复变函数积分方法总结
- 格式:docx
- 大小:315.15 KB
- 文档页数:13
复变函数与积分变换公式汇总一、复变函数复变函数是将复数域上的变量映射到复数域上的函数。
形式上,复变函数可以表示为f(z) = u(x,y) + iv(x,y),其中z = x + iy是自变量,u(x,y)和v(x,y)是实部和虚部函数。
复变函数的性质包括解析性、全纯性、调和以及实部虚部的关系等。
1.解析函数性质解析函数是复变函数的重要性质之一,它表示函数在其定义域内处处可导,并且其导数连续。
如果f(z)是定义在区域D上的函数,满足Cauchy-Riemann条件,则f(z)是该区域上的解析函数。
Cauchy-Riemann条件可以表示为:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x2.全纯函数性质全纯函数是解析函数的特殊情形,它在整个复平面上都有定义,并且是解析的。
全纯函数还有许多重要的性质,如Liouville定理、最大模原理等。
3.调和函数性质调和函数是复平面上的实函数,满足拉普拉斯方程(△u=∂²u/∂x²+∂²u/∂y²=0)。
调和函数在物理学中有广泛的应用,例如描述电势、热力学等现象。
4.实部虚部关系对于任意一个复变函数f(z),其实部u(x,y)和虚部v(x,y)之间有一些重要的关系。
例如,如果f(z)是一个解析函数,则它的实部和虚部函数满足调和方程,并且u(x,y)和v(x,y)是共轭调和函数。
二、积分变换公式积分变换是对函数进行积分操作的数学工具,常用于求解微分方程、信号处理等问题。
常见的积分变换公式包括拉普拉斯变换和傅里叶变换等。
1.拉普拉斯变换拉普拉斯变换是一种广泛应用于信号分析和控制系统的积分变换方法。
定义域为半无穷区间的函数f(t)在复平面上进行拉普拉斯变换后得到一个复变函数F(s),满足积分方程:F(s) = L[f(t)] = ∫[0,∞] f(t)e^(-st) dt2.拉普拉斯变换的性质拉普拉斯变换具有一些重要的性质,如线性性、位移性质、尺度变换、微分性质等。
复变函数与积分变换期末总结复变函数与积分变换是数学中重要的课程内容,对于理解和应用数学、物理、工程等领域都具有重要意义。
在这门课程中,我学习了复数、复变函数的性质和运算,并通过积分变换掌握了解析函数的积分和导数。
在期末总结中,我将对复变函数与积分变换的主要内容进行回顾和总结。
首先,我们先来介绍复数和复平面。
复数是由实部和虚部组成的数,通常用z = x + yi的形式表示。
其中,z是复数,x和y分别是实部和虚部。
我们可以将复数表示为在复平面上的点,实部与x坐标对应,虚部与y坐标对应。
复平面上的数可以进行加法、减法、乘法和除法的运算,这些运算保持了复数域的封闭性。
接着,我们讨论复变函数及其性质。
复变函数是将复数映射到复数的函数,即f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)分别是实部和虚部函数。
我们可以用几何矢量的形式表示复变函数,即f(z) =f(x + yi) = u(x, y) + iv(x, y) = ,f(z),e^(iθ)。
其中,f(z),表示复变函数的模,θ表示复变函数的幅角。
复变函数的导数和积分是复变函数研究的重要内容。
如果一个函数在其中一点处的导数存在,则称该函数在该点处可导。
在复分析中,复变函数的导数定义为极限的形式,即f'(z) = lim[(f(z+h)-f(z))/h],其中h是一个趋近于0的复数。
利用导数的定义以及复变函数局部线性的特点,可以推导出复变函数的柯西-黎曼条件。
柯西-黎曼条件表示为∂u/∂x =∂v/∂y,∂v/∂x = -∂u/∂y。
满足柯西-黎曼条件的函数是解析函数。
通过解析函数的导数,我们可以得到解析函数的积分公式。
解析函数的积分只与积分路径有关,与路径的起点和终点无关。
这个性质称为路径独立性。
我们可以利用路径独立性,通过积分公式计算一些复变函数的实际积分。
积分公式包括柯西定理和柯西积分公式等。
柯西定理表示为∮ f(z)dz = 0,其中沿着封闭路径的积分等于0。
复变函数积分复变函数是数学分析中一个重要的概念,它是指从复数域到复数域的映射。
复变函数可以用于描述电磁场、流体力学等现象,也是解析几何、函数论等数学领域的基础。
在复变函数中,积分是一个重要的概念。
复变函数的积分包括曲线积分、路径无关积分、面积积分等,下面对这些内容进行详细介绍。
1. 曲线积分:曲线积分是复变函数论中的基础概念之一。
对于一个可微曲线C,我们可以定义复变函数f(z)在C上的积分。
曲线积分的计算可以使用参数方程,将积分转化为对参数的积分,并通过换元法或者分部积分等方法进行计算。
2. 路径无关积分:路径无关积分是复变函数最重要的性质之一。
当复变函数f(z)在开集D上解析时,f(z)在D上的曲线积分与路径无关,即积分结果与路径选择无关。
这个性质保证了复变函数的积分是唯一的,不受路径的影响。
3. 格林公式:格林公式是复变函数论中的基本公式之一,它与曲线积分和面积积分有密切的关系。
格林公式可以用于计算曲线积分和面积积分,并给出了二者之间的关系。
格林公式是复变函数的积分理论的重要基础。
4. 应用举例:复变函数的积分在物理学和工程学中有广泛的应用。
比如,电磁场的描述中经常使用电磁场复变函数,通过对复变函数进行积分可以得到电场、磁场等物理量。
在流体力学中,也可以使用复变函数进行描述,并通过积分得到流体速度、流量等参数。
综上所述,复变函数的积分是复变函数论中的重要内容之一,它包括曲线积分、路径无关积分、格林公式等内容。
复变函数的积分在物理学和工程学中有广泛的应用,并为这些领域提供了一种描述和计算复杂问题的方法。
复变函数的积分是复变函数论基础知识,对于进一步研究复变函数的性质和应用具有重要意义。
复变函数与积分变换总结_1复变函数与积分变换总结_11.复变函数复变函数是定义在复数域上的函数。
和实变函数类似,复变函数也具有实部和虚部。
复变函数有很多重要的性质和定理,以下是其中的一些重要内容:(1)柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),其中u和v为实变函数,它们分别表示f的实部和虚部。
如果f在局部有定义且可导,则f满足柯西-黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x。
这个方程是复变函数可导的充分必要条件。
(2)柯西积分定理:柯西积分定理是复变函数理论中的重要定理,它表示若f是一个在区域D上解析的函数,则对于D内任意闭合曲线C,有∮Cf(z)dz=0。
这个定理说明,对于解析函数来说,沿着闭合曲线的积分值为0。
(3)柯西积分公式:柯西积分公式是复变函数理论中的另一个重要定理,它给出了在解析函数上对闭合曲线上的导数的表达式。
设f是D内的解析函数,z0是D内任意一点,且C是以z0为中心的一条简单闭曲线,且完全在D内,则有f(n)(z0)=n!/2πi∮C(f(z)/(z-z0)^(n+1))dz,其中n为正整数,f(n)(z0)表示f的n次导数在z0处的值。
2.积分变换积分变换是将一个函数通过其中一种数学变换转换为另一个函数的过程,常用的积分变换有傅里叶变换、拉普拉斯变换和z变换。
(1)傅里叶变换:傅里叶变换是将一个时间域上的函数转换为频域上的函数。
对于一个函数f(t),它的傅里叶变换表示为F(ω),其中ω是频域上的变量。
傅里叶变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
傅里叶变换广泛应用于信号处理、图像处理等领域。
(2)拉普拉斯变换:拉普拉斯变换是将一个时间域上的函数转换为复平面上的函数。
对于一个函数f(t),它的拉普拉斯变换表示为F(s),其中s是复平面上的变量。
拉普拉斯变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
拉普拉斯变换在控制系统、信号处理等领域具有重要应用。
复变函数与积分变换知识点总结本文主要介绍复变函数与积分变换的相关知识点,包括基本概念、公式、定理及其应用。
复变函数是数学中重要的一门学科,它涉及到多种数学领域,如数学分析、微积分、拓扑学、数论等,具有广泛的应用价值和重要性。
一、复变函数和复数复变函数是指将复数作为自变量和函数值的函数,也就是输出值为复数的函数。
在复平面上,复数可以表示为 x+yi 的形式,其中 x 和 y 分别表示实部和虚部,i 是虚数单位。
从图形上看,复数可以看成是在平面坐标系上的点,其中实部 x 对应水平方向,虚部 y 对应垂直方向。
二、重要公式和定理1. 欧拉公式:e^(iθ)=cosθ+isinθ欧拉公式是复数理论中非常重要的公式,它表明了复数极坐标形式和直角坐标形式之间的关系。
欧拉公式常常被用来化简复数幂、求解复数方程等等。
2. 柯西-黎曼条件柯西-黎曼条件是指函数 f(z)=u(x,y)+iv(x,y) 在某一点处可导的充分必要条件。
它包括两个部分:一是实部和虚部的偏导数存在且相等;二是实部和虚部的偏导数在该点处连续。
