分子克隆和质粒载体构建服务(精)
- 格式:doc
- 大小:11.00 KB
- 文档页数:2
载体构建的基本步骤载体构建目的基因克隆引物设计pcr质粒(载体)提取质粒选择提取步骤质粒与目的基因双酶切选择内切酶摸索酶切条件(时间和温度)电泳检测及回收纯化步骤载体与目的基因连接转化感受态细胞制备转化步骤阳性单克隆筛选上述转化得到的菌液接种到筛选培养基中过夜培养挑菌并菌液pcr上述菌液pcr有结果的菌液送测,送测结果与预期相符则该载体构建成功。
一、原理依赖于限制性核酸内切酶,dna连接酶和其他修饰酶的作用,分别对目的基因和载体dna进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二、操作步骤1、摇菌(制作感受态细胞备用)取两个装有液体培养基的3ml试管(视情况而定),向每根试管中加入40-100μL菌株,摇匀过夜。
2、提质粒(也就是载体)按照质量增强颗粒试剂盒中的说明操作(根据情况在洗脱的最后一步再清洗1-2次)。
3、酶切(双酶切产生粘性末端)反应所需试剂量(单位:UL)质粒所需内切酶10反应缓冲液2限制性内切酶1h2o7所需将加好的ep管置于37℃保温1-2h。
(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)4.电泳检测将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
回收凝胶:使用琼脂糖和缓冲液逐个制备凝胶。
切割凝胶后,回收目标产物,并具有纯化目标产物的功能;试验凝胶:琼脂糖和缓冲液按1:2的比例制备。
以测试目标波段是否与预期一致。
切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的dna溶液纯化;产物纯化是将较纯的dna溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。
5.载体与靶基因的连接如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
第1篇一、实验目的1. 学习克隆载体的构建方法,掌握分子克隆的基本原理和操作步骤。
2. 掌握利用限制性内切酶和DNA连接酶进行DNA片段的插入和连接。
3. 熟悉重组质粒的鉴定和扩增方法。
二、实验原理克隆载体是分子生物学研究中常用的工具,它可以将目的基因插入其中,并在宿主细胞中进行扩增。
克隆载体的构建主要包括以下步骤:1. 设计引物:根据目的基因序列设计特异性引物,用于PCR扩增目的基因片段。
2. PCR扩增:利用引物扩增目的基因片段。
3. 载体线性化:利用限制性内切酶将载体线性化,使其具有末端粘性。
4. DNA片段连接:将目的基因片段与载体进行连接。
5. 转化宿主细胞:将连接后的重组质粒转化至宿主细胞。
6. 鉴定和扩增:通过PCR、酶切等方法对转化后的细胞进行鉴定和扩增。
三、实验材料1. 试剂:PCR引物、限制性内切酶、DNA连接酶、DNA分子量标准、Taq酶、pUC19载体、感受态细胞等。
2. 仪器:PCR仪、电泳仪、凝胶成像系统、移液器、DNA纯化柱等。
四、实验步骤1. 设计引物:根据目的基因序列设计特异性引物,引物长度一般为20-30个碱基,其中包含酶切位点。
2. PCR扩增:利用引物扩增目的基因片段,PCR反应体系如下:- 10×PCR缓冲液5μl- dNTPs(每种2.5μmol/L)4μl- 引物(上下游引物各1μmol/L)2μl- DNA模板1μl- Taq酶0.5μl- ddH2O补充至50μl3. 载体线性化:利用限制性内切酶将载体线性化,反应体系如下:- 载体DNA 5μl- 10×酶切缓冲液5μl- 限制性内切酶1μl- ddH2O补充至20μl4. DNA片段连接:将PCR产物与载体进行连接,反应体系如下:- 线性化载体DNA 5μl- PCR产物5μl- 10×连接缓冲液5μl- DNA连接酶1μl- ddH2O补充至20μl5. 转化宿主细胞:将连接后的重组质粒转化至感受态细胞,具体操作方法如下:- 将感受态细胞铺板于含有适当抗生素的培养基上,37℃培养过夜。
