等离子喷焊技术方案
- 格式:docx
- 大小:16.70 KB
- 文档页数:2
等离子焊接原理等离子焊接是通过高度集中的等离子束流获得必要的熔化母材能量的这种焊接过程,通常等离子电弧的能量取决于等离子气体的流量,焊枪喷嘴的压缩效果和使用的电流大小。
普通电弧射流速度为80~150米/秒,等离子电弧的射流速度可以达到300~2000米/秒,等离子电弧由于受到压缩,能量密度可达105—106W/cm2,而自由状态下TIG电弧能量密度50-100W/mm2,弧柱中心温度在24000K以上,而TIG电弧弧柱中心温度在5000~8000K左右【1】。
因此,等离子电弧焊接与电子束(能量密度10 5W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接及穿孔示意图如图1等离子焊接及穿孔示意图等离子电弧的分类按电源的联接方式分类,等离子电弧分非转移弧,转移弧和联合型电弧三种形式【1】。
三种形式都是钨极接负,工件或喷嘴接正。
非转移型电弧弧是在钨极与喷嘴之间形成电弧,在等离子气流压送下,弧焰从喷嘴中喷出,形成等离子焰【1】。
主要适合于导热较好的材料焊接,但由于电弧的能量主要通过喷嘴,因此喷嘴的使用寿命较短,能量不宜过大,不太适合于长时间的焊接,这种形式较少应用在焊接。
转移型电弧是在喷嘴与工件之间形成电弧,由于转移弧难以直接形成,先在钨极与喷嘴之间形成小的非转移弧,然后过渡到转移弧,形成转移电弧时,非转移弧同时切断。
由于这种方式能将更多的能量传递给工件,因此该形式电弧普遍应用到金属材料焊接和切割中。
混合型电弧是指转移电弧和非转移电弧并存,主要用于微束等离子焊接和粉末堆焊。
按电弧形状或成形原理分类,等离子电弧分为微束等离子,熔透型等离子和小孔型等离子三种基本方法。
微束等离子是在小电流,一般在30A以下,通过熔透的方法进行焊接。
通常适用于焊接细材,箔件等,在传感器元件,电子器件,电机接头,网筛加工等运用较为普遍。
熔透型等离子是在等离子气流较小,弧柱压缩较弱的情况下焊接,只对工件进行熔透而不形成小孔的这种方法。
等离子喷焊工艺过程
等离子喷焊(Plasma Spray Welding)是一种热喷涂技术,用于在金属、陶瓷、复合材料等基材表面涂覆保护层或修复受损表面。
以下是等离子喷焊的基本过程:
1.准备工作:首先,需要准备好待喷涂的基材表面。
这包括清洁、打磨和喷砂等步骤,以确保表面光滑、清洁,并提供良好的附着性。
2.原材料准备:合适的涂层材料通常以粉末形式提供。
这些粉末材料可以是金属、陶瓷、复合材料等。
在喷涂前,通常需要对粉末进行预处理,如筛选、干燥等。
3.等离子喷枪设置:使用等离子喷涂设备,将喷嘴与喷枪连接,并设置合适的工艺参数,如喷嘴尺寸、气体流量、电流电压等。
4.点火启动:将惰性气体(通常是氩气或氮气)通过喷枪喷射到喷嘴中,形成等离子气体。
然后,通过电弧点火,将等离子气体加热至高温状态。
5.粉末喷涂:当等离子气体达到足够高的温度时,粉末材料通过粉末供料系统送入等离子气体中心。
在高温下,粉末材料熔化或部分熔化,并形成喷涂颗粒。
6.涂层喷涂:熔化的粉末颗粒随着等离子气体喷射到基材表面,形成涂层。
在涂层形成的同时,由于等离子气体的高温作用,涂层与基材表面同时发生熔合,从而确保良好的附着性。
7.冷却固化:喷涂完成后,涂层需要进行冷却固化。
这通常涉及将基材放置在适当的环境中,让涂层自然冷却至室温,并确保涂层与基材的结合稳固。
8.表面处理:完成涂层后,可能需要进行表面处理,如打磨、抛光等,以获得所需的表面质量和光洁度。
等离子喷焊工艺具有高温、高速喷涂、涂层致密性好等优点,可应用于航空航天、汽车、能源、化工等领域的表面保护和修复。
等离子弧焊的工艺方法1、等离子弧焊的基本方法等离子弧焊可分为穿透型、熔透型和微束等离子弧焊三种。
(1)穿透(小孔)型等离子弧焊电弧在熔池前穿透工件形成小孔,随着热源移动在小孔后形成焊道的方法称为穿透(小孔)型等离子弧焊,如下图a所示。
▲等离子弧焊a)穿透型等离子弧焊b)微束等离子弧焊1—电极2—离子气3—冷却水4—保护气5—等离子弧6—焊件7—喷嘴8—维弧9—垫板10—压板它是利用等离子弧的能量密度大、挺直度好、等离子流量大的特点,将焊件熔透并产生一个贯穿焊件的小孔。
被熔化的金属在电弧吹力、液体金属重力和表面张力相互作用下保持平衡。
焊枪前进时,小孔在电弧后方锁闭,形成完全熔透的焊缝。
小孔效应只有在足够的能量密度条件下才能形成。
当工件厚度增大时所需的能量密度也要增加,然而等离子弧能量密度是有限的,所以穿透型等离子弧焊只能在一定的板厚范围内实现。
