电力变压器差动保护原理与研究
- 格式:doc
- 大小:396.00 KB
- 文档页数:11
变压器差动保护原理
变压器差动保护是一种常用于高压变压器保护的电气保护装置。
其原理是通过比较变压器两侧电流的差值,来识别是否存在故障或异常情况。
具体工作流程如下:
1. 变压器差动保护系统由一台差动继电器和多个电流互感器组成。
电流互感器分别连接到变压器两侧的主绕组,将电流信号传递给差动继电器。
2. 差动继电器内部设有比较电路,用于比较两侧电流的差值。
如果变压器正常运行,两侧电流应该保持平衡。
3. 如果存在故障,比如主绕组中出现短路或地故障,将导致两侧电流不平衡。
差动继电器将通过比较电路检测到这种差异,从而触发保护动作。
4. 差动继电器的动作可以通过断开变压器的断路器或刀闸来切断故障电流,保护变压器和其他设备免受损坏。
5. 为了提高差动保护的可靠性,通常还会配置差动保护的备用继电器和互感器,并采用冗余的电源供电系统。
综上所述,变压器差动保护通过比较变压器两侧电流的差值来识别故障,并触发保护动作,从而保护变压器和其他设备的安全运行。
差动保护线路的工作原理差动保护是一种常见且重要的电力保护装置,广泛应用于电力系统的高压线路、变压器等设备中。
差动保护的主要作用是保护被保护设备免受劣质或故障电流的影响,以防止设备因电流过载、短路等故障而受损。
下面将从差动保护线路的工作原理、结构、特点和应用方面进行解析。
差动保护线路的工作原理是通过比较电流输入和输出,判断设备正常还是存在故障,并根据判断结果触发保护动作。
其基本原理是基于法拉第定律,即从线圈周围的总磁通等于通过该线圈的电流的积分。
差动保护线路通过将需要保护的电流通过互感器转化为电压信号,然后将这些信号输入到差动保护装置中进行比较。
当输入信号之和等于输出信号时,系统认为设备正常;当输入信号之和不等于输出信号时,系统判断设备存在故障,此时差动保护装置将触发保护动作,如跳闸或断开故障设备。
差动保护线路的结构通常由互感器、匝数比较器、差动继电器和输出装置组成。
互感器将电流信号转换成电压信号,匝数比较器将输入信号之和与输出信号进行比较,差动继电器根据比较结果触发保护动作,输出装置负责将触发信号发送到断路器等保护设备,以进行相应的操作。
差动保护线路的特点有以下几个方面。
首先,差动保护具有高灵敏度和快速动作的特点,能够在故障发生的瞬间进行准确判断和保护动作,有效地防止设备故障的扩大。
其次,差动保护具有较强的适应性和稳定性,能够适应不同类型和容量的电气设备,并能够在复杂的电力系统环境中稳定运行。
此外,差动保护具有一定的误动特性,能够排除外界因素的影响,确保准确判断故障信号。
差动保护在电力系统中有着广泛的应用。
首先,差动保护广泛应用于高压线路和变压器等重要设备中,可以及时发现和隔离设备故障,确保电力系统的正常运行。
其次,差动保护还广泛应用于电气设备的原理保护和后备保护中,可以提高电力设备的可靠性和安全性。
此外,差动保护还可以与其他保护装置相结合,形成多重保护系统,提供全面的保护措施,从而降低设备的维修和更换成本。
瓦斯保护和差动保护作为变压器的主保护,在变压器保护中具有十分重要的地位。
瓦斯保护用来反映变压器的内部故障,即箱体内发生故障伴随油分解产生气体或变压器油面不论任何原因下降时,瓦斯保护动作。
轻瓦斯保护动作于信号,重瓦斯保护动作于跳闸。
差动保护采用带制动特性的比率差动保护,具有区内故障可靠动作,区外故障可靠闭锁的特性。
1 前言变压器作为输配电系统中的重要设备,在输配电系统及电网中,占有十分重要的地位,如发生故障,将危及供用电系统的安全运行和电网的稳定性、供电的可靠性。
因此怎样避免由于变压器故障,而危及电网的安全稳定运行,则需要快速、及时的切除掉故障的变压器,所以需要设置变压器的继电保护。
2 电力变压器的故障和继电保护的配置2.1 变压器的故障状态变压器的故障状态有外部短路或过负荷所引起的绕组中过电流、油面降低,电压升高等。
长时间的不正常运行状态会使变压器的温度升高、绝缘老化、寿命缩短,甚至会引起故障,因此,应装设动作于信号或跳闸的继电保护装置以保护变压器。
2.2 变压器继电保护的配置根据变压器的各种故障状态,变压器继电保护装置一般应配置下列保护功能:(1)非电量保护。
非电量保护首先是瓦斯保护,瓦斯保护能迅速的反应变压器内部故障时产生的油气变化或油位下降。
其次应装设有反应变压器内部温度变化的油温和绕组温度保护;变压器的压力释放保护;变压器过负荷后自启风冷的保护;过载闭锁有载调压的保护。
(2)电量保护,电量保护分为以下几种:1.纵联差动保护和差动速断保护(下面会详细分析);2.反映相间短路故障的后备保护,用作变压器外部相间短路故障和作为变压器内部绕组、引出线相间短路故障的后备保护;3.反映接地故障的后备保护。