3. 洛朗级数洛朗级数是指将复变函数在一个环域上展开成为一定形式的级数,它可以看成是泰勒级数的一种推广形式。
洛朗级数可以用来处理复变函数的奇点、留数及边界值等问题。
4. 度量定理度量定理是指一个可积函数的形式化定义,它对于研究函数的特殊性质和进行积分变换有很重要的作用。
度量定理是复变函数理论中的一个基本定理,它可用来刻画单复变函数的局部和全局性质。
三、应用及例子复变函数和积分变换广泛应用于数学、物理、工程、计算机科学等领域。
其中,最为著名的应用包括热传导方程、电动力学、量子力学等等。
下面列举一些具体的例子:1. 应用于调制技术调制技术是指将信息信号通过某种方式转换成为载波信号,以达到传输信号的目的。
而在调制过程中,使用的正交变换中的基函数,就是一种特殊的复变函数。
2. 应用于信号处理信号处理是指对信号进行数字化、滤波、噪声抑制等一系列工作,以提高信号的质量和准确度。
第三章 复变函数的积分复变函数的积分(简称复积分)是研究解析函数的有力工具,解析函数许多重要的性质都需要利用复积分来证明.本章主要介绍复变函数积分的定义、性质与基本计算方法,解析函数积分的基本定理——柯西-古萨定理及其推广,柯西积分公式及其推论以及解析函数与调和函数的关系.柯西-古萨定理和柯西积分公式是复变函数的理论基础,以后各章都直接地或间接地用到它们.§3.1 复变函数积分的概念1.复变函数积分的定义在介绍复变函数积分的定义之前,首先介绍有向曲线的概念.设平面上光滑或分段光滑曲线C 的两个端点为A 和B .对曲线C 而言,有两个可能方向:从点A 到点B 和从点B 到点A .若规定其中一个方向(例如从点A 到点B 的方向)为正方向,则称C 为 有向曲线.此时称点A 为曲线C 的起点,点B 为曲线C 的终点.若正方向指从起点到终点的方向,那么从终点B 到起点A 的方向则称为曲线C 的负方向,记作C -.定义3.1 设C 为一条光滑或分段光滑的有向曲线,其中A 为起点,B 为终点.函数f (z )在曲线C 上有定义.现沿着C 按从点A 到点B 的方向在C 上依次任取分点:A =z 0,z 1,…,z n -1,z n =B ,图3.1将曲线C 划分成 n 个小弧段.在每个小弧段1k k z z -(k =1,2,…,n )上任取一点,k ξ,并作和式1().nn k k k S f z ξ==∆∑其中1k k k z z z -∆=-.记λ为n 个小弧段长度中的最大值.当λ趋向于零时,若不论对曲线C 的分法及点k ξ的取法如何,n S 极限存在,则称函数f (z )沿曲线C 可积,并称这个极限值为函数f (z )沿曲线C 的积分.记作1()d lim (),nkkk Cf z z f z λξ→==∆∑⎰f (z )称为被积函数,f (z )d z 称为被积表达式.若C 为闭曲线,则函数f (z )沿曲线C 的积分记作()d Cf z z ⎰.2.复变函数积分的性质性质3.1(方向性)若函数f (z )沿曲线C 可积,则()d ()d .CC f z z f z z -=-⎰⎰ (3.1)性质3.2(线性性)若函数f (z )和g (z )沿曲线C 可积,则(()())d ()d ()d ,CCCf zg z z f z z g z z αβαβ+=+⎰⎰⎰ (3.2)其中αβ,为任意常数.性质3.3(对积分路径的可加性)若函数f (z )沿曲线C 可积,曲线C 由曲线段12,,,n C C C ,依次首尾相接而成,则12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰(3.3)性质3.4(积分不等式)若函数f (z )沿曲线C 可积,且对z C ∀∈,满足()f z M ≤, 曲线C 的长度为L ,则()d ()d ,CCf z z f z s ML ≤≤⎰⎰(3.4)其中d d s z ==, 为曲线C 的弧微分.事实上,记k s ∆为z k -1与z k 之间的弧长,有111()()().nn nkkk k k k k k k f zf z f s ξξξ===∆≤∆≤∆∑∑∑令0λ→,两端取极限,得到()d ()d .CCf z z f z s ≤⎰⎰又由于11(),nnk k k k k f s M s ML ξ==∆≤∆=∑∑所以有()d ()d .CCf z z f z s ML ≤≤⎰⎰3.复变函数积分的基本计算方法定理3.1 若函数f (z )=u (x,y )+iv (x,y )沿曲线C 连续,则f (z )沿C 可积,且()d d d d d .CCCf z z u x v y i v x v y =-++⎰⎰⎰ (3.5)证明:设11,,,,k k k k k k k k k k k k z x iy i x x x y y y ξζη--=+=+∆=-∆=-则11111()()()().k k k k k k k k k k k k k z z z x iy x iy x x i y y x i y -----∆=-=+-+=-+-=∆∆从而1111()((,)(,))()((,)(,))((,)(,)).nnkk k k k k k k k k nk k k k k k k nk k k k k k k f z u iv x i y u x v y i v x u y ξζηζηζηζηζηζη====∆=+∆+∆=∆-∆+∆+∆∑∑∑∑上式右端的两个和数是两个实函数的第二类曲线积分的积分和.已知f (z ) 沿C 连续,所以必有u 、v 都沿C 连续,于是这两个第二类曲线积分都存在.因此积分存在()d Cf z z ⎰,且()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰注(3.5)式可以看作是f (z )=u +iv 与d z =d x +i d y 相乘后得到:()d ()(d d )d d d d d d d d d .CCCCCf z z u iv x i y u x iv x iu y v yu x v y i v x u x u y =++=++-=-+++⎰⎰⎰⎰⎰定理3.1给出的条件仅仅是积分()d Cf z z ⎰存在的充分条件.该定理告诉我们,复变函数积分的计算问题可以化为其实部和虚部两个二元实函数第二类曲线积分的计算问题.下面介绍另一种计算方法--- 参数方程法.设C 为一光滑或为分段光滑曲线,其参数方程为()()()(),z z t x t iy t a t b ==+≤≤参数t =a 时对应曲线C 的起点,t =b 时对应曲线C 的终点.设f (z )沿曲线C 连续,则(())((),())((),())()().f z t u x t y t iv x t y t u t iv t =+=+由定理3.1有()d d d d d (()()()())d (()()()())d ,CCCb baaf z z u x v y i v x u yu t x t v t y t t i u t y t v t x t t =-++''''=-++⎰⎰⎰⎰⎰容易验证Re((())())()()()(),Im((())())()()()().f z t z t u t x t v t y t f z t z t u t y t v t x t '''=-'''=+所以()d (())()d .baCf z z f z t z t t '=⎰⎰(3.6)例3.1 分别沿下列路径计算积分2d Cz z ⎰和Im()d Cz z ⎰.(1) C 为从原点(0,0)到(1,1)的直线段;(2) C 为从原点(0,0)到(1,0)再到(1,1)的直线段. 解: (1) C 的参数方程为:z =(1+i )t, t 从0到1 .11222033310d ((1))d((1))(1)((1))d (1)(1).33Cz z i t i t i i t t t i i =++=++⎛⎫+=+⋅= ⎪⎝⎭⎰⎰⎰(2) 这两直线段分别记为C 1和C 2,C 1的参数方程为:y =0, x 从0到1; C 2的参数方程为:x =1, y 从0到1.1122203312103d d (1)d(1)33122(1)1.3333Cz z x x iy iy x y i y iy i i i i =+++⎛⎫=+-+ ⎪⎝⎭-+=+--==⎰⎰⎰ ()111000Im()d 0d d 1i d .2Ciz z x y y i y y =++==⎰⎰⎰⎰ 例3.2 计算积分d Czz z⎰,其中C 为图3.2所示半圆环区域的正向边界.图3.2解:积分路径可分为四段,方程分别是:C 1:z =t (-2≤ t ≤ -1); C 2:z =,i e θθ从π到0; C 3:z =t (1≤ t ≤ 2);C 4:z =2,i e θθe 从0到π.于是有123412π2π10d d d d d e 2e d e d d 2d e 2e24411.333CC C C C i i i i i i z z z z z z z z z z z z z z zt t t i t ie t t θθθθθθθθ----=+++=+++=++-=⎰⎰⎰⎰⎰⎰⎰⎰⎰例3.3 计算积分101d ()n Cz z z +-⎰,其中C 为以z 0为中心,r 为半径的正向圆周,n 为整数.