极限专题(八):极限计算三十种思路总结与专题练习
- 格式:docx
- 大小:758.57 KB
- 文档页数:10
求极限的方法总结及例题求极限是微积分学探究函数变化规律的基础,也是微积分学最重要的概念之一。
在求极限的运算中,由于函数的特殊性,其结果有可能是一个常数、一个变量或者无穷大,因此,求极限的计算要建立在对偏导数的理解和计算上,即在计算极限之前,首先要掌握偏导数的概念和计算方法。
一般来说,有三种常见的求极限方法:1、基本形式求极限;这种方法是指函数表达式本身具有特定性,可以用固定的简单运算公式直接求出极限值。
例如:当x趋向于0时,lim x→0 (1-cosx/x2)= 1/22、恒等式转换求极限;这种方法是指通过给出函数的形式进行合理的变换,从而使函数表达式转换成可以直接求出极限值的公式,从而解决函数求极限的问题。
例如计算:lim x→0(sin2x/x)可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。
3、洛必达法则求极限;洛必达法则是指在求函数极限时,可以根据函数的性质将原函数转换成另外一组函数,从而推出极限结果。
例如:计算:lim x→∞ (1+1/x)x可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上所述就是求极限的三种常见的方法。
接下来,我们就以例题来试验一下这三种方法的使用。
例题1:求lim x→0 (sin2x/x)解:由上文所述,这种情况应使用恒等式转换求极限:可以将该式化简进行转换:lim x→0(sin2x/x)= lim x→0(2sinxcosx/x)= lim x→0(2cosx/1)= 2* lim x→0 (cosx)由于cosx等于1,当x趋向于0时,极限结果为2。
例题2:求lim x→∞ (1+1/x)x解:这种情况应使用洛必达法则:可以把原本的函数,转换成另一函数,即:lim x→∞ (1+1/x)x= lim x→∞ x/x2= lim x→∞ 1/x= 0 以上就是求极限的三种方法总结及例题分析。
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
千里之行,始于足下。
极限的求解方法总结极限是数学中一个重要的概念,它描述了函数在某一点或某一趋势中的趋于无穷的行为。
在求解极限问题时,我们可以使用多种方法来获得精确的结果。
下面将对常见的求解极限问题的方法进行总结。
1. 代入法:代入法是求解极限问题中最简洁和直接的方法。
它适用于大多数简洁的极限问题,只需要将极限中的变量代入函数中,计算得到的函数值就是极限的结果。
但是需要留意的是,代入法只适用于那些在给定点四周有定义的函数。
2. 夹逼准则:夹逼准则常用于求解函数极限时。
该方法的基本思想是通过构造两个函数,一个渐渐趋近于极限,并且一个渐渐远离于极限。
若两个函数的极限都存在且相等,则可以得到原函数的极限。
3. 分式分解与有理化:对于一些简单的极限问题,我们可以通过将分式进行分解,或利用有理化的方法简化问题。
分式分解的方法适用于含有多项式的极限问题,将分式拆解成更简洁的形式,然后进行计算。
有理化的方法则适用于含有根式的极限问题,通过去除分母中的根式,将问题转化为含有多项式的形式。
4. 泰勒级数开放:泰勒级数开放是一种将函数用无穷级数形式进行表示的方法。
通过该方法,我们可以将一个简单的函数开放成一个无穷级数,然后利用级数的性质来求解极限问题。
泰勒级数开放的方法适用于对于某一点四周的函数近似求极限的问题。
第1页/共2页锲而不舍,金石可镂。
5. 极限性质和公式:在求解简单的极限问题时,我们可以利用极限的性质和公式来简化计算。
例如,极限的和差性、积性、倒数性、幂等性等公式都可以用来简化极限问题的计算。
6. L'Hospital法则:L'Hospital法则是一种通过对函数的导数进行操作来求解极限问题的方法。
该方法适用于极限的形式为0/0或无穷/无穷的问题。
依据L'Hospital法则,假如函数f(x)和g(x)在给定点四周连续可导,并且f(x)/g(x)的极限存在,那么f(x)/g(x)的极限等于f'(x)/g'(x)的极限。
求函数极限的方法总结及例题一、求函数极限的方法总结。
1. 代入法。
当函数在极限点处连续时,直接将极限点代入函数求值。
例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。
2. 因式分解法。
适用于(0)/(0)型的极限。
例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。
3. 有理化法。
对于含有根式的函数,通过有理化来消除根式。
例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。
4. 等价无穷小替换法。
当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。
例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。
5. 洛必达法则。
对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。