变压器中性点直接接地时,用零序电流(方向)保护作为变压器外部接地故障和中性点直接接地侧绕组、引出线接地故障的后备保护。
变压器中性不接地时,用零序电压保护、中性点的间隙零序电流保护作为变压器接地故障的后备保护。
变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。
想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。
可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。
这个保护的工作原理就像是在打扫卫生,保持一切井井有条。
变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。
比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。
这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。
就算是微小的电流差异,它也能立马检测出来。
你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。
这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。
有趣的是,这个过程其实是很迅速的,快得让人惊叹。
可以说,变压器在保护的帮助下,真的是“安全感爆棚”。
想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。
它的反应速度可以说是“飞一般的感觉”,不容小觑。
变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。
就像是调味品,盐放多了,菜就咸了,少了又没味儿。
合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。
这时候就需要专业人员仔细调试,确保一切都在“正轨”上。
而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。
搞定这些后,变压器的安全性就会大大提升。
毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。
变压器差动保护的基本原理引言变压器是电力系统中常见且重要的设备,其稳定运行对电网的正常运行起着至关重要的作用。
然而,变压器在运行过程中可能会遇到各种故障,如短路、接地故障等,若这些故障不能及时得到保护和处理,将会对设备和系统产生严重影响。
因此,差动保护作为变压器保护的一种重要手段,具有重要意义。
变压器差动保护的概念变压器差动保护是指通过测量变压器主绕组和副绕组之间的电流差值,判断变压器是否存在故障,并在故障发生时迅速切除故障设备的保护方法。
基本原理变压器差动保护的基本原理是利用变压器主副绕组的电流之差来判断设备是否发生故障。
其基本原理可概括为以下几个方面:1. 差动电流测量原理差动保护通过测量变压器主绕组和副绕组之间的差动电流来实现。
通常情况下,变压器在正常运行时,主绕组和副绕组之间的电流是基本相等的。
若发生故障,导致主绕组和副绕组之间的电流不相等,则表示变压器发生了故障。
2. 差动电流比较原理差动保护系统会将主绕组和副绕组的电流进行比较,以判断两者是否相等。
常用的比较方法有直流量比较方式和交流量比较方式。
直流量比较方式主要是将两个电流通过电流互感器转换为直流信号进行比较;而交流量比较方式则是将两个电流通过电流互感器转换为交流信号,利用相关技术进行相位比较。
3. 故障检测原理差动保护系统通过对差动电流进行检测,可以判断变压器是否发生了故障。
在差动保护系统中,通常会设置定值元件,用于设定差动电流的阈值。
当差动电流超过设定的阈值时,差动保护系统会判断变压器发生了故障,并触发相应的保护动作。
变压器差动保护的实现方式变压器差动保护可以通过硬件实现、软件实现以及硬件与软件相结合的方式实现。
常见的实现方式包括以下几种:1. 采用硬件差动保护装置硬件差动保护装置通常由差动保护继电器、电流互感器、采样器等组成。
差动保护继电器是实现差动保护的核心设备,它能够将主绕组和副绕组的电流进行比较,并根据设定的差动电流阈值进行故障判据。
主变差动保护的基本原理主变差动保护是一种用于保护电力系统主变压器的重要保护装置。