各种材料一次焊透的厚度见下表。
大电流等离子弧焊一次可焊透厚度穿透型等离子弧焊最适宜焊接厚3~8mm的不锈钢、厚12mm以下的钛合金及铝合金、厚2~8mm的低碳钢或低合金钢,以及铜和铜合金、镍和镍合金的对接焊缝。
(2)熔透型等离子弧焊在焊接过程中只熔透工件而不产生小孔效应的焊接方法称为熔透型等离子弧焊,简称熔透法。
熔透型等离子弧焊是离子气流量较小、弧柱压缩程度较弱时的一种等离子弧焊。
此种方法基本上与钨极氩弧焊相似,随着焊枪向前移动,熔池金属凝固成焊缝。
它适用于板厚小于3mm的薄板I形坡口、不加衬垫单面焊双面成形,厚板开V形坡口多层焊。
其优点是焊接速度比钨极氩弧焊快。
(3)微束等离子弧焊利用小电流(通常在30A以下)进行焊接的等离子弧焊,通常称为微束等离子弧焊,又称为针状等离子弧焊,如上图b所示。
它是采用ф0.6~ф1.2mm的小孔径压缩喷嘴及联合型弧,当焊接电流小于1A时,仍有较好的稳定性。
微束等离子弧焊特别适合于薄板和细丝的焊接。
焊接不锈钢时,最小厚度可以达到0.025mm。
一种等离子弧自动焊焊接方法摘要该等离子弧自动焊焊接方法通过在工件表面生成等离子弧来进行焊接。
将工艺参数设置为适当的数值,通过自动控制等离子弧来实现焊接。
在焊接过程中,使用了保护气体防止氧化,确保焊接质量。
该方法可适用于各种金属的焊接,有很好的应用前景。
在实验中,通过对不同工件进行焊接试验,证明了该方法的有效性和实用性。
关键词:等离子弧,自动焊接,保护气体,焊接质量。
一、引言随着工业化和科技进步,焊接工艺也日益发展,从传统的手工焊接到机器自动焊接。
机器自动焊接,通常需要在训练有素的机器操作员的协助下完成,并需要复杂的设备和工具。
为了简化焊接操作,提高效率和精度,需要新的自动化焊接技术。
等离子弧自动焊焊接技术,正是针对这一需求开发出来的一种新技术。
等离子弧自动焊焊接技术,是利用等离子体的高温高能量来进行焊接。
通过在工件表面生成等离子弧,将工件加热到熔点以上,使其熔化融合。
等离子弧的能量消耗极快,且焊接速度较快,能大幅提高焊接效率。
等离子弧焊接过程中,使用保护气体来包围焊接区域,防止氧化,确保焊接质量。
采用等离子弧自动焊焊接技术,不仅能提高焊接效率,而且焊接质量也能得到保障。
1. 等离子弧焊接原理等离子体是具有电中性的高能电离态气体。
在气体放电装置中,通过高压电场和电流的作用,使气体中的电子获得足够的能量,从而脱离原子并与其他原子碰撞,形成等离子体。
等离子体具有高温、高能、高速、高辐射等特性。
在气体放电过程中,等离子体会发出强烈的光辐射和电磁波,这就是等离子弧。
2. 焊接方法等离子弧自动焊焊接方法是一种新型自动化焊接方法。
该方法基于等离子弧焊接原理,通过改变等离子弧的工艺参数实现自动化控制。
具体焊接方法如下:(1) 选择适当的工艺参数,包括等离子弧电流、电压、气体流量等。
(2) 安装等离子弧焊接设备,连接气体管道和电源。
(3) 对工件进行准备,去除油脂和腐蚀性物质。
(4) 确定焊接位置和焊接角度,开启设备。
一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。
等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。
钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。
等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。
等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。
因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。
因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。
◆转移型等离子电弧主要用于金属材料的焊接。
◆联合型等离子电弧主要用于微束等离子的焊接。
3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。
◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。
其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。
◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。