例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。
二、例题。
1. 例1。
求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。
极限计算方法总结极限是微积分的重要概念,它在数学和物理学中有着广泛的应用。
在学习极限的过程中,我们需要掌握一些常用的计算方法,以便能够准确地求解各种类型的极限问题。
下面我将对常见的极限计算方法进行总结,希望能够对大家的学习有所帮助。
1. 代入法。
代入法是求解极限最直接的方法之一。
当我们计算极限时,如果能够将极限中的变量替换为一个确定的数值,就可以直接求出极限的值。
例如,对于极限lim(x→2)(x^2+3x-2),我们可以直接将x替换为2,得到4+6-2=8。
这种方法适用于一些简单的极限计算,但对于一些复杂的极限问题并不适用。
2. 因子分解法。
当极限中存在多项式或根式时,我们可以尝试使用因子分解法来简化计算过程。
通过对多项式进行因子分解或有理化,可以将极限转化为更简单的形式,从而更容易求解。
例如,对于极限lim(x→1)((x^2-1)/(x-1)),我们可以将分子进行因子分解得到lim(x→1)((x+1)(x-1)/(x-1)),进而化简为lim(x→1)(x+1),最终得到极限的值为2。
3. 夹逼定理。
夹逼定理是一种常用的极限计算方法,它适用于求解一些复杂的极限问题。
夹逼定理的核心思想是通过构造两个函数,使得它们的极限值相等,并且夹住待求极限的函数,从而得到待求极限的值。
这种方法常用于证明极限存在或不存在的问题,也可以用来求解一些特殊的极限。
例如,对于极限lim(x→0)(sinx/x),我们可以构造两个函数f(x)=sinx和g(x)=x,然后利用夹逼定理得到lim(x→0)(sinx/x)=1。
4. 洛必达法则。
洛必达法则是一种常用的求解不定型极限的方法。
当计算极限时遇到不定型形式0/0或∞/∞时,可以尝试使用洛必达法则来简化计算过程。
该法则的核心思想是对极限中的分子和分母分别求导,然后再计算极限,从而得到原极限的值。
例如,对于极限lim(x→0)(sinx/x),我们可以对分子sinx和分母x分别求导,得到cosx和1,然后再计算极限,最终得到极限的值为1。
求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。
计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。
极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。
这个方法通常适用于简单的极限,例如多项式的极限。
2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。
例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。
3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。
例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。
4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。
例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。
5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。
该法则适用于极限形式为0/0或无穷/无穷的情况。
它的基本思想是将函数的求导转化为简化问题。
例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。
然后可以利用夹逼准则得到要计算函数的极限。
例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。
7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
极限专题(八):极限计算三十种思路总结与专题练习
通过专题总结,我们已经知道极限的多种计算方法,包括级数收敛的必要条件、比值极限与根值极限的关系、等价无穷小与等价无穷大替换、洛必达法则、施笃兹定理、单调有界准则、夹逼准则、积分中值定理、微分中值定理、定积分与重积分的精确定义、积分的变限与加边问题、华里士公式、斯特林公式等. 大家可以回读以前的各专题来温习这些方法.
只有这些零碎的方法是不够的,我们需要系统地对重要的内容进行总结归纳并加以综合实战. 本专题首先全面归纳极限的相关计算技巧、方法,总结一下拿到一道计算题后应该有的思路,然后提供一份极限计算的综合练习题,并附以参考答案.
第一部分思路总结
我们首先全面归纳极限的相关计算技巧、方法.
一、利用定义证明
当一个极限形式较为简单,且结果已知时,可以用极限的定义加以证明.
二、函数极限的直接代入法
当一个函数在趋向点处连续时,可以将趋向点直接代入函数解析式中,得出极限结果.
三、通过计算单侧极限求极限
若左右极限的情况差别较大,尤其是当无穷大处的指数函数或反正(余)切函数、整点处的取整函数、分段点处的分段函数等情形出现时,则一般需要分别考虑左右极限.
