴与绝对值,两点间的距离,整式的加减,列代数式的有关知识.(1)设点D表示的数为x,根据题意列出方程求解即可;(2)根据两点间的距离公式列出代数式即可;(3)先求出BC=t+4,AB=3t+6,从而得出3BC-AB=6,得出结论.【解答】解:(1)设点D表示的数为x,由题意得:|x-(-4)|=3,解得:x=-7或x=-1,故答案为-7或-1;(2)因为A点向左运动,所以A点表示的数是:-4-t,B、C两点向右运动,所以BC=t+4; 故答案为-4-t;t+4;(3)见答案.19.【答案】解:(1)∵a是最大的负整数,∴a=-1,∵b是多项式2m2n-m3n2-m-2的次数,∴b=3+2=5,∵c是单项式-2xy2的系数,∴c=-2,如图所示:(2)设运动x秒后,点Q可以追上点P,根据题意,得2x=0.5x+6解得x=4答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,设M对应的数为t,当t≤-2时,-2-t-1-t+5-t=10,解得;。
2020苏科版七上第二章《有理数》中的动点问题班级:___________姓名:___________得分:___________一、解答题1.数轴上点A对应的数是−1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟。
(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位……依此规律爬下去,求它第10次爬行所停下的点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一只小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设小虫甲对应的点为E点,小虫乙对应的点为F点,设点A、E、F、B所对应的数分别是χA、χE、χF、χB,当运动时间不超过1秒时,求|χA−χE|−|χE−χF|+|χF−χB|的值。
2.如图,数轴上点O是原点,点A,B,C表示的有理数分别是a,b,c,且满足|a+2|+(c−3)2=0,b是最小的正整数.我们用AB表示点A与点B之间的距离(以下表示相同).(1)a=________,b=________,c=________.(2)AB=________,BC=________.(3)在数轴上有一点M,且MA+MB=MC,求点M表示的数.(4)若点A′,B′,C′分别从点A,B,C的位置开始,同时沿着数轴运动:点A′以每秒1个单位长度的速度向左运动,点B′和C′分别以每秒2个单位长度和5个单位长度的速度向右运动.设运动时间为t秒,则A′B′−B′C′的值是否随着时间t的变化而改变?并说明理由.3.已知,如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出AB中点M对应的数;(直接写结果)(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?为什么?(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?为什么?4.已知数轴上,点O为原点,点A对应的数为10,点B对应的数为h,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.(1)如图,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时h的值;(2)当线段BC在数轴上移动时,满足关系式AC−OB=AB,求此时满足条件的h的值;(3)当线段BC在数轴上移动时,满足关系式|AC−OB|=2|AB−OC|,则此时3h的取值范围是5.如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+3|+(b−2)2=0(1)求线段AB的长;x+1的解,有一个点P在数(2)点C在数轴上对应的数为x,且x是方程x−2=14轴上运动,当点P运动什么位置时,使得PA+PB=PC,求出点P对应的数。
数轴上的动点问题
【知识概要】
“数轴上的动点问题”是初中数学中的动点问题的基础,它的解决离不开数轴上两点之间的距离.为了便于我们对这一类问题的学习和分析,不妨先明确以下两个问题:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,或用右边的数减去左边的数的差.用式子表示为:数轴上两点间的距离=右边点表示的数—左边点表示的数;
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此将向右运动的速度看作正速度,对应地,将向左运动的速度看作负速度.这样,在起点的基础上加上点的运动路程,就可以直接得到运动后点的坐标.例如:一个点表示的数为a ,向左运动)0(≥b b 个单位后表示的数为b a -;向右运动)0(≥c c 个单位后所表示的数为c a +.
【例题讲解】
【例1】一个动点A 在数轴上跳动,点n A (n 为正整数)表示点A 第n 次跳动后的位置.若点1A 在原点的左边,且11=O A ,点2A 在点1A 的右边,且221=A A ,点3A 在点2A 的左边,且332=A A ,点4A 在点3A 的右边,且443=A A ,……,依照上述规律确定点2012A 和点2013A 所分别表示的数.
【例2】如图,已知A 、B 分别为数轴上两点,A 点对应的数为20-,B 点对应的数为100.
(1)AB 中点M 对应的数;
(2)现有一只电子蚂蚁甲从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;
(3)若当电子蚂蚁甲从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.
【例3】已知数轴上两点A 、B 对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .
(1)若点P 到点A 、点B 的距离相等,求点P 对应的数;
(2)数轴上是否存在点P ,使它到点A 、点B 的距离之和为5?若存在,请求出x 的值.若不存在,请说明理由?
(3)当点P 以每分钟1个单位长度的速度从原点向左运动时,点A 以每分钟5个单位长度向左运动,点B 以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等? 归纳:对于(3)这种问题,“到点A 、点B 的距离相等”意味着分类讨论.
【例4】已知数轴上有A 、B 、C 三点,对应的数分别是24-,10-,10.还是那两只电子蚂蚁甲、乙分别从A 、C 两点出发,甲的速度为4个单位/秒.
(1)请问:多少秒后,甲到A 、B 、C 的距离和为40个单位?
(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,那么甲、乙在数轴上的哪个点相遇?
(3)在(1)、(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回.在这种情况下,甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.
【例5】数轴上A 点对应的数为5-,B 点在A 点右边,电子蚂蚁甲、乙(我们今天的主角)在B 点处分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙(我们今天的配角)在A 点以3个单位/秒的速度向右运动.
(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;
(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;
(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t ,使丙到乙的距离是丙到甲的距离的两倍?若存在,求出t 值;若不存在,说明理由.
【随堂练习】
1、电子跳蚤落在数轴上的某点0K ,第一步从0K 向左跳1个单位到1K ,第二步由1K 向右跳2个单位到2K ,第三步由2K 向左跳3个单位到3K ,第四步由3K 向右跳4个单位到4K ,…….按以上规律跳了100步时,电子跳蚤落在数轴上的100K 所表示的数恰是06.20.试求电子跳蚤的初始位置点0K 表示的数.
2、已知数轴上A 、B 两点对应数分别为2-、4,P 为数轴上一动点,对应数为x .
(1)若点P 为线段AB 的三等分点,求点P 对应的数;
(2)数轴上是否存在到A 、B 两点的距离和为10的点P ?若存在,求出x 的值;若不存在,请说明理由.
(3)若A 、B 两点和P 点(P 点在原点)同时向左运动.它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P 点为线段AB 的中点?
3、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x .
(1)若P 为AB 线段的三等分点,求P 对应的数;
(2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由.
(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几分钟时,P
为AB 的中点.
【提升训练】
1、如图,已知数轴上有三点A 、B 、C ,AB = 12
AC ,点C 对应的数是200. (1)若BC =300,求A 点所对应的数;
(2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点
P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR =4RM (不考虑点R 与点Q 相遇之后的情形)
P A R Q C
200
(3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,
P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动
到点A 的过程中,32
QC -AM 的值是否发生变化?若不变,求其值;若变化,说明理由. E A D C
3、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x .
-2 -1 0 1 2 3 4
(1) 若P 为AB 线段的三等分点,求P 对应的数;
(2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由.
(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几分钟时,P
为AB 的中点.
4、已知数轴上有顺次三点A, B, C .其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每
秒2个单位的速度向左移动.
(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少?
(2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟?
(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C出发,向左移动,速度为秒3个单位长度,
如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标。