高中三角函数习题解析含详细解答
- 格式:doc
- 大小:1.17 MB
- 文档页数:18
高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.函数y=的定义域是.【答案】{x|kπ-<x≤kπ+,k∈Z}【解析】由1-tanx≥0,即tanx≤1,结合正切函数图象可得,kπ-<x≤kπ+,k∈Z,故函数的定义域是{x|kπ-<x≤kπ+,k∈Z}.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.7.已知函数上有两个零点,则的值为()A.B.C.D.【答案】D【解析】,由于,故,由于函数在区间上有两个零点,所以,所以,所以,故选D.【考点】1.三角函数的图象;2.三角函数的对称性8.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.9.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图像的一条对称轴,则下列各式中符合条件的解析式是()A.B.C.D.【答案】D【解析】由题意可得,则据此可知答案选D.【考点】函数的图像与性质.11.中,角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.【答案】(Ⅰ);(Ⅱ);【解析】(Ⅰ)主要利用三角形中内角和定理、三角恒等变换来求;(Ⅱ)通过余弦定理、解方程组可求;试题解析:(Ⅰ)∵∴,∴,∴或∴(II)∵∴,即①又,∴,即②由①②可得,∴又∴,∴【考点】解三角形中内角和定理以及余弦定理的使用、三角恒等变换等知识点,考查学生的计算能力.12.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.13.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系14.函数的最小正周期为.【答案】【解析】根据题意,由于即为其周期,故答案为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
1.已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC ⋅=,求c 的值; (2)若c=5,求sin ∠A 的值.2 已知函数()sin()(0,0),f x A x A x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式;(2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值 3.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值;(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 4.设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 5.已知函数1()2sin(),36f x x x π=-∈R .(1)求(0)f 的值;(2)设10,0,,(3)2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦,6(32)5f βπ+=,求sin()αβ+的值. 一.选择填空题1.在ABC 中,若15,,sin 43b B A π=∠==,则a = . 2..在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 3.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )94.设函数(A )y=在单调递增,其图像关于直线对称(B )y=在单调递增,其图像关于直线对称(C )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 4π对称(D )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 2π对称5.)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______.6.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 7.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ二:解答题1.已知函数()4cos sin() 1.6f x x x π=+-(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
高一数学三角函数试题答案及解析1.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合2.若f(cos x)="cos" 3x,则f(sin 30°)的值为 .【答案】-1【解析】根据题意,由于f(cos x)="cos" 3x,则f(sin 30°)=" f(cos" 60°)=cos180°=-1.故可知答案为-1.【考点】三角函数的求值点评:主要是考查了三角函数解析式的求解,属于基础题。
3.已知,计算:(1);(2);(3);(4);【答案】(1);(2);(3);(4);【解析】(1).(2).,,(3).(4).【考点】诱导公式;同角三角函数的基本关系点评:在(1)中,用到的诱导公式有和;在(2)中,用到的公式有和;在(3)中,用到的诱导公式有和;在(4)中,用到的公式有。
4.在中,角所对的边分别为,且满足.(1)求角的大小;(2)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选项,并以此为依据求出的面积(只需写出一个选定方案即可).【答案】(1);(2)选①③,。
【解析】(1)由代入正弦定理得:,即:,又,.又. 6分(2)方案1:选①②.由正弦定理得:.又,. 12分方案2:选①③.由余弦定理得:∴,从而. 12分(选②③,这样的三角形不存在)【考点】正弦定理;余弦定理;三角形的面积公式;三角形内的隐含条件。