解:曲线C 的方程为:0(02π)i z z re θθ=+≤≤.从而有2π11(1)002π2πd e ()e d ed .e i n n i n Cin n in nzir I z z r i i r r θθθθθθ+++-==-==⎰⎰⎰⎰图3.3当n =0时,2πd 2πI i i θ==⎰当n ≠0时,2π(cos sin )d 0niI n i n rθθθ=-=⎰.所以有0102π,0;d 0,0.()n z z ri n zn z z +-==⎧=⎨≠-⎩⎰ (3.7) 由此可见,该积分与积分路线圆周的中心和半径无关,在后面还要多次用到这个结果,需记住.§3.2 柯西-古萨定理(C auchy-Gour s at)及其推广1.柯西-古萨定理首先我们来看看上一节所举的例题,例3.1中被积函数f (z )=z 2在z 平面上处处解析,它沿连接起点与终点的任何路径的积分值相同,也就是说,该积分与路径无关.即沿z 平面上任何闭曲线的积分为零.而例3.1中另一被积函数()Im()f z z =在z 平面上处处不解析,其积分值依赖于连接起点与终点的路径.由例3.3得积分1d 2π0Cz i z z =≠-⎰,曲线C 表示圆周:|z -z 0|=r >0.其中被积函数01()f z z z =-在z 平面上除去点z 0外处处解析,但这个区域是复连通区域.由此可见,积分值与路径是否无关,可能与被积函数的解析性及区域的单连通性有关.其实,在实函数的第二类曲线积分中就有积分值与路径无关的问题.由于复变函数的积分可以用相应的两个实函数的第二类曲线积分表示,因此对于复积分与路径无关的问题,我们很自然地会想到将其转化为实函数积分与路径无关的问题来讨论.假设函数f (z )=u +iv 在单连通域D 内处处解析,f '(z )在D 内连续,由第二章2.3节中的(2.9)式知u,v 对x,y 的偏导数在D 内连续.设z =x +iy ,C 为D 内任一条简单闭曲线.则由(3.5)式,有()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰记G 为C 所围区域,由格林(Green)公式有d d d d ,G Cv u u x v y x y x y ⎛⎫∂∂-=-- ⎪∂∂⎝⎭⎰⎰⎰ 由于f (z )=u +iv 在D 内解析,所以u 、v 在D 内处处都满足柯西-黎曼方程,即,.u v v ux y x y∂∂∂∂==-∂∂∂∂ 因此d d d d 0.CCu x v y v x u y -=-=⎰⎰从而()d 0.Cf z z =⎰下面的定理告诉我们去掉条件“f '(z )在D 内连续”条件,这个结论也成立.这是复变函数中最基本的定理之一.定理3.2(柯西-古萨定理) 若函数f (z )是单连通域D 内的解析函数,则f (z )沿D 内任一条闭曲线C 的积分为零,即()d 0.Cf z z =⎰注:其中曲线C 不一定要求是简单曲线.事实上,对于任意一条闭曲线,它都可以看成是由有限多条简单闭曲线衔接而成的,如图3.4.图3.4这个定理是由柯西提出来的,后来由古萨给出证明.由于证明过程较复杂,我们略去其证明.由柯西-古萨定理可以得到如下两个推论:推论3.1 设C 为z 平面上的一条闭曲线,它围成单连通域D ,若函数f (z )在D D C=上解析,则()d 0.Cf z z =⎰推论3.2 设函数f (z )在单连通域D 解析,则f (z )在D 内积分与路径无关.即积分()d Cf z z⎰不依赖于连接起点z 0与终点z 1的曲线C ,而只与z 0、z 1的位置有关.证明:图3.5设C 1和C 2为D 内连接z 0 与z 1的任意两条曲线.显然C 1和2C -连接成D 内一条闭曲线C .于是由柯西-古萨定理,有12()d ()d ()d 0.CC C f z z f z z f z z -=+=⎰⎰⎰即12()d ()d .C C f z z f z z =⎰⎰2.原函数由推论\re f {cor2可知,解析函数在单连通域D 内的积分只与起点z 0 和终点z 1有关,而与积分路径无关.因此,函数f (z )沿曲线C 1和C 2的积分又可以表示为1212()d ()d ()d .z z C C f z z f z z f z z ==⎰⎰⎰固定下限z 0,让上限z 1在区域D 内变动,并令z 1=z ,则确定了一个关于上限z 的单值函数()()d .zz F z f ξξ=⎰ (3.8)并称F (z )为定义在区域D 内的积分上限函数或变上限函数.定理3.3 若函数f (z )在单连通域D 内解析,则函数F (z )必在D 内解析,且有F '(z )=f (z ). 证明:若D 内任取一点z ,以z 为中心作一个含于D 内的小圆B ,在B 内取点(0)z z z +∆∆≠,则由(3.8)式有()()()d ()d .z zzz z F z z F z f f ξξξξ+∆+∆-=-⎰⎰因为积分与路径无关,所以()d z zz f ξξ+∆⎰的积分路径可取从z 0到z 再从z 到z z +∆,其中从z 0到z 取与()d zz f ξξ⎰的积分路径相同.于是有()()()d .z zzF z z F z f ξξ+∆+∆-=⎰由于f (z )是与积分变量ξ无关的值,故()d ()d ().z zz zzzf z f z f z z ξξ+∆+∆==∆⎰⎰从而()()1()()d()1(()())d .z zz z zzF z z F z f z f f z z zf f z zξξξξ+∆+∆+∆--=-∆∆=-∆⎰⎰又f (z )在D 内解析,显然f (z )在D 内连续.所以对于任给的0ε>,必存在0δ>,使得当z ξδ-<(且ξ落在圆B 内),即当z δ∆<时,总有()()<f f z ξε-.图3.6由复积分的性质\re f {ji f e n xi n g z hi4,有()()1()(()())d 1()()d 1.z zzz zzF z z F z f z f f z z zf f z z z zξξξξεε+∆+∆+∆--=-∆∆≤-∆≤∆=∆⎰⎰即0()()lim()z F z z F z f z z ∆→+∆-=∆,也就是()()F z f z '=.与实函数相似,复变函数也有原函数的概念及类似于牛顿-莱布尼兹(Newton-Leibniz)公式的积分计算公式.定义3.2 若在区域D 内,()z ϕ的导数等于f (z ),则称()z ϕ为f (z )在D 内的原函数. 由定理定理3.3可知,变上限函数0()()d zz F z f ξξ=⎰为f (z )的一个原函数.那么函数f (z )的全体原函数可以表示为()()z F z C ϕ=+,其中C 为任意常数.事实上,因为(()())()()()()0z F z z F z f z f z ϕϕ'''-=-=-=,所以()()z F z C ϕ-=,即()()z F z C ϕ=+.这说明了f (z )的任何两个原函数仅相差一个常数.利用这一性质我们可以得到解析函数的积分计算公式.定理3.4 若函数f (z )在单连通域D 内处处解析,()z ϕ为f (z )的一个原函数, 则11010()d ()()()z zz z f z z z z z ϕϕϕ=-=⎰, (3.9)其中z 0、z 1为D 内的点.证明:由于0()()d zz F z f ξξ=⎰为f (z )的一个原函数.所以()()d ().zz F z f z C ξξϕ==+⎰当z =z 0时,根据柯西-古萨定理可知0()C z ϕ=-,于是()d ()()zz f z z ξξϕϕ=-⎰.需要特别注意的是这个公式仅适用于定义在单连通域内的解析函数.例3.4 求积分π2sin 2d i z z ⎰的值.解:因为sin2z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.容易验证1cos 22z -是sin2z 的一个原函数, ππ2200ππππ11sin 2d (cos πcos 0)cos 22211e e .12242i iz z i z e e --=-=--+⎛⎫+=-=-- ⎪⎝⎭⎰例3.5 求积分0(1)e d iz z z --⎰的值.解:因为(z -1)e -z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.(1)e d e d e d iiizzzz z z z z ----=-⎰⎰⎰, 上式右边第一个积分的计算可采用分部积分法,第二个积分可用凑微分法,得(1)e d e d e d esin1cos1.iiiizzz z i z z z zz ie i ------=+--=-=--⎰⎰⎰例3.6 设D 为直线3,2z t t ⎛=+-∞<<∞+ ⎝ 和直线4,55z t t i ⎛=+-∞<<∞-+ ⎝⎭所围成的区域. 求积分23d 2izz z +-⎰的值. 