第三章 分子克隆的载体
- 格式:ppt
- 大小:10.45 MB
- 文档页数:116
第一章基因克隆基因工程的基本技术有哪些?答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。
构建基因文库一般使用什么作为载体?答:一般使用大肠杆菌作为载体克隆与亚克隆?答:克隆在一等程度上等同于基因的分离。
亚克隆是将目的基因所对应的小段的DNA片段找出来。
PCR对基因克隆有什么作用?答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。
但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。
第二章分子克隆工具酶限制与修饰系统?答:限制系统可以排除外来DNA。
限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。
甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。
并且能够保证自身的DNA不被降解。
使用最广泛的限制酶?答:EcoR I是应用最广泛的限制性内切酶限制性内切酶的命名?答:宿主属名第一字母、种名头两个字母、菌株号+序列号。
如:HindIII限制与修饰系统分类?答:至少可分为3类。
II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。
其限制反应与甲基化反应是分开的反应。
不需要ATP的参与。
限制酶识别的序列长度?结构?答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。
回文序列,不对称序列,多种不同序列,间断对称序列限制酶产生的末端?答:1、黏末端2、平末端3、非对称突出末端什么是同裂酶?分类?答:识别相同序列的限制酶称为同裂酶。
但他们的切割位点有可能不同。
分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他限制性内切酶的作用是什么?它的反酶是什么?答:什么是同尾酶?答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。
第三章分子克隆载体(Molecular cloning vectors)[本章摘要]将外源DNA 或基因携带入宿主细胞(host cell)的工具称为载体,载体是基因操作的核心工具。
质粒载体是最常见的载体,也是使用最方便的载体。
它应用了质粒的复制、拷贝数及不相容性等性质。
质粒载体有抗性基因、琥珀突变抑制基因等多种选择标记和α-互补、插入失活等筛选标记。
常见的质粒载体有:pBR322、pUC18/19、pUC118/119、pGEM-3Z/4Z以及一些多功能的质粒载体,如:pBluescriptⅡKS(±)。
λ噬菌体载体应用了λ噬菌体的生物学性质。
λ噬菌体有溶源状态和裂解循环两种状态,有着复杂的分子生物学调控机制。
λ噬菌体载体有大小、lacZ基因、cI 基因失活以及Spi 筛选等选择标记,分为插入型载体和置换型载体。
常见的插入型载体有:λgt10、λgt11及其衍生载体和λExcell 载体等。
常见的置换型载体有:EMBL3/4 及其类似载体,λgem-11 载体。
粘粒是带有cos 序列的质粒。
粘粒载体的工作使用了质粒和λ噬菌体的双重生物学性质。
常见的粘粒载体有:pJB8、pcos1EMBL 以及卡隆9 载体系列。
构建粘粒文库时会遇到许多困难,注意用对应的方法解决。
M13 噬菌体是一种单链噬菌体,基于其构建的载体可以制备单链DNA 。
常见的M13 噬菌体载体有M13mp18/19 ,其受体细胞有特殊的遗传标志。
带有丝状噬菌体大间隔区的质粒叫噬菌粒,噬菌粒工作的时候需要M13K07 辅助噬菌体的帮助。
人工染色体是一种高通量的载体。
Y AC 是基于酵母染色体生物学性质构建的载体,BAC 是基于 F 质粒的生物学性质构建的载体,PAC 是基于P1 噬菌体构建的载体。
大肠杆菌表达载体是最常见的表达载体,可分为表达融合蛋白的载体和非融合蛋白表达载体。