由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。
小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。
等离子焊接工艺(1)焊接电流焊接电流是根据板厚或熔透要求来选定。
焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。
因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。
(2)焊接速度焊接速度应根据等离子气流量及焊接电流来选择。
其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。
如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。
因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。
(3)喷嘴离工件的距离·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。
喷嘴离工件的距离一般取3~8mm。
与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。
(4)等离于气及流量等离子气及保护气体通常根据被焊金属及电流大小来选择。
大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。
小电流等离子弧焊接通常采用纯氩气作等离子气。
这是因为氧气的电离电压较低,可保证电弧引燃容易。
离子气流量决定了等离子流力和熔透能力。
等离子气的流量越大,熔透能力越大。
但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。
因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。
利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。
保护气体流量应根据焊接电流及等离子气流量来选择。
在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。
而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。
小孔型焊接保护气体流量一般在15~30L/min范围内。
焊接中的等离子喷涂焊技术等离子喷涂焊技术在焊接工业中已经被广泛使用,该技术凭借其高效、高质和低成本的特点受到越来越多生产工艺先进、焊接工艺复杂的领域的重视。
本文将从等离子喷涂焊技术的实质、适用范围、优缺点与应用前景几个方面进行论述。
一、等离子喷涂焊技术的实质等离子喷涂焊技术是一种将喷涂技术和焊接技术相结合的新型加工方式。
因为等离子喷涂涂层的物理和化学特性,能够在涂层表面形成一定的结构和化学成份,这意味着在涂层表面形成一定结构以后,等离子朝向涂层、与涂层的化学成份会被改变;在涂层与基础材料的结合面形成巨大的热梯度,在高温度下能够促进结合,最终涂层与基础材料之间得以非常牢固地结合。
等离子喷涂焊技术的实质可归纳为:一方面,等离子喷涂技术受喷涂颗粒的特性影响,如粒径、结构、形状等等,是将合适的各种粉末涂料通过各种压力、气流、导体、电弧等瞬间喷涂到需要加工的部位以形成目标涂层;另一方面,则是通过等离子泄漏作用对焊接部位结合表面进行预处理,即在基础金属材料和涂层之间提高结合能力,从而提高焊接部分的强度和硬度。
二、等离子喷涂焊技术的适用范围等离子喷涂焊技术适用于各种金属材料(包括低碳钢、不锈钢、高温合金、镍基合金、铝合金、钛合金等),且无论是金属之间、金属与陶瓷、复合材料之间都能实现焊接;该焊接方式还适用于各种加工工件,包括等离子喷涂后焊接、涂层与材料间的热处理、切割和预加工等等。
三、等离子喷涂焊技术的优缺点1. 优点:(1)等离子喷涂是一种非接触式的加工方式,不会带来加工表面的变形、拉动和拉伸等等,因此适用于各种加工表面形状的加工;(2)等离子喷涂焊接技术能够满足高速焊接的要求,它能够基本保持焊接部分的形状、大小和几何无变形;(3)等离子喷涂焊接过程比传统焊接工艺更为稳定和高效,能够有效提高生产效率;(4)等离子喷涂技术喷涂过程中不会产生削减或磨损等现象;(5)等离子喷涂焊接技术制作的工件表面硬度高,具有很好的抗磨损性。