它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。
主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。
主变差动保护的基本原理如下:1.差动电流原理:主变差动保护是基于差动电流原理工作的。
在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。
而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。
2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。
主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。
3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。
通常,差动保护器会对两侧电流进行相位和幅值的比较。
如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在差动电流,差动保护器则判断主变发生故障。
4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。
差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。
5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。
例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。
此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。
总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。
它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。
同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。
变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。
一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。
该保护也是我们继电保护调试人员在工作中经常接触到的设备。
下面将介绍一些有关于差动保护方面的一些知识。
二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。
三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。
变压器差动保护原理图解
差动爱护是依据被爱护区域内的电流变化差额而动作的。
它广泛用来爱护大容量的电力变压器、变电所母线、高压电动机等。
如右图所示是电力变压器的差动爱护原理图。
电流互感器TA1和TA2之间的区域就是差动爱护区,当爱护区内发生短路故障时,即变压器内部(如dl点),电流继电器KA中将产生较大的启动电流使爱护装置动作,而当爱护区外短路时,即变压器外部如(d2点),电流继电器中只流过一较小的不平稳电流,爱护装置不会动作。
所谓变压器的纵联差动爱护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的爱护。
纵联差动爱护装置,一般用来爱护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。
对于变压器线圈的匝间短路等内部故障,通常只作后备爱护。
纵联差动爱护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。
因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。
在正常状况下或爱护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但假如在爱护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到爱护作用。
变压器纵差爱护是根据循环电流原理构成的,变
压器纵差爱护的原理要求变压器在正常运行和纵差爱护区(纵差爱护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差爱护不动作。