解: 尽管212z z +-在复平面上存在两个奇点1和-2,但是单连通域D 包含点3和i ,又不含奇点1和-2,因此212z z+-在区域D内解析,这样就可以用(3.9)式来计算.233311d dd2312i i iz zzz z z z⎛⎫=-⎪+--+⎝⎭⎰⎰⎰函数ln(z-1)和ln(z+2)在单连通域D内可以分解为单值的解析分支,ln(z-1)的各分支导数都为11z-,ln(z+2)的各个分支的导数都为12z+.我们可以应用任何一个分支来计算积分值,在这里我们都取主支. 所以()23311d ln(1)ln(2)231153π1ln arctan3224215π1ln arctan.62432iiz z zz zii i=--++-⎛⎫⎛⎫=++⎪⎪⎝⎭⎝⎭=++⎰3.复合闭路定理柯西-古萨定理定理可推广到多连通域.设有n+1条简单闭曲线C0、C1、C2、…、C n,其中C1、C2、…、C n互不相交也互不包含,并且都含于C0的内部.这n+1条曲线围成了一个多连通区域D, D的边界C称作复闭路,它的正向为C0取逆时针方向,其它曲线都取顺时针方向.因此复闭路记作012nC C C C C---=++++.沿复闭路的积分通常取的是沿它的正向.定理 3.5若f(z)在复闭路012nC C C C C---=++++及其所围成的多连通区域内解析,则012()d()d()d()dnC C C Cf z z f z z f z z f z z=+++⎰⎰⎰⎰, (3.10) 也就是()d0Cf z z=⎰.为了叙述的简便,我们仅对n=2的情形进行说明.图3.7在图3.7中,做辅助线l1、l2和l3将C0、C1及C2连接起来,从而把多连通区域D划分为两个单连通区域D1及D2,并分别用1Γ及2Γ表示这两个区域的边界,由柯西-古萨定理有12()d 0, ()d 0.f z z f z z ΓΓ==⎰⎰于是12()d ()d 0.f z z f z z ΓΓ+=⎰⎰上式左端,沿辅助线l 1、l 2和l 3的积分,恰好沿相反方向各取了一次,从而相互抵消.因此上式左端为沿曲线C 0、1C -及2C -上的积分,即有:12()d ()d ()d 0.C C C f z z f z z f z z --=⎰⎰⎰也就是12()d ()d ()d .C C C f z z f z z f z z =+⎰⎰⎰例3.7 计算2d2Czz +⎰的值,C 为包含圆周|z |=1在内的 任何正向简单闭曲线. 解:显然z =0和z =-1是函数21z z+的两个奇点,由于C 为包含圆周|z |=1在内的任何正向简单闭曲线,因此也包含了这两个奇点.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =-1,C 2的内部只包含奇点z =0.图3.8因为21z z+在由C 、C 2、C 2所围成的复连通域内解析,所以由定理3.5、定理3.2及(3.7)式,得1211222222d d d d d d d 1102π2π00.CCC C C C C z z zz z z z z z z z z zz z z z i i =++++=-+-++=-+-=⎰⎰⎰⎰⎰⎰⎰ §3.3 柯西(C auchy)积分公式及其推论1.柯西积分公式利用复合闭路定理我们可以导出解析函数的积分表达式,即柯西积分公式.定理3.6 若f (z )是区域D 内的解析函数,C 为D 内的简单闭曲线,C 所围内部全含于D 内,z 为C 内部任一点,则1()()d 2πCf f z iz ξξξ=-⎰, (3.11) 其中积分沿曲线C 的正向.证明:取定C 内部一点z .因为f (z )在D 内解析,所以f (z )在点z 连续.即对任给的0ε∀>,必存在0δ>,当|z δξ<-时,有()()f f z εξ<-.令()()f F zξξξ=-,则()F ξ在D 内除去点z 外处处解析.现以z 为中心,r 为半径作圆周:B r z ξ=-(见图3.9),使圆B 的内部及边界全含于C 的内部.图3.9根据复合闭路定理有()()d d .C Bf f z z ξξξξξξ=--⎰⎰ 上式右端积分与圆B 的半径r 无关.令0r →,只需证明()d 2π()Bf if z z ξξξ→-⎰ 即可.由例3.3可知,1d 2πBi z ξξ=-⎰,而f (z )与ξ无关.于是 ()()()()()d 2π()d d d ()()d 2πd BB BBBBf f f z f f z if z z z z zf f z si rzξξξξξξξξξξξξξξ---==-----≤≤=-⎰⎰⎰⎰⎰⎰从而定理得证.公式(3.11)称为 柯西积分公式.在柯西积分公式中,等式左端表示函数f (z )在C 内部任一点处的函数值,而等式右端积分号内的()f ξ表示f (z )在C 上的函数值.所以,柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处值之间的关系:函数f (z )在曲线C 内部任一点的值可用它在边界上的值来表示,或者说f (z )在边界曲线C 上的值一旦确定,则它在C 内部任一点处的值也随之确定.这是解析函数的重要特征.例如,若函数f (z )在曲线C 上恒为常数K ,z 0为C 内部任一点,则根据柯西积分公式有0001()1()d d 2π.2π2π2πC Cf KKf z i K iz i z i ξξξξξ===⋅=--⎰⎰ 即f (z )在曲线C 的内部也恒为常数K .又如,若C 为圆周:0z R ξ-=,即0Re i z θξ=+(02π)θ≤≤,则d Re d i i θξθ=,从而2π00002π00(Re )Re 1()1()d d 2π2πRe 1(Re )d .2πi i i Ci f z i f f z iz i f z θθθθξξθξθ+⋅==-=+⎰⎰⎰即解析函数在圆心z 0处的值等于它在圆周上的平均值,这就是解析函数的平均值定理.若f (z )在简单闭曲线C 所围成的区域内解析,且在C 上连续,则柯西积分公式仍然成立. 柯西积分公式可以改写成()d 2π()Cf if z z ξξξ=-⎰. (3.12) 此公式可以用来计算某些复变函数沿闭路积分.例3.8 计算积分221d z z z z =+⎰的值. 解:因为{z ^2+1在|z |=2内解析,由柯西积分公式(3.12)有22021d 2π2π.(1)z zz z i i z z ==+=⋅=+⎰ 例3.9 计算积分2πsin6d 1Czz z -⎰的值,其中C 为: 33(1)1;(2)1;(3) 3.22z z z ===-+ 解: (1) 被积函数πsin61zz +在312z =-的内部解析,由(3.12)式有, 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =⎛⎫ ⎪=⋅==⋅=-+- ⎪⎝+⎭⎰⎰(2) 被积函数πsin61zz -在312z =+的内部解析,由(3.12)式有 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =-⎛⎫ ⎪=⋅==⋅=--+ ⎪⎝-⎭⎰⎰(3) 被积函数2πsin61zz -在|z |=3的内部有两个奇点1z =±.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =1,C 2的内部只包含奇点z =-1.由定理3.5的(3.10)式及(3.12)式,有12222πππsinsin sinππ666d d d π.11122CC C z z zi i z z z i z z z =+=+=---⎰⎰⎰例3.10 求积分42d 1z zz =-⎰的值, 其中C 为:|z |=2为正向. 解:因为z 4-1=0之解为z 1=1, z 2=i, z 3=-1, z 4=-i,分别作简单正向闭路C j 包围z j ,使C j (j =1, 2, 3, 4)互不包含,互不相交,均位于|z |=2内,则由复合闭路定理有4441d d 11jj CCz zz z ==--∑⎰⎰ 又由Cauchy 积分公式得()()()()()()()()()1141213121121312d 1d 112121i 111i πi πiπi2C Cz zz z z z z z z z z z z z z z z =⋅-----=---==-++⎰⎰同理可得234444d d d ,,1212π2π1πi C CC z z z z z z =-=-=---⎰⎰⎰. 所以 44412d d 011j j z C z zz z ====--∑⎰⎰.2.高阶导数公式 我们知道,一个实函数在某一区间上可导,并不能保证该函数在这个区间上二阶导数存在.但在复变函数中,如果一个函数在某一区域内解析,那么根据3.3节中的柯西积分公式推知,该解析函数是无穷次可微的.定理3.7 定义在区域D 的解析函数f (z )有各阶导数,且有()1!()()d (1,2,),2π()n n Cn f f z n iz ξξξ+==-⎰(3.13)其中C 为区域D 内围绕z 的任何一条简单闭曲线,积分沿曲线C 的正向.证明:用数学归纳法证明. 