电流滞环跟踪控制分析
- 格式:pdf
- 大小:2.50 MB
- 文档页数:5
电流滞环跟踪PWM(CHBPWM)控制技术的仿真桂寒 120100068摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink 工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率与控制精度之间的关系,给出了各波形。
关键词:电流滞环控制 脉宽控制 滞环宽度控制法 1. 前言 2.应用PWM 控制技术的变压变频器一般都就是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM 控制技术都就是以输出电压近似正弦波为目标的。
但就是,在电流电机中,实际需要保证的应该就是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。
因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。
2、 电流滞环跟踪控制原理2、1 单相电流滞环控制原理常用的一种电流闭环控制方法就是电流滞环跟踪 PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A 相控制原理如1图所示。
图1 电流滞环跟踪控制的A 相原理图图中,电流控制器就是带滞环的比较器,环宽为2h 。
将给定电流 *a i 与输出电流 a i 进行比较,电流偏差 ∆ a i 超过时 ±h ,经滞环控制器HBC 控制逆变器 A 相上(或下)桥臂的功率器件动作。
B 、C 二相的原理图均与此相同。
采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。
⏹ 如果, a i < *a i , 且*a i - a i ≥ h ,滞环控制器 HBC 输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使a i 增大。
当增长到与*a i 相等时,虽然滞环比较器的输入信号的符号发生了变化,但HBC 仍保持正电平输出,保持导通,使a i 继续增大 ⏹直到达到a i = *a i + h , a i = –h ,使滞环翻转,HBC 输出负电平,关断V1 ,并经过延时后驱动V4,直到电流的负半周V4才能导通。
电流滞环跟踪PWM(CHBPWM)控制技术的仿真桂寒 120100068摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。
关键词:电流滞环控制 脉宽控制 滞环宽度控制法 1. 前言 2.应用PWM 控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM 控制技术都是以输出电压近似正弦波为目标的。
但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。
因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。
2. 电流滞环跟踪控制原理2.1 单相电流滞环控制原理常用的一种电流闭环控制方法是电流滞环跟踪 PWM (Current Hysteresis Band PWM ——CHBPWM )控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A 相控制原理如1图所示。
图1 电流滞环跟踪控制的A 相原理图图中,电流控制器是带滞环的比较器,环宽为2h 。
将给定电流 *a i 与输出电流 a i 进行比较,电流偏差 ∆ a i 超过时 ±h ,经滞环控制器HBC 控制逆变器 A 相上(或下)桥臂的功率器件动作。
B 、C 二相的原理图均与此相同。
采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。
⏹ 如果, a i < *a i , 且*a i - a i ≥ h ,滞环控制器 HBC 输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使a i 增大。
当增长到与*a i 相等时,虽然滞环比较器的输入信号的符号发生了变化,但HBC 仍保持正电平输出,保持导通,使a i 继续增大 ⏹直到达到a i = *a i + h , a i = –h ,使滞环翻转,HBC 输出负电平,关断V1 ,并经过延时后驱动V4,直到电流的负半周V4才能导通。
课程设计(论文)任务书电气与电子工程学院电力牵引与传动专业班一、课程设计(论文)题目:电流滞环跟综PWM(CHBPWM)控制技术的仿真二、课程设计(论文)工作自 2013年6月16日起至2013年6月21日止。
三、课程设计(论文) 地点: 电气学院机房四、课程设计(论文)内容要求:1.本课程设计的目的(1)熟练掌握MATLAB语言的基本知识和技能;(2)熟悉matlab下的simulink和simpowersystems工具箱;(3)熟悉构建三相电流跟踪滞环控制系统的仿真模型;(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。
2.课程设计的任务及要求1)基本要求:(1)要求对主电路和脉冲电路进行封装;(2)仿真参数为:E=100-300V; f=50HZ; 带宽2h; 步长h=0.0001s,其他参数自定;(3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图;(4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。