但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差爱护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。
电力变压器差动保护技术分析【摘要】电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务,变压器差动保护中诸多问题,不能够很好的解决这些问题,就会直接影响变压器差动保护的性能,甚至造成变压器差动保护的误动或拒动。
本文笔者根据多年从事工作经验对其技术进行阐述,谈谈个人一些认识与见解。
【关键词】电力系统;变压器;差动保护;技术分析1.电力变压器差动保护的原理差动保护的原理是基于节点电流定律,利用基尔霍夫电流定理工作的,当变压器正常工作或发生区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
因而它只对被保护设备内部发生的短路故障发出响应,因此差动保护具有百分之百的选择性,即使外部的故障极其严重,它也不会对其做出任何动作,因此也可以作为线路、电机等电力设施的主保护。
绕组变压器两侧设有电流互感器,而它的二次侧则是按照循环电流法进行线路连接。
两侧的电流互感器同极端如果同时朝向母线,则会与同极性的端子连接,并且会在两个接线之间接入电流继电器。
继电线圈内部的电流为两边的电流互感器的二次电流差,所以差动继电器的位置是在差动回路上。
2.变压器差动保护技术的实现总结变压器纵差保护所遇到的技术问题,要实现变压器差动保护必须做到:使差动保护各侧电流的相位相同或相反;使由变压器各侧ta二次流入差动保护的电流产生的效果相同,即是等效的;变压器差动保护能可靠躲过励磁涌流空,保证投变压器时不会误动;大电流侧系统内发生接地故障时保护不会误动,即避开零序电流的影响;能可靠躲过稳态及暂态不平衡电流。
2.1变压器差动保护两侧电流的移相呈y,d接线的变压器,两侧电流的相位不同,就不能满σi=0。
因此,要使正常工况下差动保护各侧的电流向量和为零,首先应将某一侧差动ta二次电流进行移相。
变压器差动保护的基本原理
变压器差动保护是一种常用的电力系统保护方式,主要用于检测变压器的内部故障。
其基本原理如下:
差动保护是通过比较变压器的输入端和输出端的电流差值来实现的。
正常情况下,输入端和输出端的电流应当相等,因为变压器是一个能量转换设备,输入端的电流应当等于输出端的电流(不考虑损耗)。
如果发生内部故障,例如短路或绕组断线,就会导致输入端和输出端的电流不相等。
差动保护系统的基本组成包括电流互感器、比率变压器、差动继电器和保护装置。
电流互感器用于测量输入端和输出端的电流,传输给差动继电器进行比较。
比率变压器用于调整输入端和输出端电流的比例,以匹配差动继电器的输入要求。
当差动继电器检测到输入端和输出端的电流差值超过设定的阈值时,保护装置将触发,切断故障区域的电源,防止进一步损坏。
变压器差动保护的优点是能够快速、准确地检测到内部故障,并迅速采取保护措施,保证电力系统的安全稳定运行。
变压器差动保护原理
变压器差动保护是一种常用的电力系统保护装置,用于保护变压器免受内部故障和外部故障的影响。
变压器差动保护的原理是基于电流平衡的原则,通过比较变压器的输入和输出电流来检测故障。
当变压器正常运行时,输入和输出电流应该是相等的,因为电流在变压器中是按照电能守恒的原则进行传递的。
如果出现故障,例如绕组短路或接地故障,会导致输入和输出电流不平衡,差动保护装置就会发出警报并采取措施来防止进一步损坏。
变压器差动保护通常由差动继电器、互感器和CT(电流互感器)组成。
差动继电器通过将输入和输出电流进行差值运算,来判断是否存在故障。
互感器用于将变压器的高电压转换为可测量的低电压,而
CT将高电流转换为适宜测量的低电流。
通过将互感器和CT的输出接入差动继电器,可以进行电流差动计算,并根据计算结果判断是否需要采取保护动作。
除了电流差动保护,变压器差动保护还可以包括电压差动保护和变比差动保护。
电压差动保护通过比较变压器的输入和输出电压来检测故障。
变比差动保护则通过监测变压器的变比来判断是否存在故障。
总之,变压器差动保护是一种重要的保护装置,能够有效地检测和防
止变压器内外部的故障。
它不仅可以保护变压器的运行安全,还能提高电力系统的可靠性和稳定性。
差动变压器的工作原理
差动变压器是一种常用的电力传输和分配设备,其主要功能是将高压输电线路的电能转换为低压用电线路所需要的电能。
差动变压器由两个或多个线圈组成,其中一个线圈称为高压线圈,另一个或其他线圈称为低压线圈。
差动变压器的工作原理如下:
1. 差动变压器的高压线圈(主线圈)和低压线圈(副线圈)分别连接在高压输电线路和低压用电线路中,同时通过一对变压器夹持器连接。
2. 当高压线路通电时,高压线圈中的电流通过变压器的磁场感应作用,导致副线圈中产生感应电动势。
3. 副线圈中的感应电动势导致副线圈中产生电流,这些电流被称为差动电流。
差动电流的作用是使得主线圈和副线圈的磁场相互抵消,从而达到保护电路的目的。
4. 如果高压线路中发生了短路或其他故障,导致主线圈中的电流异常增大,那么这种异常电流将导致差动电流的增加。
差动电流的增大会导致夹持器中的电流动作装置发生动作,从而切断高压线路,保护线路和设备的安全运行。
总之,差动变压器的工作原理基于磁场感应和差动电流的相互作用,在传输和分配电能过程中起到了保护电路和设备的重要作用。
差动变压器工作原理引言差动变压器是一种电力设备,其作用是传输和分配电能。
差动变压器的工作原理是在电力系统中起到保护作用。
本文将详细探讨差动变压器的工作原理,包括差动变压器的基本原理、工作过程和应用场景。
差动变压器基本原理差动变压器的基本原理是利用主变压器两侧的电流差来检测故障。
主变压器是差动变压器的主要组成部分,由高压绕组和低压绕组组成。
当主变压器正常工作时,两侧的电流差几乎为零;当有故障发生时,如短路或接地故障,主变压器两侧的电流差将出现明显变化。
通过监测和比对电流差,差动变压器可以及时检测故障并切断电力供应,起到保护作用。
差动保护原理差动变压器主要用于保护电力系统的传输线路和设备。
差动保护的基本原理是通过比较主变压器高压绕组和低压绕组的电流差来判断系统是否存在故障。
差动保护装置会将两侧的电流信号进行比较,如果电流差超过设定的阈值,就会触发保护动作,切断电力供应。
差动保护具有灵敏、快速、可靠的特点,能够有效地保护电力系统的正常运行。
差动保护装置结构差动保护装置由差动保护继电器、CT(电流互感器)和PT(电压互感器)组成。
CT和PT用于将主变压器两侧的电流和电压信号转换为适合差动保护继电器检测的信号。
差动保护继电器负责比较和判断电流差,并根据设定的逻辑进行保护动作。
差动保护继电器差动保护继电器是差动保护装置的核心部分,负责检测和判断电流差。
差动保护继电器具有高速、高精度和可靠的特点,能够及时发现和切除故障,保护系统的安全运行。
差动保护继电器通常采用数字化技术,能够更加灵活地配置和调整保护参数。
CT(电流互感器)CT是差动保护装置的重要组成部分,用于测量电流并将其转换为适合差动保护继电器检测的信号。
CT通常由铁芯和绕组组成,绕组通过主变压器两侧的电流信号产生感应电动势,转换为相应的电流信号。
CT的性能直接影响差动保护的准确性和可靠性。
PT(电压互感器)PT是差动保护装置的另一个重要组成部分,用于测量电压并将其转换为适合差动保护继电器检测的信号。
1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。
因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。
变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法1)励磁涌流在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。
2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。
但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。
此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。
3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。
②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。
③励磁涌流的波形出现间断角。
4)克服励磁涌流对变压器纵差保护影响的措施:①采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。
2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。
电力系统差动保护的分析与研究差动保护是电力系统中一种常用的保护方式,它能够实现对电力系统中电流异常的快速检测和切断,保证电力系统的安全可靠运行。
本文将从差动保护的原理、应用和研究现状等方面进行分析和研究。