同源重组构建质粒原理
同源重组构建质粒原理是广泛应用的一种分子克隆技术,它是通过以一种支配者DNA (终受者)为被复制的物质,把它和稳定地选择自模板DNA(发起者)结构共同复制到新的DNA支配者中去来实现的,从而制备出一条含有模板DNA内容的载体,也就是质粒。
在这种构建质粒原理中,主要涉及到三个部分:基因组工程技术、质粒形成技术和载体技术,所有这些技术合一起来完成目标基因的表达。
在基因组工程技术里,利用保守酶以及脱氧核糖核酸酶将目标基因从来源物种中分离出来,并通过基因改造、基因重组来获得理想基因。
质粒形成技术是一种以DNA结合胞嘧啶为主的构建技术,大体来说,它主要是把所需要的基因引物酶及基因改造材料结合在一起形成质粒。
载体技术则是把质粒转移到另一种有定位作用的目标载体上,这样就可以准确选择和组装基因。
此外,在构建质粒过程中,还会加入一些酶,比如胞嘧啶去氧核糖核酸酶等,来有效促进和加强复制过程中质粒,协助把复制后的DNA片段定位与模板DNA上,形成可合成的质粒。
通过上述步骤,就可以把特定的基因克隆到所需的质粒中,从而完成对基因的表达分析,以及下一步的功能分析。
同源重组构建质粒原理在分子克隆技术中占有不可替代的重要地位,是决定新型载体能否稳定表达基因的关键技术。
CRISPR/Cas9系统操作说明-2 ---基于lentiCRISPR v2应用指南-载体构建和建系汉恒生物提供CRISPR/Cas9载体的快速构建试剂盒,同时也提供各种载体构建和病毒包装(慢病毒、腺病毒和AAV)、建系服务lentiCRISPR v2载体是张锋实验室发布一个慢病毒载体,cas9和sgRNA 表达框在同一各载体上。
而且Cas9的C 端带有FLAG 融合标签,载体包含Puromycin 抗性基因,适合建系。
验证sgRNA 活性的时候也适合顺转;包装成慢病毒适合常规细胞系的建系。
构建非常方便。
说明lentiCRISPR v2https:///52961/☐克隆gDNA 使用BsmBI 位点,载体可以切出一个~1.9 kb 的filler 片段,便于confirm 酶切成功并利于载体回收;☐BsmBI 的位点是,酶切之后不需要CIP 脱磷也不会自连!☐Cas9的COOH 端带有FLAG tag,可以WB 或者Immunostaining;☐EFS promoter 被优化的小而强,极大提高了慢病毒包装的效率;☐载体带有Puromycin 抗性,可以富集转染/感染成功的细胞。
☐gDNA 设计方法和原则请参考上第一篇“CRISPR/Cas9系统操作说明”,链接如下:☐对于lentiCRISPR v2克隆,其合成的oligo 末端和pX330不同,请注意设计;☐怕大家看不懂,举个例子说明(克隆小白千万注意oligo 的方向):gDNA 设计说明载体克隆说明☐Backbone的酶切体系同上一篇文章(说明:不脱磷处理参考黑框,脱磷参考红框内操作);☐Oligo的退火条件也参考上一篇文章(说明:如果载体不脱磷,oligo不需要磷酸化;载体脱磷参考红框内操作,oligo就需要加磷处理!!!(红色框内是FengZhang提供的protocol,设计脱磷,可以参考))仅作参考病毒包装体系☐包装病毒使用的包装体系如下(for 100 mm dish ,6x106293T )☐转染条件:用细胞转染试剂lipofiter (超便宜且好用)(汉恒生物,/cn/products/item/36,(或者lipo2000)DNA/lipofiter=1 μg :2.5 μl☐收集48hr 和72hr 病毒上清,待用。