当n =1时,即证明21()()d .2π()Cf f z iz ξξξ'=-⎰也就是要证明2()1()limd .2π()z Cf z z f z iz ξξξ∆→+∆=∆-⎰由柯西积分公式(3.11)有1()()d ,2π1()()d .2πCCf f z i z f f z z iz z ξξξξξξ=-+∆=--∆⎰⎰于是22222()()1()d 2π()()()11()d d d 2π2π()1()1()d d 2π()()2π()()()()1d d ()()()()2πCC C CCCCC f z z f z f z iz f f f z z z i z i z f f i z z z z iz zf f f z z z z z ξξξξξξξξξξξξξξξξξξξξξξξξξξξξ+∆--∆-⎛⎫--= ⎪--∆-∆-⎝⎭-=∆--∆--∆+-=--∆---⎰⎰⎰⎰⎰⎰⎰⎰2d .Cξ⎰令上式为Q,显然2()1d .()()2πCzf Q z z z ξξξξ∆=--∆-⎰根据积分不等式(3. 4)有2()1d .2πCf z Q z z zξξξξ∆≤--∆-⎰因为f (z )在区域D 内解析,所以在闭曲线C 上解析并连续,从而在C 上是有界的. 即对于z C ∀∈,一定存在一个正数M ,使得|f (z )|≤M .设d 为从z 到C 上各点的最短距离,取z ∆充分小,满足2dz <∆.那么 ,.2d d z z z z z ξξξ≥≥->---∆-∆因此33212d ,d 2π2πd πd d 2CM M ML z z Q s L z ∆∆<=⋅=∆⋅⎰这里L 为C 的长度. 令0z ∆→,则0Q →,于是有()()1()()lim.2π()z Cf z z f z f f z d z iz ξξξ∆→+∆-'==∆-⎰假设n =k 时的情形成立,证明n =k +1时的情形成立.证明方法与n =1时的情形相似,但证明过程稍微复杂,这里就不证明了.这个定理实际上说明了解析函数具有无穷可微性.即 定理3.8 若f (z )为定义在区域D 内的解析函数,则在D 内其各阶导数都存在并且解析.换句话说,解析函数的导数也是解析函数.由解析函数的无穷可微性,我们可以得到判断函数在区域内解析的又一个充要条件.定理3.9 函数f (z )=u (x ,y )+iv (x ,y )在区域D 内解析的充要条件是(1),,,x y x y u u v v 在D 内连续;(2)(,),(,)u x y v x y 在D 内满足柯西-黎曼方程.证明:充分性即是定理2.8.下面证明必要性. 条件(2)的必要性由定理2.7给出.再来看条件(1),由于解析函数的导数仍然是解析函数,所以f '(z )在D 内解析,从而在D 内连续.而()x x y y f z u iv v iu '=+=-,所以,,,x y x y u u v v 在D 内连续.下面我们来看高阶导数公式的应用.高阶导数公式(3.13)可改写为()1()2πd ().()!n n Cf i f z z n ξξξ+=-⎰(3.14)可通过此式计算某些复变函数的积分.例3.11 求积分的1e d ()zn Cz ξξ+-⎰值, 其中C 为: 226x y y +=. 解:226x y y +=可化为22(3)9x y +-=,即|z -3i|=3. 被积函数2e π2z i z ⎛⎫- ⎪⎝⎭在C 的内部有一个奇点π2iz =,由(3.14)式有 π/22π/2e 2πe 2π2π.2π(e )π2zi z z i Ci i i i i z ====⋅=-'⎛⎫- ⎪⎝⎭⎰例3.12 求积分32cos πd (1)Czz z z -⎰的值,其中C 为: |z |=2.解 被积函数32cos π(1)zz z -在C 的内部有两个奇点z =0和z =1,作两条闭曲线C 1和C 2互不相交且互不包含,分别包围奇点z =0和z =1,且两曲线所围区域全含于C 的内部,则根据复合闭路定理3.5和高阶导数公式(3.14),有1212323232233223022cos πcos πcos πd d d (1)(1)(1)cos π1cos π1d d (1)(1)2πcos πcos π2π2π32!(1)(6π)π6π(12π)π.CC C C C z z z z zz z z z z z z z z z z z z z z z z i z z i i z z i i i ===+---=⋅+⋅--'''⎛⎫⎛⎫=++⋅ ⎪⎪-⎝⎭⎝⎭=-+=-⎰⎰⎰⎰⎰§3.4 解析函数与调和函数的关系根据解析函数的导数仍是解析函数这个结论,我们来讨论解析函数与调和函数的关系. 定义3.3 在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程22220x yϕϕ∂∂+=∂∂ 的二元实函数(,)x y ϕ称为在D 内的调和函数.调和函数是流体力学、电磁学和传热学中经常遇到的一类重要函数.定理3.10 任何在区域D 内解析的函数f (z )=u (x ,y )+iv (x ,y ),它的实部u (x ,y )和虚部v (x ,y )都是D 内的调和函数.证明 由柯西-黎曼方程有,.v u v x y y xϕ∂∂∂∂==-∂∂∂∂ 于是222222,.u v u v x y x y x y∂∂∂∂==-∂∂∂∂∂∂ 由定理3.8可知,u (x ,y )与v (x ,y )具有任意阶连续偏导,所以22.v vy x x y∂∂=∂∂∂∂ 从而22220.u vx y ∂∂+=∂∂ 同理可证22220.v vx y∂∂+=∂∂ 即u (x ,y )与v (x ,y )都是调和函数.使u (x ,y )+iv (x ,y )在区域D 内构成解析函数的调和函数v (x ,y )称为u (x ,y )的共轭调和函数.或者说,在区域D 内满足柯西-黎曼方程u x =v y ,v x =-u y 的两个调和函数u 和v 中,v 称为u 的共轭调和函数.注意:u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u +iv 不一定就是解析函数.例如,f (z )=z 2=x 2-y 2+2xyi ,其中实部u =x 2-y 2,虚部v =2xy .由于f (z )=z 2解析,显然v =2xy 是u =x 2-y 2的共轭调和函数.但是v x =2y ,u y =-2y .因此以v 作为实部、u 作为虚部的函数g (z )=v +iu 不解析.下面介绍已知单连通域D 内的解析函数f (z )=u +iv 的实部或虚部,求f (z )的方法. 这里仅对已知实部的情形进行说明,关于已知虚部求f (z )的方法可以类似得到. (1) 偏积分法利用柯西-黎曼方程(2.5)先求得v 对y 的偏导v y =u x ,此式关于y 积分得d ()uv y g x x ∂=+∂⎰,然后两边对x 求偏导,由v x =-u y ,于是有d ().y uu y g x x x∂∂'-=+∂∂⎰ 从而()d .-d u u g x x C y x x x ∂∂∂⎛⎫=+- ⎪∂∂∂⎝⎭⎰⎰故d d .-d u u u v y x C y x x x x ∂∂∂∂⎛⎫=++- ⎪∂∂∂∂⎝⎭⎰⎰⎰ 例3.13 已知u (x ,y )=2(x -1)y , f (2)=-i ,求其共轭调和函数,并写出f (z )的形式.解 由柯西-黎曼方程(2.5),有v y =u x =2y ,此式两边关于y 积分:2d ()().uv y g x y g x x∂=+=+∂⎰而(),x v g x '=又2(1),x y v u x =-=-所以2()2(1)d 2,g x x x x x C =-=-+⎰其中C 为实常数. 于是222.v y x x C =-++从而22()2(1)(2).f z x y i y x x C =-+-++由条件 f (2)=-i ,得C =-1,故22222()2(1)(21)(22()1)(1).f z x y i y x x i x y ixy x iy i z =-+-+-=--+-++=-- (2) 线积分法利用柯西-黎曼方程(2.5)有d d d d d x y y x v v x v y u x u y =+=-+,故00(,)(,)d d .x y y x x y v u x u y C =-++⎰由于该积分与积分路径无关,因此可选取简单路径(如折线)进行计算.其中(x 0,y 0)为区域D 中的点.以例3.13进行说明,u x =2y , u y =2x -2 .取(x 0,y 0)=(0,0),路径为从(0,0)到(x ,0)的直线段再从(x ,0)到(x ,y )的直线段.于是(,)(0,0)22(22)d 2d (22)d 2d 2.x y yxv x x y y Cx x y x C x x y C =-++=-++=-++⎰⎰⎰以下同前.(3) 不定积分法根据柯西-黎曼方程(2.5)及解析函数的导数公式(2.9)有().x x x y f z u iv u iu '=+=-.