一、差动保护的原理差动保护是利用电力系统负载电流的差异性来实现异常检测和保护的一种技术。
在电力系统中,往往存在着多个负载设备,每个负载设备的电流大小和方向都不一样,因此在两个节点之间的电流大小和方向也是不同的。
利用这种差异性,可以设计出差动保护装置,实现对电力系统异常电流的及时检测和切断。
差动保护的原理可以通过下图来展示。
如图所示,电力系统中有两个节点,节点之间的线路上存在着当前电流I1和I2。
这两个电流经过差动保护器之后,会产生一个输出信号,判断这两个电流是否相等,如果相等,则电力系统正常运行;如果不相等,则可能存在电力系统异常,需要及时切断电路,保证电力系统的安全运行。
二、差动保护的应用差动保护在电力系统中具有广泛的应用,主要体现在以下几个方面:1. 保护发电机在电力系统中,发电机是一种重要的负载设备,如果发电机出现异常,可能会导致电力系统的故障。
因此,差动保护在保护发电机方面具有重要应用。
差动保护可以实现对发电机的电流进行监测和保护,避免发电机出现异常,保证电力系统的稳定性和安全性。
2. 保护变压器电力系统中还存在着变压器这种负载设备,变压器是将高压电能转化为低压电能的设备,如果变压器出现异常,可能会对电力系统造成较大的影响。
因此,差动保护在保护变压器方面也具有广泛的应用。
差动保护可以对变压器的电流进行监测和保护,避免变压器出现异常,保证电力系统的稳定性和安全性。
3. 保护线路在电力系统中,线路也是一种重要的负载设备,如果线路出现故障,可能会导致电力系统的停电。
因此,差动保护在保护线路方面也具有应用。
差动保护可以对线路的电流进行监测和保护,避免线路出现异常,保证电力系统的稳定性和安全性。
三、差动保护的研究现状差动保护作为一种电力系统保护技术,得到了广泛的应用和研究。
变压器纵联差动保护原理变压器纵联差动保护是一种用于保护变压器的重要保护装置,主要用于检测变压器绕组之间的电流差异,以便快速准确地判断是否发生了内部故障。
以下是变压器纵联差动保护的基本原理:1. 基本原理:-纵联差动保护通过比较变压器绕组之间的电流来检测潜在的内部故障。
正常工作状态下,变压器的输入电流等于输出电流,即两侧绕组电流相等。
当发生内部故障时,如绕组短路或绝缘故障,绕组之间的电流差异将导致纵联差动电流。
2. 电流比较:-纵联差动保护系统会同时监测变压器高压绕组和低压绕组的电流。
这些电流通过电流互感器(CT)测量,并传输到差动保护设备中。
设备将两侧电流进行比较,正常情况下两侧电流应该平衡。
3. 设定电流和灵敏性:-差动保护设备设有一定的电流差动保护设定值。
当变压器内部发生故障时,导致两侧电流不平衡,超过设定值时,差动保护将启动,产生差动保护动作信号。
4. 差动保护动作:-一旦检测到电流差异超过设定阈值,差动保护设备会发出保护动作信号。
这通常包括切断电源、关闭刀闸等措施,以隔离变压器并防止故障蔓延。
5. 灵敏性和稳定性:-纵联差动保护需要在足够灵敏的同时保持稳定性,以防止误动作。
因此,设定值的选择、电流互感器的准确性和保护装置的灵敏性都是设计中需要考虑的关键因素。
6. 复合差动保护:-为了提高保护的可靠性,有时会采用复合差动保护,结合其他保护元件,如零序电流保护、过流保护等。
这样可以增加差动保护的鲁棒性,减少误动作的可能性。
变压器纵联差动保护是确保变压器正常运行和防止故障蔓延的关键保护装置之一。
通过及时、准确地检测内部故障,它有助于提高电力系统的可靠性和稳定性。
主变差动保护的原理主变差动保护是电力系统中常用的一种保护方式,主要用于保护高压主变压器。
其原理是通过比较同一个主变压器的不同位置的电流,来判断是否存在电流差动,从而判断是否存在故障。
一、原理介绍:1. 基本原理:主变差动保护的基本原理是通过差动电流比较来实现的。
将主变线圈分为两部分,并将其分别与差动保护装置相连。
当主变器的两侧绕组之间的电流没有故障时,主变保护装置的两个继电器的吸引线圈电流应该相等,继电器保持正常状态。
当主变压器受到内部或外部故障的影响时,电流差会出现在主变压器的绕组中,从而导致差动电流的改变,差动保护装置的动作。
2. 故障检测:主变差动保护应该能够快速、准确地检测到发生的故障,并及时动作切断故障区域。
差动保护装置通常通过采用不同的故障标志,如过电流、零序电流、负序电流等来进行故障的判断。
二、工作原理:1. 基本工作原理:主变差动保护的工作原理主要是通过比较主变压器的两个继电器的吸引线圈电流,来判断差动电流是否存在,以及电流差是否超出设定范围。
一般来说,差动保护装置包含两种电流检测通路:正序通路和零序通路。
2. 正序通路:正序通路是用来检测主变压器的正序差动电流的,它采用主变压器两侧的正序电流进行比较。