点评:熟练掌握三角形内的隐含条件:;。
,使得对任意的实数x,都有5.已知函数,如果存在实数x1成立,则的最小值为()A.B.C.D.【答案】B,使得对任意的实【解析】根据题意,由于,存在实数x1数x,都有成立,可知函数的最小值为-,则周期的最大值为2012,那么可知w值为,故可知的最小值为,选B【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。
三角函数题解1.答案:C解析:将原方程整理为:y=,因为要将原曲线向右、向下分别移动个单位和1个单位,因此可得y=-1为所求方程.整理得(y+1)sin x+2y+1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解,可直接化为:(y+1)cos(x-)+2(y+1)-1=0,即得C选项.2.答案:B图4—5解析:sin2α=2sinαcosα<0 ∴sinαcosα<0即sinα与cosα异号,∴α在二、四象限,又cosα-sinα<0∴cosα<sinα由图4—5,满足题意的角α应在第二象限3.答案:C解析:2sin A cos B=sin(A+B)+sin(A-B)又∵2sin A cos B=sin C,∴sin(A-B)=0,∴A=B4.答案:A解析:函数y=2x为增函数,因此求函数y=2sin x的单调增区间即求函数y=sin x的单调增区间.5.答案:C解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标和,由图4—6可得C答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7)6.答案:C解析:解不等式f(x)cos x<0∴∴0<x<1或<x<37.答案:B图4—8解析:A项:y=cos2x=,x=π,但在区间(,π)上为增函数.B项:作其图象4—8,由图象可得T=π且在区间(,π)上为减函数.C项:函数y=cos x在(,π)区间上为减函数,数y=()x为减函数.因此y=()cos x在(,π)区间上为增函数.D项:函数y=-cot x在区间(,π)上为增函数.8.答案:C解析:由奇偶性定义可知函数y=x+sin|x|,x∈[-π,π]为非奇非偶函数.选项A、D为奇函数,B为偶函数,C为非奇非偶函数.9.答案:B解析:∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cos B<sin A,sin B>cos A,故选B.10.答案:B解析:tan300°+cot405°=tan(360°-60°)+cot(360°+45°)=-tan60°+cot45°=1-.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反,所以可排除A、C,在第二象限内正弦函数与正切函数的增减性也相反,所以排除B.只有在第四象限内,正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y=-x cos x是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,)时,y=-x cos x<0.13.答案:C解法一:由已知得M>0,-+2kπ≤ωx+≤+2kπ(k∈Z),故有g(x)在[a,b]上不是增函数,也不是减函数,且当ωx+=2kπ时g(x)可取到最大值M,答案为C.解法二:由题意知,可令ω=1,=0,区间[a,b]为[-,],M=1,则g(x)为cos x,由基本余弦函数的性质得答案为C.评述:本题主要考查函数y=A sin(ωx+)的性质,兼考分析思维能力.要求对基本函数的性质能熟练运用(正用逆用);解法二取特殊值可降低难度,简化命题.14.答案:B解法一:取α=±,±代入求出sinα、tanα、cotα之值,易知α=-适合,又只有-∈(-,0),故答案为B.解法二:先由sinα>tanα得:α∈(-,0),再由tanα>cotα得:α∈(-,0)评述:本题主要考查基本的三角函数的性质及相互关系,1995年、1997年曾出现此类题型,运用特殊值法求解较好.15.答案:B解析:取f(x)=cos x,则f(x)·sin x=sin2x为奇函数,且T=π.评述:本题主要考查三角函数的奇偶与倍角公式.16.答案:B解法一:P(sinα-cosα,tanα)在第一象限,有tanα>0,A、C、D中都存在使tanα<0的α,故答案为B.解法二:取α=∈(),验证知P在第一象限,排除A、C,取α=∈(,π),则P点不在第一象限,排除D,选B.解法三:画出单位圆如图4—10使sinα-cosα>0是图中阴影部分,又tanα>0可得或π<α<,故选B.评述:本题主要考查三角函数基础知识的灵活运用,突出考查了转化思想和转化方法的选择,采用排除法不失为一个好办法.17.答案:A解析:y=tan(π)=tan(x-),显然函数周期为T=2π,且x=时,y=0,故选A.评述:本题主要考查正切函数性质及图象变换,抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x=cos2x-sin2x<0,所以2kπ+<2x<2kπ+π,k∈Z.解得kπ+<x<kπ+π,k∈Z(注:此题也可用降幂公式转化为cos2x<0).解析二:由sin2x>cos2x得sin2x>1-sin2x,sin2x>.因此有sin x>或sin x<-.由正弦函数的图象(或单位圆)得2kπ+<x<2kπ+π或2kπ+π<x<2kπ+π(k∈Z),2kπ+π<x<2kπ+π可写作(2k+1)π+<x<(2k+1)π+,2k为偶数,2k+1为奇数,不等式的解可以写作nπ+<x<nπ+,n∈Z.评述:本题考查三角函数的图象和基本性质,应注意三角公式的逆向使用.19.答案:Ass解法一:由已知得:sin(x-)≤0,所以2kπ+π≤x-≤2kπ+2π,2kπ+≤x≤2kπ+,令k=-1得-≤x≤,选A.图4—11解法二:取x=,有sin,排除C、D,取x=,有sin=,排除B,故选A.图4—12解法三:设y=sin x,y=cos x.在同一坐标系中作出两函数图象如图4—11,观察知答案为A.