将x y u iu -表示成z 的函数h (z ),于是()()d .f z h z z C =+⎰还是以例3.13进行说明,2,2 2.x y u y u x ==-()2(22)2(1)2(1).f z y i x i x iy i z '=--=-+-=--从而2()2(1)d 2.f z i z z C iz iz C =--+=-++⎰由条件 f (2)=-i ,得C =-i ,故2()(1).f z i z =--小 结复变函数的积分定义与微积分中定积分的定义在形式上十分相似,只是被积函数由后者的一元实函数换成了前者的复变函数,积分区间[a ,b ]换成了平面区域内的一条光滑有向曲线.复变函数的积分值不仅与积分曲线的起点和终点有关,而且一般也与积分路径有关.这些特点与微积分中第二类曲线积分相似,因而具有与第二类曲线积分类似的性质.计算复变函数的积分有两个基本方法:(1) 若被积函数为f (z )=u (x ,y )+iv (x ,y ),积分曲线为C ,则()d d d d d .C C Cf z z u x v y i v x v y =-++⎰⎰⎰ (2) 参数方程法. 设积分曲线C 的参数方程为()()z z t a t b =≤≤,则()d (())()d .bC af z z f z t z t t '=⎰⎰ 解析函数积分的基本定理主要包括柯西-古萨定理、柯西积分公式、高阶导数公式及它们的一些推论.柯西-古萨定理指在单连通域D 内解析的函数f (z )沿该区域内任一条闭曲线C 的积分为零,即()d 0C f z z =⎰.由此定理可以得到一个重要推论:在单连通域D 内解析的函数f (z )沿该区域内任一条曲线积分与路径无关.复变函数与实函数一样也有原函数的概念,并且任何两个原函数之间仅相差一个常数.基于此,对于单连通域内的解析函数有类似于实函数的牛顿-莱布尼兹公式.即1010()d ()()z z f z z z z ϕϕ=-⎰,其中f (z )为单连通域D 内的解析函数,()z ϕ为f (z )的一个原函数,01,z z D ∈分别为积分曲线的起点和终点.复合闭路定理是柯西-古萨定理的推广,即若函数f (z )在复闭路C =C 0+C 1-+C 2-+…+C n-及其所围成的多连通区域内解析,则 01()d ()d ,k nk C C f z z f z z ==∑⎰⎰ 也就是0()d 0C f z z =⎰.柯西积分公式1()()d 2πf f z i z ξξξ=-⎰ 与高阶导数公式1!()()d , 1,2,2π()n n n f z f z n i z ξξ+==-⎰是复变函数两个十分重要的公式,它们都是计算积分的重要工具.柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处之间的密切关系,而高阶导数公式表明解析函数的导数仍是解析函数,即解析函数具有无穷可微性.这是解析函数与实函数的本质区别.下面归纳复变函数积分的计算方法.(1)如果被积函数不是解析函数,那么不论积分路径是否封闭,只能运用上面提到的两种基本计算方法,即化为二元实函数的线积分和参数方程法.(2)如果被积函数是解析函数(包括含有有限个奇点的情形),并且积分路径封闭,那么可以考虑柯西积分公式、高阶导数公式,并常常需要联合运用柯西-古萨定理、复合闭路定理,有时还需将被积函数作变形化为公式中的相应形式.若积分路径不封闭,那么只要被积函数在单连通域内解析,就可用定理3.4进行计算.(3)若被积函数是解析函数(含有有限个或无限个奇点),积分路径封闭,而被积函数不能表示为柯西积分公式和高阶导数公式中所要求的形式,那么就只能用到第五章中的留数方法.解析函数f (z )=u +iv 的虚部v 为实部u 的共轭调和函数,u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u+iv 不一定是解析函数.已知单连通域D 内的解析函数f (z )的实部或虚部求f (z )的方法要求掌握,前面已经详细介绍了三种方法,这里不再赘述.重要术语及主题复积分 柯西-古萨定理 复合闭路定理 原函数柯西积分公式 高阶导数公式 调和函数习题三1. 计算积分2()d C x y ix z -+⎰,其中C 为从原点到点1+i 的直线段.2. 计算积分(1)d C z z -⎰,其中积分路径C 为(1) 从点0到点1+i 的直线段;(2) 沿抛物线y =x 2,从点0到点1+i 的弧段.3. 计算积分d C z z ⎰,其中积分路径C 为(1) 从点-i 到点i 的直线段;(2) 沿单位圆周|z |=1的左半圆周,从点-i 到点i ;(3) 沿单位圆周|z |=1的右半圆周,从点-i 到点i .4. 计算积分23d Cz z z -⎰,其中积分路径C 为 (1) 从z =-2到z =2沿圆周|z |=2的上半圆周;(2) 从z =-2到z =2沿圆周|z |=2的下半圆周;(3) 沿圆周|z |=2的正向.5. 计算积分1d (31)C z z z +⎰,其中C 为16z =. 6. 计算积分(e sin )d z C z z z -⎰,其中C 为0a z =>. 7. 计算积分,其中积分路径C 为:12341(1):;23(2):;21(3):;23(4):.2C z C z C z i C z i ===+=-8.利用1d 0,:12C z C z z ==+⎰,证明: π12cos d 0.54cos θθθ+=+⎰ 9. 计算积分1d (1)2C z i z z ⎛⎫+- ⎪⎝⎭⎰,其中C 为|z |=2. 10. 利用牛顿-莱布尼兹公式计算下列积分. π200π211(1)cos d ;(2)e d ;2ln(1)(3)(2)d ;(4)d ;1iz i ii z z z z iz z z z +--+++⎰⎰⎰⎰ 12011tan (5)sin d ;(6)d cos i z z z z z z +⎰⎰ (沿1到i 的直线段) . 11. 求积分2e d 1z C z z +⎰,其中C 为: 12. 计算积分221d 1C z z z z -+-⎰,其中C 为|z |=2. 13. 计算积分41d 1Cz z +⎰,其中C 为222x y x +=.14. 求积分2sin d 9r zz z z =+⎰,其中C 为|z -2i |=2. 15. 求积分()33d d (1)1C z z z z +-⎰,其中r ≠1. 16. 求下列积分的值,其中积分路径C 均为|z |=1. 53020e cos (1)d ;(2)d ;tan /21(3)d ,.()2z C CC z z z z z z z z z z <-⎰⎰⎰17. 计算积分33d d (1)(1)C z z z z -+⎰,其中C 为: (1) 中心位于点z =1,半径为R <2的正向圆周;(2) 中心位于点z =-1,半径为R <2的正向圆周;(3) 中心位于点z =1,半径为R >2的正向圆周;(4) 中心位于点z =-1,半径为R >2的正向圆周.18. 设函数3223()d f z ax bx y cxy y =+++是调和函数,其中a,b,c 为常数.问a,b,c 之间应满足什么关系?19. 验证下列函数为调和函数.3223(1)632;(2)e cos 1(e sin 1).x x x x y xy y y i y ωω=--+=+++ 20. 证明:函数2222,x u x y v x y =-=+都是调和函数,但f (z )=u +iv 不是解析函数. 21. 设u 是调和函数,且不恒为常数,问:(1) u 2是否是调和函数?(2) 对怎样的f ,函数f (u )为调和函数?22. 由下列各已知调和函数,求解析函数f (z )=u +iv :2222(1);(2),(1)0;(3)e (cos sin ),(0)2;(4)arctan ,0.x u x y xy y u f x y v y y x y x y f y v x x=-+==+=+++==> 23.设12()()()()n p z z a z a z a =---,其中(1,2,,)i a i n =各不相同,闭路C 不通过12,,,n a a a ,证明积分1()d 2π()C p z z i p z '⎰ 等于位于C 内的p(z )的零点的个数.24.试证明下述定理(无界区域的柯西积分公式):设f (z )在闭路C 及其外部区域D 内解析,且lim ()z f z A →∞=≠∞,则 (),,1()d ,.2πC f z A z D f A z G i zξξξ-+∈⎧=⎨∈-⎩⎰ 其中G 为C 所围内部区域.。
复变函数与积分变换复习重点总结一、复变函数基本概念1.复数的定义与运算规则。
复数由实部和虚部构成,在复平面上表示为点,加减乘除等运算遵循分配律。
2.复平面及相关概念。
复平面是复数集合在直角坐标系上的表示,实部和虚部在坐标轴上的投影分别对应x轴和y轴,共轭复数、模、幅角等概念。
3.复变函数的定义与性质。
复变函数表示为z的其中一种函数,具有实变量函数的性质,例如连续性、可微性等。
二、整函数1.整函数的定义与性质。
整函数指复变函数在全复平面都解析,可以用无穷级数表示为幂级数形式。
2.全纯函数与调和函数。