让载体构建更easy,分子克隆其实可以ze么快!每个做过分子实验的人可能都会有这样的经历:在经过N次的PCR、酶切、连接、转化之后,阳性率依旧很低,到底是哪一步出了问题?今天就给大家详解一下可以一步法快速构建同源重组载体,并且阳性率很高的方式:无缝克隆。
无缝克隆技术是一种新的、快速、简洁的克隆方法,可以在质粒的任何位点进行一个或多个目标DNA的片断的插入,而不需要任何限制性内切酶和连接酶。
突破传统的双酶切再加上连接,只需要一步重组法,即可得到高效率克隆的重组载体,大大提高了工作效率。
我们先来将传统克隆与无缝克隆做下比较:无缝克隆相较于传统克隆的方式,优势显而易见,,主要体现以下几点:1、可以不需要任何限制性内切酶、连接酶,也不需要磷酸化、末端补平等操作;2、可同时连接多个DNA片段,最多可达10个;3、不附加任何多余序列,精确定向连接;4、体系反应时间仅需20min,快速反应。
那无缝克隆到底应该怎么做呢?下面我们就来详细了解下无缝克隆其原理:在基因克隆的引物设计及目的DNA片段的扩增阶段,与常规PCR法是相同的。
唯一的差异在于载体末端和引物末端应具有15-20个同源碱基,由此得到的PCR产物两端便分别带上了15-20个与载体序列同源性的碱基。
图1:无缝克隆原理图在用无缝克隆方式进行分子克隆时,主要操作步骤分为以下3点:1、线性化目的载体(图1左上):用酶切或是PCR方式1)质粒酶切法在目标载体质粒上选取合适的位点进行单酶切或双酶切,对酶切后的载体进行割胶纯化。
2)质粒PCR法如果没有合适的酶切位点,你也可以通过PCR方法实现载体的线性化。
图2.PCR法线性化载体示意图。
在插入位点两侧设计一对方向相反的引物对载体进行扩增,通过跑胶回收获取线性化载体片段2、PCR获取目的片段。
设计的引物5’端需要和线性化载体末端有15~25bp的重叠(图中蓝色和黄色片段);图3:目的片段同源的引物设计针对双酶切法线性化载体设计插入片段的PCR 引物,其重叠区域为15~25 bp+酶切位点,这样重组成功的质粒上会完好保留此两个酶切位点。
质粒的构建一、质粒构建的基本原理1.1 质粒结构质粒是一种环状DNA分子,通常大小在1-200 kb之间,其中包含了一个或多个基因编码序列,以及与复制、表达等相关的功能序列。
质粒通常由多个功能区域组成,包括基因插入位点、选择标记、复制起点、多克隆位点等。
1.2 质粒构建方法质粒构建一般分为以下几个步骤:基因克隆、质粒挑选、连接反应、转化、筛选,这些步骤通常需要借助于PCR、限制性内切酶、DNA连接酶、转化试剂等。
1.3 质粒的应用质粒构建技术广泛应用于基因工程、蛋白质表达、基因敲除、基因组编辑等领域。
通过构建特定功能的质粒,可以实现对基因的操控和调控,对生物学功能进行研究。
二、质粒构建的方法与步骤2.1 基因克隆质粒构建的第一步通常是通过PCR扩增目的基因,得到目的基因片段。
基因片段的选择根据实验需要,可以是全长基因、部分序列、突变体等。
2.2 质粒挑选选择合适的质粒载体是质粒构建的关键一步。
通常质粒载体的选择考虑到基因插入位点、复制起点、选择标记等功能。
常用的质粒载体有pUC19、pBR322、pET等。
2.3 连接反应将基因片段与质粒载体进行连接反应,通常需要利用DNA连接酶将两者连接起来。
连接反应后,通过热激酶等方法将连接产物转化到大肠杆菌等宿主细胞中。
2.4 转化转化是将连接后的质粒DNA导入到宿主细胞中的过程,通常采用化学转化、电穿孔转化、热激等方法进行。
2.5 筛选通过选择标记或多克隆位点等方法对转化后的细胞进行筛选,筛选出含有目的质粒的阳性克隆。
通常可以利用抗生素抗性筛选、荧光报告基因筛选等方法。
三、质粒构建的应用3.1 基因工程质粒构建技术可以用于将外源基因导入到宿主细胞中,实现基因的操控和表达。
通过构建携带感兴趣基因的质粒,可以实现对基因编码蛋白质的表达和研究。
3.2 蛋白质表达利用质粒携带外源基因序列,在宿主细胞中进行蛋白质表达。
通过构建携带目的基因的质粒,可以实现对特定蛋白质的大量表达和纯化。