四、借助简单的概念判断来确定极限
如“有界量”乘以“无穷小量”趋近于0,“有界量”除以“无穷大量”趋近于无穷大,“趋于非零常数的量”乘以“无穷大量”趋近于无穷大,“绝对值小于1的常数”的无穷大次幂趋于0,正的常数开无穷大次方趋近于1等等. 此外,在计算某些∞/∞极限时,还可以比较
函数或数列值趋于无穷的速度,如指数函数比幂函数趋于无穷的速度快,故当x→+∞时,x100/2x的极限等于0
五、根据子列极限情况推导原数列极限情况
若能在数列中取出两不同子列,使得这两个子列的极限不相等,则可以断定原极限不存在;若能在数列中取出一个发散的子列,也能说明原极限不存在. 若所有奇数项以及偶数项组成的两子列极限均存在且相等,则可以说明原数列极限也存在且等于这个值,即数列的奇数项构成的数列与偶数项构成的数列的极限存在并且相等时,则原数列的极限存在并且等于相同的极限值.
六、海涅定理
利用海涅定理证明函数极限不存在,或进行从函数极限到数列极限的转化.
海涅定理的内容:
函数f(x)在x→x0时极限等于A的充要条件是,对于任何满足以下三个条件的数列{x n},都有n→+∞时f(x n)的极限等于A成立:(1)对任何正整数n,都有x n≠x0;
(2)对任何正整数n,f(x n)都要有定义;
(3)n→+∞时x n→x0.
要证明一个函数极限不存在有两种思路:
一是找到一个满足定理中三个条件的数列{x n}使得n→+∞时f(x n)的极限不存在;
二是找到两个满足定理中三个条件的数列{x n}和{x'n}使得n→+∞时f(x n)和f(x'n)不相等.
此外,若某个函数极限的值已经确定,则对应的数列极限也为此值,这里的理论依据也是海涅定理. 通过这个道理,我们可以将某些数列极限转化为函数极限进行计算(这样方便求导、使用洛必达法则等),然后转化回数列极限.
七、因式分解
某一些多项式是可以因式分解从而约去致零因子的,进一步可以定出未定式的极限值.
八、化无穷大为无穷小
我们可以在一个分式的极限中,给分子和分母同时除以式中出现的最高阶的无穷大,从而使得其他的无穷大量都变成无穷小,易于算出极限.
九、有理化
若式中出现了无理式,可以使用有理化的方法进行恒等变形. 若分子中出现了无理式,可对分子进行有理化;若分母中出现了无理式,可对分母进行有理化;若均出现,可以分子分母同时有理化. 有理化的具体方法就是,对分子和分母同时乘以无理式的“共轭根式”. 如果两个根式的乘积不含根号,就称这两种形式互为共轭根式,比如:
十、求和求积恒等变限求极限
先求和或求积再求极限,或对式子进行其他简单的恒等变形,再求极限. 如果某个式子易于直接求和,或易于直接求积,或能通过简单的变形求出极限,不妨就先变形,以便于迅速求得极限.
十一、利用对数恒等式
N=e lnN. 在计算幂指函数的极限时,经常需要我们通过这个恒等式化简,让幂指函数消失,极限就易于求出了.
十二、利用三角恒等变换公式
三角恒等变换公式在一些关于三角函数的题目中可以起到至关重要的化简作用. 这一点在不定积分的计算中体现得更加淋漓尽致.
十三、利用重要极限
有许多关于三角函数或1∞的题目都可以分别向着这两个极限的框架靠拢,根据这两条结论计算极限值.
十四、变量替换法
若式中多次出现某一复杂部分,可以令这个复杂的部分为一个新元,分析出这个新元的趋向,从而化简极限.
十五、等价无穷小量代换与等价无穷大量代换
我们必须记住常见的等价无穷小与等价无穷大的结论,如果在题目中见到了这些形式,一定要及时地运用结论进行等价无穷小或等价无穷大的代换. 具体可参照以往的专题(二).
十六、洛必达法则与施笃兹定理
对于0/0型和∞/∞型的函数极限,我们可以使用洛必达法则,即分子分母分别求导,但一定要注意法则的使用条件. 对于其余类型的未定式,也可以转化为0/0型和∞/∞型的极限. 对于数列极限,由于其不能求导,所以必须先求对应的函数极限,再通过海涅定理转化成数列极限. 此外,对于0/0型和∞/∞型的数列极限,也可使用施笃兹定理解决,依然必须留意定理的使用条件. 具体可参考以往的专题(三).
十七、利用夹逼准则
无论是具体型还是抽象型的极限,夹逼准则都是一个重要的思想,对数列或函数进行适当的放缩,合理地定出其上下界,进而确定极限值. 此外,压缩映射的思想也是十分重要的. 关于这部分内容,学友们可以阅读以往的专题(四).