当主变电流存在差异时,正序通路中的差动保护装置会发出信号,并启动继电器动作,切断故障电路。
3. 零序通路:零序通路是用来检测主变压器的零序差动电流的,并且主要用于检测主变压器的接地故障。
当主变电流发生不平衡时,零序通路中的差动保护装置会发出信号,并启动继电器动作,切断故障电路。
4. 继电器:继电器是主变差动保护装置的核心元件,它通过电磁原理来工作。
继电器保护装置通常由两个继电器构成,分别连接到主变压器的两个绕组上。
当两个继电器的电流差异超出设定范围时,继电器会发出信号,并切断故障电路。
三、应用范围:主变差动保护广泛应用于各类工业和民用电力系统中,特别是在需要对主变压器进行保护的情况下。
变压器差动保护的基本原理
1、变压器差动保护的工作原理
与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
2、变压器差动保护与线路差动保护的区别:
由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。
因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。
变压器纵差动保护的特点
1 、励磁涌流的特点及克服励磁涌流的方法
1)励磁涌流
在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。
2)产生励磁涌流的原因
因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。
但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。
此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。
3)励磁涌流的特点:
①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。
②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。
③励磁涌流的波形出现间断角。
4)克服励磁涌流对变压器纵差保护影响的措施:
①采用带有速饱和变流器的差动继电器构成差动保护;
②利用二次谐波制动原理构成的差动保护;
③利用间断角原理构成的变压器差动保护;
④采用模糊识别闭锁原理构成的变压器差动保护。
2、不平衡电流产生的原因
(1)稳态情况下的不平衡电流
①变压器两侧电流相位不同
电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。
②电流互感器计算变比与实际变比不同
由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。
【实例分析1】由电流互感实际变比与计算变比不等产生的不平衡电流分析
变压器型号、变比、Y,d11 接线。
计算由于电流互感器的实际变比与计算不等引起的不平衡电流。
计算结果由表可见,由于电流互感器的实际变比与计算变比不等,正常情况将产生0.21A的不平衡电流。
③变压器各侧电流互感器型号不同
由于变压器各侧电压等级和额定电流不同,所以变压器各侧的电流互感器型号不同,它们的饱和特性、励磁电流(归算至同一侧)也就不同,从而在差动回路中产生较大的不平衡电流。
④变压器带负荷调节分接头
变压器带负荷调整分接头,是电力系统中电压调整的一种方法,改变分接头就是改变变压器的变比。
整定计算中,差动保护只能按照某一变比整定,选择恰当的平衡线圈减小或消除不平衡电流的影响。
当差动保护投入运行后,在调压抽头改变时,一般不可能对差动保护的电流回路重新操作,因此又会出现新的不平衡电流。
不平衡电流的大小与调压范围有关。
2)暂态情况下的不平衡电流
暂态过程中不平衡电流的特点:
①暂态不平衡电流含有大量的非周期分量,偏离时间轴的一侧。
②暂态不平衡电流最大值出现的时间滞后一次侧最大电流的时间(根据此特点靠保护的延时来躲过其暂态不平衡电流必然影响保护的快速性,甚至使变压器差动保护不能接受)。
减小不平衡电流的措施
1)减小稳态情况下的不平衡电流
变压器差动保护各侧用的电流互感器,选用变压器差动保护专用的D级电流互感器;当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。
2)减小电流互感器的二次负荷
这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。