全纯函数是整函数的一种特殊情况,对应于实变量函数的解析函数,调和函数满足拉普拉斯方程。
3.零点与奇点。
零点是整函数取值为0的点,奇点是整函数在一些点上无定义或有定义但不解析的点。
4.极限定理与唯一性定理。
解析函数具有一致性和唯一性,即零点有稠密性,且相同函数在相同域上必然一致。
三、留数定理1.留数的概念与计算方法。
留数是复变函数在奇点处的残余,可以通过留数公式计算得到,留数与曲线积分的关系。
2. 留数定理与积分公式。
留数定理为计算曲线闭合积分提供了便捷的方法,包括留数定理、Cauchy积分公式、Cauchy积分定理等。
3.洛朗展开与留数计算。
洛朗展开将复变函数表示为一部分主要项和无穷级数项的形式,通过计算主要项的留数可以快速得到积分结果。
四、解析函数与幂级数展开1.解析函数的定义与性质。
解析函数是在一些域上解析的复变函数,具有在其定义域上处处可微的特点,可以表示为幂级数形式。
2.幂级数展开与泰勒级数。
将解析函数表示为幂级数展开的形式,其中泰勒级数是幂级数的一种特殊情况,可以用于近似计算。
3.余项估计与收敛半径。
余项估计用于估计幂级数展开的误差范围,收敛半径表示幂级数展开的有效范围。
4.解析函数的四则运算与复合函数。
解析函数具有基本的四则运算和复合运算规则,可通过幂级数展开来计算。
五、积分变换1.积分变换的基本概念与性质。
复变积分知识点总结一、复变函数的积分1. 复变函数的积分复变函数的积分是指对复平面上的函数进行积分,其中积分路径可以是一条曲线或者一条闭合曲线。
复变函数的积分包括对于实部和虚部的积分两部分,也可以看作是对于复变函数的实部和虚部的积分的和。
复变函数的积分可以用复积分的方式来表示,即对于积分路径上的每一个点,都可以对应一个复数,这样对于整个路径上的所有点的积分就可以用复数来表示。
2. 复变函数的积分性质复变函数的积分具有一些独特的性质,比如线性性、可微性、路径无关性等。
其中线性性是指对于复变函数的积分满足线性组合的性质,即对于两个复变函数的积分和它们的线性组合的积分是相同的。
而可微性是指对于复变函数的积分可以通过对积分路径上的点进行微分来得到,这与实部和虚部的积分分别成立。
路径无关性是指对于一个复变函数在不同的积分路径上积分得到的结果是相同的。
3. 古代积分定理古代积分定理是复变积分的重要定理之一,它是复平面上函数积分的一个基本定理,也是复变函数在复平面上的积分与在实数轴上的积分之间的联系的一个重要桥梁。
古代积分定理表明,对于一个复变函数在一个简单闭合曲线内的积分等于该函数在这个闭合曲线上的积分。
古代积分定理同时也说明了对于一个复变函数在整个复平面上的积分等于该函数在所有简单闭合曲线上的积分之和。
4. 柯西-黎曼积分定理柯西-黎曼积分定理是复变积分的另一个重要定理,它是复变函数积分在实数轴上的积分的推广和深化,也是复变积分的一个基本定理。
柯西-黎曼积分定理表明了对于一个复变函数来说,如果它在一个闭合曲线内保持解析,那么对于这个曲线内的复变函数的积分一定等于零。
柯西-黎曼积分定理是复变积分中一个非常重要且基础的定理,它为复变函数积分的计算和应用提供了一个非常重要的方法和途径。
5. 积分的应用复变积分在工程、物理、数学等领域都有广泛的应用,比如它可以用来求解一些特殊的积分问题,解决一些特殊的微分方程问题,描述一些特殊的物理现象等。
复变函数与积分变换知识点总结复变函数与积分变换是数学中重要的概念和工具,广泛应用于物理、工程、经济等领域。
复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值,积分变换是指通过对函数进行积分操作来获得新的函数。
本文将对复变函数与积分变换的相关知识进行总结,包括复变函数的定义与性质、积分变换的定义与性质、常见的复变函数以及常见的积分变换。
一、复变函数的定义与性质1. 复变函数的定义:复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值。
一般来说,复变函数可以写成f(z)=u(x,y)+iv(x,y),其中z=x+iy表示复平面上的点,u(x,y)和v(x,y)分别是实部和虚部函数。
2.复变函数的性质:(1)连续性:复变函数在复平面上连续,当且仅当实部和虚部函数分别在该点连续。
(2)可微性:复变函数在复平面上可微,当且仅当实部和虚部函数具有一阶连续偏导数,并满足复合函数的求导法则。
(3)调和函数:实部和虚部函数都是二阶偏导数连续的函数,若满足拉普拉斯方程△u=0,则称u(x,y)为调和函数。
二、积分变换的定义与性质1. 积分变换的定义:积分变换是一种将函数通过积分操作转换为另一种函数的方法。
一般来说,积分变换可以写成F(s)=∫f(t)e^(-st)dt,其中s为复变量,f(t)为原函数。
2.积分变换的性质:(1)线性性:积分变换具有线性性质,即对于常数a和b,以及函数f(t)和g(t),有积分变换[a*f(t)+b*g(t)](s)=a*F(s)+b*G(s)。
(2)平移性:若对于函数f(t),其积分变换为F(s),则e^(at)*f(t)的积分变换为F(s-a)。
(3)卷积性:若函数f(t)和g(t)的积分变换分别为F(s)和G(s),则f(t)*g(t)的积分变换为F(s)*G(s)。
三、常见的复变函数1. 复指数函数:复指数函数的表达式为e^(z)=e^(x+iy)=e^x*cos(y)+ie^x*sin(y),其中x和y分别是实部和虚部。
复变函数积分计算公式柯西定理是复变函数的一个基本定理,它与实分析中的格林定理相对应。
它的表述如下:设f(z)是C上的连续函数,在C的内部点a处可导,则对于C上的任意闭合路径L,有积分公式:∮L f(z)dz = 0其中∮代表沿曲线的积分。
柯西定理揭示了一个重要性质,即在曲线内部的积分和沿曲线上的积分是等值的。
这个公式的实际应用是在计算闭合曲线围成的域内的积分时,可以通过计算沿曲线的积分来得到结果。
柯西-黎曼公式是复分析中的一个重要公式,它是柯西定理在复平面上的推广。
其表述如下:设f(z)=u(x,y)+iv(x,y)是定义在单连通域D上的全纯函数,则对于D上的任意简单闭合曲线L,有积分公式:∮L [u(x, y)dx - v(x, y)dy] + i∮L [v(x, y)dx + u(x, y)dy]=其中i是虚数单位。
柯西-黎曼公式是柯西定理在复平面上的推广,它关联了函数的实部和虚部,揭示了全纯函数在实轴和虚轴上的性质,是复变函数积分计算的基础。
在计算复变函数积分时,需要将积分路径表示为参数方程形式,并根据具体问题选择合适的计算方法。
常用的计算方法包括直接计算、换元法、分部积分法、留数法等。
直接计算方法是将积分路径表示为参数方程形式,然后将积分公式代入进行计算。
这种方法在积分路径较简单且函数形式简化时适用。
换元法是将积分路径用新的参数方程表示,通过变量替换将复变函数积分转化为实变函数积分。
这种方法主要用于积分路径的形式复杂且可以找到合适的变换。
分部积分法是将复变函数积分转化为求导和积分的组合运算,通过重复应用分部积分法,可以将复杂的函数逐步简化。
留数法是一种特殊的计算方法,适用于计算含有奇点的函数的积分。
留数法利用了复变函数在奇点处的局部性质,通过计算奇点处的留数来求解积分。
总之,复变函数积分的计算公式主要有柯西定理和柯西-黎曼公式,并且还需要根据具体问题选择合适的计算方法进行计算。
复变函数的柯西积分定理
柯西积分定理是复变函数理论中的重要定理之一,它表明一个函数在一条围线内的曲线积分等于围线内的区域上的函数值相关的积分。
具体而言,柯西积分定理可以表示为:
设函数f(z)在区域D上解析,围线C完全位于D内,如果z0是D内部的一个点,那么对于围线C上的点z,有以下等式成立:
∮C f(z)dz = 0
这意味着如果一个解析函数在区域D内除去有限个孤立奇点外是解析的,那么沿着围线C的曲线积分等于零。
柯西积分定理的一个重要的推论是柯西公式,它可以表示为:
设函数f(z)在区域D上解析,围线C完全位于D内,如果z0是D内部的一个点,那么对于围线C上的点z,有以下等式成立:
f(z0) = \frac{1}{2\pi i}\oint_C \frac{f(z)}{z-z0}dz
这个公式表明,解析函数在围线C上的积分值完全由函数在围线内部点z0附近的取值决定。
柯西积分定理和柯西公式在复变函数理论中具有重要的应用,可以用来计算复变函数的曲线积分、求解边值问题等。
复变函数积分的几种计算方法《复变函数积分的几种计算方法》一、概述求解复变函数积分是数学分析中一个重要问题,复变函数积分是指将某个复变函数沿定义域内任意等距离曲线积分计算。
复变函数积分拥有广泛的应用范围,可以应用在物理、化学等多种领域,它具有很高的实用性和重要的实现意义。
对于复变函数的积分可以采用传统的计算机算法,也可以采用其他算法,以求解复变函数积分的效率和精度。
二、求积法求积法是常用的复变函数积分的计算方法,它是通过求某个复变函数的定义域内等距离曲线上每个“小段”积分值来计算函数积分。
求积法对于多元复变函数积分计算效率较低,但是具有很高的通用性和稳定性,是初学者最容易掌握的求复变函数积分的算法。