十八、单调有界准则
我们可以通过证明数列或函数的单调性和有界性,确定极限的存在性,再通过解方程等方法定出具体的极限值. 具体也可参照专题(四).
十九、利用中值定理
中值定理可以分为微分中值定理和积分中值定理. 若极限中出现了函数值的增量,则可以考虑拉格朗日中值定理或柯西中值定理,若出现了定积分,则可以考虑积分中值定理(出现定积分的极限有时还可以直接计算积分或使用夹逼准则等方法,若是积分上限函数的分式形式,还可以使用洛必达法则,具体可回读以往的专题(四)和专题(五)).
二十、泰勒(麦克劳林)公式展开法
若函数较为复杂,但易于展开成泰勒级数,则可以使用这种方法求出极限. 本文附有相关例题进行练习和讲解,如16题与21题.
二十一、利用导数定义
导数本身就是通过极限来定义的,如果一个极限形式便于化成导数定义的形式,则可以转化成导数.
二十二、利用定积分或重积分定义
若一个极限便于凑成积分和的形式,则可以转化成积分的计算. 这部分内容可以参看以往的专题(五)和专题(六).
二十三、利用级数收敛的必要条件
若一个级数收敛,则通项数列将收敛于0. 具体可参照以往的专题(一).
二十四、利用级数求和的方法
若一个极限可以转化成某个级数的和,如幂级数或傅里叶级数,则可以用相关的级数求和方法进行计算.
二十五、利用柯西收敛准则
数列{x n}收敛的充分必要条件是:对于任意给定的正数ε,总存在正整数N,使得当m>N,n>N时,有| x n -x m|<ε. 利用这个准则,仅能判定数列收敛还是发散,既没有用到也不能求出具体的极限值. 想要求出极限值,必须还得辅以别的方法——甚至有的极限结果无法解析地表示出来.
二十六、利用“比值极限”与“根值极限”的关系
根值型极限是可以转化成比值型极限的,具体可参考以往的专题(一).
二十七、利用华里士(沃利斯,Wallis)公式
若式中出现了双阶乘的比值,可能会用到华里士(沃利斯,Wallis)公式.
二十八、利用斯特林公式
若式中出现了阶乘,可以通过斯特林公式将阶乘化掉. Wallis公式与斯特林公式可参考以往的专题(七).
二十九、利用其他学科的方法
有时,微积分可以和其他学科如线性代数、概率论与数理统计、复变函数论等学科紧密结合,希望大家可以灵活变通.
三十、熟能生巧
这才是计算极限的终极奥义,只有通过大量的练习,才会对各种题目都可以轻松解决,手到擒来.
至此,极限计算专题已经结束,希望大家在阅读了这套极限计算专题之后可以通过大量的实践来反复练习,直至完全掌握. 极限是微积分或数学分析中极为重要的概念,希望学友们对其加以重视.
第二部分综合练习
下面将提供30道综合练习题,除了能练习一些求极限的基本能力,以及在之前的专题中学到的方法之外,还能体会到许多其它的新思想,希望大家能好好利用这份习题,提升能力.
参考解答参见后续推文!
感谢学友Veecen的热心整理分享,欢迎更多学友分享好的学习资源、学习经验和大学生活经历,分享热线:微信、QQ、邮箱都为QQ 号码:492411912.
•极限专题(七)利用华里士公式与斯特林公式求极限
•极限专题(六):积分定义中的变限与加边问题
•极限专题(五):利用微分中值定理与积分定义求极限
•极限专题(四):利用单调有界准则与夹逼准则求极限
•极限专题(三):利用洛必达法则与施笃兹定理求极限
•极限专题(二):利用等价无穷小与等价无穷大替换求极限
•极限专题(一):利用级数相关判别法和性质求极限
•中值定理证明与辅助函数构造思路与方法(一)
•中值定理证明与辅助函数构造思路与方法(二)
相关推荐
有关极限计算几大最基本,也是最重要方法的详细分析、探索,
应用方法的问题类型,以及应用各方法应该注意事项的讨论可以参见《公共基础课》在线课堂历届竞赛真题和专题解析教学视频. 每届视频针对不同的极限问题类型和不同的求极限方法,以经典实例方式给出了一般的求极限思路与步骤,并对解题思路、思想、方法以及相关内容进行了归纳总结与延伸拓展,其中第三届、第六届、第九届、第十届真题解析视频相对包含问题类型最多,方法也最多.。