减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度);采用弱电控制用的电流互感器(二次额定电流为lA)等。
3)采用带小气隙的电流互感器
这种电流互感器铁芯的剩磁较小,在一次侧电流较大的情况下,电流互感器不容易饱和。
因而励磁电流较小,有利于减小不平衡电流。
同时也改善了电流互感器的暂态特性。
4)减小变压器两侧电流相位不同而产生的不平衡电流采用相位补偿。
①采用适当的接线进行相位补偿法。
Y,d11接线变压器差动保护接线图和相量图
如变压器为Y,d11接线其相位补偿的方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图(a)所示,以补偿30°的相位差。
图中为星形侧的一次电流,
为三角形侧的一次电流,其相位关系如图(b)所示。
采用相位补偿接线后,变压器星形侧电流互感器二次回路侧差动臂中的电流分别为,它们刚好与三角形侧电流互感器二次回路中的电流同相位,如图(c)所示。
这样,差回路中两侧的电流的相位相同。
②数值补偿
变压器星形侧电流互感器变比
变压器三角形侧电流互感器变比
③软件校正
微机保护中采用软件进行相位校正
6)由变压器两侧电流互感器型号不同而产生的不平衡电流在差动保护的整定计算中加以考虑。
7)由变压器带负荷调整分接头而产生的不平衡电流在变压器差动保护的整定计算中考虑。
8)减小暂态过程中非周期分量电流的影响
①差动保护采用具有速饱和特性的中间变流器。
②选用带制动特性的差动继电器或间断角原理的差动继电器等,利用其它方法来解决暂态过程中非周期分量电流的影响问题。
和差式比率制动式差动保护原理 1.双绕组变压器比率制动的差动保护原理。
1)和差式比率制动的动作判据
①差动电流:
②制动电流:
③差动保护动作的第一判据:
④制动比率系数:
⑤外部故障时,保护可靠地不动作。
应满足如下判据:
⑥差动保护动作的第二判据
2.比率制动特性的整定
1)最小启动电流Iact0
2)拐点制动电流Ibrk0可选取
3)最大制动系数Kbrk.max和制动特性斜率S
①最大制动系数
②比率制动特性曲线
③比率制动系数的整定值D取0.3~0.5
④比率制动特性的斜率S,由上图可知
当Ibrk0《Ibrk.max和Iact0《Ibrk.max,则上式可得即比率制动特性的折线BC过坐标原点,在任何制动电流下有相同的制动系数。
4)内部故障灵敏度校验
在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流(周期分量),同时计算相应的制动电流,由相应的比率制动特性查出对应与的起动电流则灵敏系数要求Ksen>2.0
三绕组变压器比率制动的差动保护原理。
对于三绕组变压器,其差动保护的原理与双绕组变压器的差动保护原理相同,但差动电流和制动电流及最大不平衡电流应做相应的更改。
在有的变压器差动保护直接取三侧中最大电流为制动电流。
励磁涌流闭锁原理
采用二次谐波制动原理在变压器励磁涌流中含有大量的二次谐波分量,一般约占基波分量的40%以上。
利用差电流中二次谐波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时保护的误动。
差动速断保护
1)采用差动速断保护的原因
一般情况下比率制动原理的差动保护能作为电力变压器主保护,但是在严重内部故障时,短路电流很大的情况下,TA严重饱和使交流暂态传变严重恶化,TA的二次侧基波电流为零,高次谐波分量增大,反应二次谐波的判据误将比率制动原理的差动保护闭琐,无法反映区内短路故障,只有当暂态过程经一定时间TA退出暂态饱和比率制动原理的差动保护才动作,从而影响了比率差动保护的快速动作,所以变压器比率制动原理的差动保护还应配有差动速断保护,作为辅助保护以加快保护在内部严重故障时的动作速度。
差动速断保护是差动电流过电流瞬时速动保护。
2)差动速断的整定值按躲过最大不平衡电流和励磁涌流来整定。
变压器比率差动保护程序逻辑框图
1)变压器差动保护程序逻辑框图
2)变压器差动保护程序逻辑原理
在程序逻辑框图中D1=Iact0、D2=KrelId/Ibrk为比率制动系数整定值,D3为二次谐波制动系数整定值。
可见比率差动保护动作的三个判据是“与”的关系(与门Y2),必须同时满足才能动作于跳闸。
而差动速断保护是作为比率差动保护的辅助保护。
其定值为D4=Iact.s,在比率差动保护不能快速反映严重区内故障时,差动速断保护应无时延地快速出口跳闸。
因此这两种保护是“或”的逻辑关系(或门H3)。
比率差动保护在TA 二次回路断线时会产生很大的差电流而误动作,所以必须经TA断线闭锁的否门再经与门Y3才能出口动作。
当TA断线时与门Y3被闭锁住,不能出口动作。