2)创新要求:封装使仿真模型更加美观、合理3)课程设计论文编写要求(1)要按照课程设计模板的规格书写课程设计论文(2)论文包括目录、正文、心得体会、参考文献等(3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成4)答辩与评分标准:(1)完成原理分析:20分;(2)完成设计过程:40分;(3)完成调试:20分;(4)回答问题:20分;5)参考文献:(1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008.(2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.(3)李传琦. 电力电子技术计算机仿真实验.电子工业出版社,2006.6)课程设计进度安排内容天数地点构思及收集资料2图书馆编程设计与调试1实验室撰写论文2图书馆、实验室学生签名:年月日课程设计(论文)评审意见(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)设计分析(20分):优()、良()、中()、一般()、差();(3)完成调试(20分):优()、良()、中()、一般()、差();(4)翻译能力(20分):优()、良()、中()、一般()、差();(5)回答问题(20分):优()、良()、中()、一般()、差();(6)格式规范性及考勤是否降等级:是()、否()(7) 总评分数\优()、良()、中()、一般()、差();评阅人:职称:年月日摘要滞环比较跟踪控制是一种非线性砰-砰控制方法,在各类闭环跟踪控制系统中广泛应用。
并网逆变器输出电流滞环跟踪控制技术研究1. 本文概述随着可再生能源在全球能源结构中占据越来越重要的位置,如何高效地将这些能源并入电网成为了一个亟待解决的问题。
并网逆变器作为连接可再生能源与电网的关键设备,其性能直接影响到整个系统的稳定性和效率。
在众多并网逆变器控制技术中,输出电流的精确控制尤为重要,它不仅关系到电能质量,还影响到电网的稳定运行。
本文旨在深入研究并网逆变器的输出电流滞环跟踪控制技术。
本文将介绍并网逆变器的基本原理及其在电力系统中的作用。
接着,将详细阐述滞环跟踪控制技术的理论基础和关键优势,包括其在抑制谐波、提高系统响应速度和稳定性方面的贡献。
本文还将探讨该技术在实际应用中可能遇到的挑战和解决方案,以及如何通过优化算法进一步提升控制性能。
通过对现有文献的综述和理论分析,结合仿真实验和实际案例研究,本文期望为并网逆变器的控制技术提供新的见解,并为相关领域的研究者和工程师提供实用的参考和指导。
2. 并网逆变器基本原理并网逆变器是一种电力电子设备,它的主要功能是将直流电(DC)转换为交流电(AC),以便与电网系统并联运行。
在太阳能光伏系统、风力发电系统以及其他可再生能源系统中,逆变器是不可或缺的核心组件。
逆变器不仅负责电能的转换,还需要确保输出电流与电网电压同步,以实现有效的能量交换。
并网逆变器的工作原理基于开关电源技术,通过高频开关器件的快速开关动作,将直流电源转换成具有一定频率和幅值的交流电。
这些开关器件通常由晶体管、IGBT(绝缘栅双极晶体管)或其他半导体器件构成。
逆变器内部的控制系统根据电网电压的实时信息,调节开关器件的工作状态,以实现对输出电流的精确控制。
为了确保逆变器的输出电流能够与电网电压保持同步,通常采用一种称为“滞环控制”的技术。
滞环控制是一种简单而有效的电流控制策略,它通过设定两个电流幅值的界限(滞环上下界),来控制开关器件的导通和关断。
当输出电流超过上限时,逆变器会调整开关状态以减小电流当电流低于下限时,逆变器则会增加电流。
第五章思考题5-1 对于恒转矩负载,为什么调压调速的调速范围不大电动机机械特性越软,调速范围越大吗答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0<S<S m 所以调速范围不大。
电动机机械特性越软,调速范围不变,因为S m 不变。
5-2 异步电动机变频调速时,为何要电压协调控制在整个调速范围内,保持电压恒定是否可行为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。
由此可见,最好是保持每极磁通量为额定值不变。
当频率从额定值向下调节时,必须同时降低E g 使14.44常值SgS N mN E N K f ϕ=⨯⨯=,即在基频以下应采用电动势频率比为恒值的控制方式。
然而,异步电动机绕组中的电动势是难以直接检测与控制的。
当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E ≈。
在整个调速范围内,保持电压恒定是不可行的。
在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。
5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式为什么所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定若不是,那么恒功率或恒转矩调速究竟是指什么答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。
5-4基频以下调速可以是恒压频比控制、恒定子磁通、恒气隙磁通和恒转子磁通的控制方式,从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。
摘要脉冲宽度调制(PWM),其基本思想是:控制逆变器中电力电子器件的开通或关断,输出电压为幅值相等、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压。