常用的标签蛋白有谷胱甘肽转移酶、六聚组氨酸肽、蛋白质A 和纤维素结合位点等。
三四章分⼦克隆载体---答案_完_第三章分⼦克隆载体(Molecular cloning vectors)⼀、名词解析1.质粒:质粒是染⾊体外的遗传因⼦,能进⾏⾃我复制(但依赖于宿主编码的酶和蛋⽩质);⼤多数为超螺旋的双链共价闭合环状DNA分⼦(covalently closed circle , cccDNA),少数为线性;⼤⼩⼀般为1~200Kb,有的更⼤。
2.质粒拷贝数:质粒拷贝数(plasmid copy numbers)是指细胞中单⼀质粒的份数同染⾊体数之⽐值,常⽤质粒数/每染⾊体来表⽰。
不同的质粒在宿主细胞中的拷贝数不同。
3.质粒的不相容性:两个质粒在同⼀宿主中不能共存的现象称质粒的不相容性,它是指在第⼆个质粒导⼊后,在不涉及DNA 限制系统时出现的现象。
不相容的质粒⼀般都利⽤同⼀复制系统,从⽽导致不能共存于同⼀宿主中。
4.质粒的转移性:质粒具转移性。
它是指在⾃然条件下,很多质粒可以通过称为细菌接合的作⽤转移到新宿主内。
它需要移动基因 mob ,转移基因 tra ,顺式因⼦ bom 及其内部的转移缺⼝位点 nic。
5.穿梭质粒:既能在真核细胞中繁殖⼜能在原核细胞中繁殖的载体。
这类载体必须既有细菌的复制原点或质粒的复制原点,⼜含有真核⽣物的复制原点,还具备酶切位点和合适的筛选指标。
它⽤来转化细菌,⼜可以⽤于转化真核细胞。
6.α-互补:α-互补是指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由 1024 个氨基酸组成)阴性的突变体之间实现互补。
α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补⽽建⽴的7.温和噬菌体:既能进⼊溶菌⽣命周期⼜能进⼊溶源⽣命周期的噬菌体。
8.溶源性细菌:具有⼀套完整的噬菌体基因组的细菌叫溶源性细菌。
9.整合:如果噬菌体的DNA是被包容在寄主细菌染⾊体DNA中,便叫做已整合的噬菌体DNA。
基因工程期末复习第一章:基因工程1. 定义:通过基因操作来定向改变或修饰生物体或人类自身,并具有明确应用目的的活动称为基因工程。
2. 基因工程研究的主要内容或步骤:基因克隆的通用策略:涉及的过程可用分/合成、切、连、转、选、鉴。
①从复杂的生物有机体基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片段;②在体外,将带有目的基因的外源DNA片段连接到能够自我复制的并具有选择记号的载体分子上,形成重组DNA分子;③将重组DNA分子转移到适当的受体细胞(寄主细胞),并与之一起增殖;④从大量的细胞繁殖群体中,筛选出获得了细胞重组DNA分子的受体细胞克隆;⑤从筛选出来的受体细胞克隆,提取出已经得到扩增的目的基因,供进一步分析研究使用;⑥将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。
3.三大元件:载体、质粒、片段。
第二章:分子克隆工具酶1、工具酶:限制性核酸内切酶、DNA连接酶、DNA聚合酶、DNA修饰酶、核酸外切酶、单链核酸内切酶。
2、限制性内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核苷酸内切酶。
三种(Ⅰ型酶、Ⅱ型酶、Ⅲ型酶)3、甲基化酶:原核生物甲基化酶是作为限制与修饰系统中的一员,用于保护宿主DNA 不被相应的限制酶所切割。
三种()4、回文结构:双链DNA中含有的二个结构相同、方向相反的序列称为反向重复序列,每条单链以任一方向阅读时都是一样的。
5、同裂酶(isoschizomers):指来源不同但识别相同靶序列的核酸内切酶。
同裂酶可能进行同样的切割,产生同样的末端。
但有些同裂酶对甲基化位点的敏感性不同。
6、同尾酶(isocaudamer):指来源不同、识别靶序列不同但产生相同的粘性末端的核酸内切酶。
利用同尾酶可使切割位点的选择余地更大。
7、影响核酸内切酶活性的因素:①DNA浓度②DNA的甲基化程度③酶切消化反应的温度(大多数酶的标准反应温度37度)④DNA的分子结构。