三、数值积分法数值积分法是将复变函数的积分问题转化为求解多个方程组解的问题,采用数值方法求解复变函数积分一般包括前向梯形法、中间梯形法、各向同性梯形法和后向梯形法。
可以采用牛顿-拉夫逊数值积分法,以及几何素数、拉格朗日插值等数值计算方法,解决复变函数积分问题。
四、函数解析法函数解析法是指采用函数解析的方法,如积分变换、参数替换等,并结合某些函数的性质,求解复变函数的积分问题。
目前,微积分的教科书中有许多常见求积公式,这些常见求积公式可以帮助解决复变函数积分问题。
五、蒙特卡洛法蒙特卡洛法是指采用概率论中熵学原理,采用大数定律等方法,计算复变函数的积分。
蒙特卡洛法可以避免上述几种方法在求解某些复变函数积分问题时所出现的不精确的结果,可以改善复变函数积分计算的精度和效率。
除此之外,蒙特卡洛法还可用于计算多元复变函数的积分。
六、结论复变函数的积分法有很多,上述介绍了几种常用的求解复变函数积分的方法,并对其优缺点作了论述。
综上所述,计算复变函数积分一般应对函数特点、计算所采用的算法特点等方面进行选择,确定最合适的求解方法。
复变函数积分方法总结 [键入文档副标题] acer [选取日期] 2
复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i²=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2kπ 。利用直角坐标和极坐标的关系式x=rcosθ ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ
。
1.定义法求积分:
定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段zk-1 zk
(k=1,2…
n)上任取一点k并作和式Sn=∑f(𝑘)nk−1(zk-zk-1)= ∑f(𝑘)nk−1∆zk记
∆zk= zk- zk-1,弧段zk-1 zk的长度 δ=max1≤k≤n{∆Sk}(k=1,2…,n),当 δ→0时,不论对c的分发即k的取法如何,Sn有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: ∫f(z)dzc=limδ 0∑f(𝑘)nk−1∆zk
设C负方向(即B到A的积分记作) ∫f(z)dzc−
.当C为闭曲线时,f(z)
的积分记作∮f(z)dzc
(C圆周正方向为逆时针方向)
例题:计算积分1)∫dzc 2) ∫2zdzc
,其中C表示a到b的任一曲线。
(1) 解:当C为闭合曲线时,∫dzc
=0. 3
∵f(z)=1 Sn=∑f(𝑘)nk−1(zk-zk-1)=b-a ∴limn 0 Sn=b-a,即1)∫dzc=b-a. (2)当C为闭曲线时,∫dzc=0. f(z)=2z;沿C连续,则积分∫zdzc存
在,设k=z
k-1
,则
∑1= ∑Znk−1(k−1)(zk-zk-1) 有可设k=zk,则 ∑2= ∑Znk−1(k−1)(zk-zk-1)
因为Sn的极限存在,且应与∑1及∑2极限相等。所以 Sn= (∑1+∑2)= ∑k−1nzk(zk2−zk−12)=b2-a2
∴ ∫2zdzc
=b2-a2
1.2 定义衍生1:参数法:
f(z)=u(x,y)+iv(x,y), z=x+iy带入∫f(z)dzc得:
∫f(z)dzc= ∫udxc - vdy + i∫vdxc
+ udy
再设z(t)=x(t)+iy(t) (α≤t≤β) ∫f(z)dzc=∫f(z(t))z(t)́dtβα 参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0
+reiθ,(0≤θ≤2π)
例题1: ∫z2dz
3+i
0 积分路线是原点到3+i的直线段
解:参数方程 z=(3+i)t ∫z2dz3+i0=∫[(3+i)t]2[(3+i)t]′dt10 =(3+i)3∫t2dt10 =6+263i 例题2: 沿曲线y=x2计算∫(x2+iy)dz
1+i
0 4
解: 参数方程 {
x=t
y=t2 或z=t+it2 (0≤t≤1)
∫(x2+iy)dz1+i0=∫(t2+it2)(1+2it)dt10 =(1+i)[∫(t2dt)dt10 + 2i∫t3dt10] =-16+56i 1.3定义衍生2 重要积分结果: z=z0+ reiθ
,(0≤θ≤2π)
由参数法可得: ∮dz(z−z0)n+1c=∫ireiθei(n+1)θrn+12π0dθ=irn∫e
−inθ
1+i
0dθ
∮dz(z−z0)n+1c
={2πi n=00 n≠0
例题1:∮dzz−2|z|=1 例题2:∮dzz−12|z|=1
解: =0 解 =2πi 2.柯西积分定理法: 2.1 柯西-古萨特定理:若f(z)dz在单连通区域B内解析,则
对B内的任意一条封闭曲线有: ∮f(z)dzc=0
2.2定理2:当f为单连通B内的解析函数是积分与路线无关,仅
由积分路线的起点z0与终点z1来确定。 2.3闭路复合定理:设函数f(z)在单连通区域D内解析,C与
C1是D内两条正向简单闭曲线,C1在C的内部,且以复合闭路Γ=C+C1 5
所围成的多连通区域G全含于D则有: ∮f(z)dzΓ=∮f(z)dzc+∮f(z)dzc1=0
即∮f(z)dzc=∮f(z)dzc1
推论: ∮f(z)dzc=∑∮f(z)dzck
nk=1
例题:∮2z−1z2−zdz
c C为包含0和1的正向简单曲线。
解: 被积函数奇点z=0和z=1.在C内互不相交,互不包含的正向曲线c1和c2。 ∮2z−1z2−zdzc=∮2z−1z(1−z)dzc1+∮2z−1z(1−z)dz
c2
=∮1z−1+1zdzc1+∮1z−1+1zdzc2
=∮1z−1dzc1+∮1zdzc1+∮1z−1dzc2+∮1zdzc2 =0+2πi+2πi+0 =4πi 2.4原函数法(牛顿-莱布尼茨公式):
定理2.2可知,解析函数在单连通域B内沿简单曲线C的积分只与起点z0与终点z1有关,即 ∫f()cd = ∫f()z1z0
d 这里的z1和z0积分的上下限。当
下限z0固定,让上限z1在B内变动,则积分∫f()z1z0
d在B内确定 6
了一个单值函数F(z),即F(z)= ∫f()z1z0
d 所以有
若f(z)在单连通区域B内解析,则函数F(z)必为B内的解析函数,且F(z) ́=f(z).根据定理2.2和2.4可得∫f(𝑧)z1z0d𝑧= F(z1) - F(z0).
例题:求∫zcosz10d𝑧
解: 函数zcosz在全平面内解析 ∴∫zcosz10d𝑧=zsinz|0i-∫sinz10d𝑧
= isin i+cosz|0i=isin i+cos i-1 =ie−1−12i+e−1+12i-1=e-1-1 此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。 2.5柯西积分公式法: 设B为以单连通区域,z0位B中一点,如f(z)在B内解析,则函数f(z)z−z0
在z0不解析,所以在B内沿围绕z0的闭曲线C的积分∫f(z)z−z0dzc一般
不为零。 取z0位中心,以δ>0为半径的正向圆周|z−z0
|=δ位积分
曲线cδ,由于f(z)的连续性,所以 ∫f(z)z−z0dzc=∫f(z)z−z0
dzcδ
=2πif(z0)
2.5.1定理:若f(z)在区域D内解析,C为D内任何一条正向简单
闭曲线,它的内部完全含于D,z0为C内的任一点,有: f(z0)=12πi∮f(z)z−z0
dz
例题:1)∮
sin zzdz|z|=2 2)∮z
(9−z2)(z+i)dz
|z|=2
解:=2π isin z|z=0=0 解: =∮z9−z2z−(−i)dz|z|=2 7
=2πiz9−z2|z=-i=π5 2.6解析函数的高阶导数:
解析函数的导数仍是解析函数,它的n阶导数为 f(n)(z0)=n!2πi∮f(z)(z−z0)n+1dz(n=1,2…)
其中C为f(z)的解析区域D内围绕z0的任一条正向简单闭曲线,而它的内部全含于D. 例题:∮
ez
z5dz
c
C:|Z|=1
解:由高阶导数的柯西积分公式: 原式=2πi∙14!(ez)(4)|z=π2 =πi12 3.解析函数与调和函数:
定义:(1)调和函数:如果二元实函数φ(x,y)在区域D内具有二阶连续函数,且满足拉普拉斯方程: ∂2φ∂x2+∂2φ∂y2=0,则称φ(x,y)为区域D内的调和函数。若f(z)=u+iv为解析
函数,则u和v都是调和函数,反之不一定正确 (2)共轭调和函数:u(x,y)为区域内给定的调和函数,我们把是 u+iv在D内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函
数。若v是u的共轭调和函数,则-u是v的共轭调和函数 关系:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数;且虚部为实部的共轭调和函数。 3.1求解方法:
(1)偏积分法:若已知实部u=u(x,y),利用C-R方程先求得v的