传统的PWM技术是用正弦波来调制等腰三角波,称为正脉冲宽度调制,随着控制技术的发展,产生了电流跟踪PWM(CHBPWM)控制技术。
CHBPWM的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波。
关键词:电流控制;脉宽调制; CHBPWM;1.前言SPWM控制技术以输入电压接近正弦波为目的,电流波形则因负载的性质及大小而异。
然而对于交流电机来说,应该保证为正弦波的是电流,稳态时在绕组中通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不产生脉动,因此以正弦波电流为控制目标更为合适。
电流跟踪PWM(Current Follow PWM, CHBPWM)的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM获得更好的性能。
电流跟踪控制的精度与滞环的宽度有关,同时还受到功率开关器件允许开关频率的制约。
在实际使用中,应在器件开关频率允许的前提下,尽可能选择小的宽度。
电流滞环跟踪控制方法的精度高、响应快,且易于实现,但功率开关器件的开关频率不定。
为了克服这个缺点,可以采用具有恒定开关频率到的电流控制器,或者局部范围内限制开关频率,但这样对电流波形都会产生影响。
2.原理2.1.电流滞环跟踪控制原理现在以A相电流滞环跟踪控制为例,其控制结构图如下图 2-1 所示:图1-1 电流跟踪控制A相原理图其中电流控制器是带滞环的比较器,环宽为h,将给定电流ia与输出电流i*a进行比较,电流偏差△ia 超过±0.5h 时,经滞环控制器(HBC)控制逆变器 A 相上、下桥臂的功率开关器件动作。
事情是这样的,一个月前我的同事小度找到我吐槽……当时一听这话直接吓的我都坐地上了完蛋了,莫不是要我卷铺盖了…但听完接下来的话我又爬了起来(老板拜托你说话不要大喘气好不好!)领导指着电脑:哧,还以为什么事儿呢。
我镇定地捋了捋头发站好:“老板你放心,不就是发福利么,这事儿包我身上了。
”虽然话放出去了,但说实话这一大堆福利具体怎么发心里还真没底。
但毕竟小度好歹是全国新媒体编辑里机智程度排名前一万的人,经过好几夜的苦思冥想后…哦呵呵呵…第五章思考题5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗?答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0<S<S m 所以调速范围不大。
电动机机械特性越软,调速范围不变,因为S m不变。
5-2 异步电动机变频调速时,为何要电压协调控制?在整个调速范围内,保持电压恒定是否可行?为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定?答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。
由此可见,最好是保持每极磁通量为额定值不变。
当频率从额定值向下调节时,必须同时降低E g 使14.44常值SgS N mN E N K f ϕ=⨯⨯=,即在基频以下应采用电动势频率比为恒值的控制方式。
然而,异步电动机绕组中的电动势是难以直接检测与控制的。
当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E ≈。
在整个调速范围内,保持电压恒定是不可行的。
在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。
5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为什么?所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定?若不是,那么恒功率或恒转矩调速究竟是指什么?答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。
什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?
电流跟踪型PWM变流电路是一种通过跟踪负载电流来控制输出电流的电路。
它通常用于要求精确控制和调节负载电流的应用,如电动机驱动、电源适配器等。
采用滞环比较方式的电流跟踪型变流器具有以下特点:
1.滞环比较方式:滞环比较方式是一种在电流跟踪型PWM
变流器中常用的控制方法。
该方式通过将参考电流与实际
负载电流进行比较,并应用滞回控制算法,调整PWM信
号的占空比,使输出电流跟踪参考电流。
2.高精度电流控制:滞环比较方式的电流跟踪型变流器具有
高精度的电流控制能力。
通过将滞环比较器设置为合适的
阈值,可以实现对输出电流的精确控制和调节。
该方式适
用于对负载电流要求较高的应用,能够实现精确的负载电
流跟踪和控制。
3.快速响应性能:采用滞环比较方式的电流跟踪型变流器具
有快速的响应速度。
由于滞环比较器能够快速调整PWM
信号的占空比,以响应负载电流的变化,因此可以实时动
态调整输出电流,并具有较好的过载能力和动态响应性能。
4.抗负载波动能力强:滞环比较方式的电流跟踪型变流器通
过及时调整PWM信号的占空比来跟踪负载电流,具有较
强的抗负载波动能力。
即使在负载电流发生变化的情况下,
也能够迅速调整输出电流,使其保持稳定。
需要注意的是,滞环比较方式的电流跟踪型变流器可能存在一些不足之处,如可能引入更多谐波成分和较高的开关频率。
因此,在应用中需要综合考虑设计需求和性能要求,选择合适的控制策略和优化方法,以实现最佳的电流跟踪和控制效果。