分子克隆技术操作手册摘要:一、分子克隆技术的概念与原理二、分子克隆技术的操作步骤1.提取目的基因2.构建基因表达载体3.将目的基因导入受体细胞4.目的基因的检测与表达三、分子克隆技术在科研和生产中的应用四、分子克隆技术的发展趋势正文:一、分子克隆技术的概念与原理分子克隆技术是指在体外将各种来源的遗传物质——DNA 片段,与适当的载体DNA 相结合,然后导入受体细胞,使这些DNA 片段在受体细胞内复制、表达的操作技术。
分子克隆技术的原理主要基于重组DNA 技术,通过切割、连接、导入等步骤,实现外源基因与载体DNA 的重组,从而形成一个新的基因表达载体,最终达到在受体细胞中表达目的基因的目的。
二、分子克隆技术的操作步骤1.提取目的基因提取目的基因是分子克隆技术的第一步,通常采用PCR 扩增或化学合成的方法获取目的基因。
PCR 扩增是一种常见的方法,通过设计特定的引物,从基因组DNA 中扩增出目的基因。
化学合成则是根据目的基因的序列,通过化学合成方法直接合成目的基因。
2.构建基因表达载体构建基因表达载体是分子克隆技术的核心步骤,主要包括以下几个方面:(1)选择合适的载体:常用的载体有大肠杆菌的质粒等,根据实验目的和受体细胞的类型选择合适的载体。
(2)切割载体:使用限制性内切酶切割载体,暴露出载体的粘性末端,便于与目的基因连接。
(3)连接目的基因:将提取到的目的基因与切割后的载体DNA 片段通过DNA 连接酶连接,形成重组载体。
(4)转化受体细胞:将重组载体导入受体细胞,使目的基因在受体细胞内表达。
3.将目的基因导入受体细胞将目的基因导入受体细胞是分子克隆技术的关键步骤,根据受体细胞的类型选择不同的导入方法。
常用的方法有转化、转染、显微注射等。
4.目的基因的检测与表达在将目的基因导入受体细胞后,需要对目的基因进行检测和表达。
检测方法包括PCR、Western blot、南方杂交等,表达方法包括实时荧光定量PCR、Western blot、酶联免疫吸附试验等。
分子生物学实验教材:参考书:《分子克隆实验指南》(第三版)黄培堂等译科学出版社实验一﹑大肠杆菌感受态细胞的制备及转化一.[目的要求]通过本实验,掌握大肠杆菌感受态细胞的制备及转化的方法和技术。
二.[实验原理]细菌处于容易吸收外源DNA的状态叫感受态。
转化是指质粒或以它为载体构建的重组子导入细菌的过程。
细菌处于0︒C ,CaCl2低渗溶液中,细胞膨胀成球形,外源DNA附着于细胞表面,经42︒C 短时间热击处理,促进细胞吸收DNA复合物。
将细胞放置在非选择性培养基中保温一段时间,促使在转化过程中获得的新表型如Amp+得到表达,然后将此细菌培养物涂在选择性培养基上进行培养,从而获得转化子。
三.[教学内容]1.感受态细胞的制备基础知识及方法简介2.CaCl2法制备DH5α或JM109感受态细胞,计算转化效率3.pUC19等质粒和重组产物转化大肠杆菌DH5α感受态细胞四.[实验材料和用品]E. coli DH5α菌株: Rˉ,Mˉ,Ampˉ;pBS质粒DNA,eppendorf管。
超净工作台、恒温摇床、生化培养箱、平皿、LB培养基、CaCl2 溶液、氨苄青霉素、等五.[实验步骤]一、受体菌的培养从LB平板上挑取新活化的E. coli DH5α单菌落,接种于3-5ml LB液体培养基中,37℃下振荡培养12小时左右,直至对数生长后期。
将该菌悬液以1:100-1:50的比例接种于100ml LB液体培养基中,37℃振荡培养2-3小时至OD600 =0.5左右。
二、感受态细胞的制备 ( CaCl2 法)1、将培养液转入离心管中,冰上放置10分钟,然后于4℃下3000g离心10分钟。
2、弃去上清,用预冷的0.05mol/L的CaCl2 溶液10ml轻轻悬浮细胞,冰上放置15-30分钟后,4℃下3000g离心10分钟。
3、弃去上清,加入4ml预冷含15%甘油的0.05mol/L的CaCl2 溶液,轻轻悬浮细胞,冰上放置几分钟,即成感受态细胞悬液。