解法四:画出单位圆,如图4—12,若sin x≤cos x,显然应是图中阴影部分,故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象,属基本求范围题,入手容易,方法较灵活,排除、数形结合皆可运用.20.答案:C解析:y=4sin(3x+)+3cos(3x+)=5[sin(3x+)+cos(3x+)]=5sin(3x++)(其中tan=)所以函数y=sin(3x+)+3cos(3x+)的最小正周期是T=.故应选C.评述:本题考查了a sinα+b cosα=sin(α+),其中sin=,cos =,及正弦函数的周期性.21.答案:A解法一:将原式配方得(sin2θ+cos2θ)2-2sin2θcos2θ=于是1-sin22θ=,sin22θ=,由已知,θ在第三象限,故2kπ+π<θ<2kπ+从而4kπ+2π<2θ<4kπ+3π故2θ在第一、二象限,所以sin2θ=,故应选A.解法二:由2kπ+π<θ<2kπ+,有4kπ+2π<4kπ+3π(k∈Z),知sin2θ>0,应排除B、D,验证A、C,由sin2θ=,得2sin2θcos2θ=,并与sin4θ+cos4θ=相加得(sin2θ+cos2θ)2=1成立,故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y=sin2x+a cos2x的图象关于直线x=-对称,表明:当x=-时,函数取得最大值,或取得最小值-,所以有[sin(-)+a·cos(-)]2=a2+1,解得a=-1.评述:本题主要考查函数y=a sin x+b cos x的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角,则2kπ+<θ<2kπ+π(k∈Z),即为第一象限角或第三象限角,从单位圆看是靠近轴的部分如图4—13,所以tan>cot.解法二:由已知得:2kπ+<θ<2kπ+π,kπ+<<图4—13kπ+,k为奇数时,2nπ+<<2nπ+(n∈Z);k为偶数时,2nπ+<<2nπ+(n∈Z),都有tan>cot,选A.评述:本题主要考查象限角的概念和三角函数概念,高于课本. 24.答案:解析:∵0<ω<1 ∴T=>2π∴f(x)在[0,]区间上为单调递增函数∴f(x)max=f()即2sin 又∵0<ω<1 ∴解得ω=25.答案:cosπ<sin<tan解析:cos<0,tan=tan ∵0<x<时,tan x>x>sin x>0∴tan>sin>0 ∴tan>sin>cos26.答案:2-解析:.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:解析:tan60°=,∴tan20°+tan40°=-tan20°tan40°,∴tan20°+tan40°+tan20°tan40°=.28.答案:-解析:y=sin(x-)cos x=[sin(2x-)-sin]=[sin(2x-)当sin(2x-)=-1时,函数有最小值,y最小=(-1-)=-.评述:本题考查了积化和差公式和正弦函数有界性(或值域). 29.答案:[]解析:y=sin+cos=sin(),当2kπ-≤+≤2kπ+(k∈Z)时,函数递增,此时4kπ-≤x≤4kπ+(k∈Z),只有k=0时,[-,](-2π,2π).30.答案:-解法一:设法求出sinθ和cosθ,cotθ便可求了,为此先求出sinθ-cosθ的值.将已知等式两边平方得1+2sinθcosθ=变形得1-2sinθcosθ=2-,即(sinθ-cosθ)2=图4—14又sinθ+cosθ=,θ∈(0,π)则<θ<,如图4—14所以sinθ-cosθ=,于是sinθ=,cosθ=-,cotθ=-.解法二:将已知等式平方变形得sinθ·cosθ=-,又θ∈(0,π),有cosθ<0<sinθ,且cosθ、sinθ是二次方程x2-x-=0的两个根,故有cosθ=-,sinθ=,得cotθ=-.评述:本题通过考查三角函数的求值考查思维能力和运算能力,方法较灵活.31.解:(1)y=cos2x+sin x cos x+1=(2cos2x-1)++(2sin x cos x)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+y取得最大值必须且只需2x+=+2kπ,k∈Z,即x=+kπ,k∈Z.所以当函数y取得最大值时,自变量x的集合为{x|x=+kπ,k∈Z}.(2)将函数y=sin x依次进行如下变换:①把函数y=sin x的图象向左平移,得到函数y=sin(x+)的图②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;③把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图象;④把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象;综上得到函数y=cos2x+sin x cos x+1的图象.评述:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力.32.解:(1)y=sin x+cos x=2(sin x cos+cos x sin)=2sin(x+),x∈Ry取得最大值必须且只需x+=+2kπ,k∈Z,即x=+2kπ,k∈Z.所以,当函数y取得最大值时,自变量x的集合为{x|x=+2kπ,k∈Z}(2)变换的步骤是:①把函数y=sin x的图象向左平移,得到函数y=sin(x+)的图象;②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y=2sin(x+)的图象;经过这样的变换就得到函数y=sin x+cos x的图象.评述:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力.33.(1995全国理,22)求sin220°+cos250°+sin20°cos50°的值.33.解:原式=(1-cos40°)+(1+cos100°)+(sin70°-sin30°)=1+(cos100°-cos40°)+sin70°-=-sin70°sin30°+sin70°=-sin70°+sin70°=.评述:本题考查三角恒等式和运算能力.34.(1994上海,21)已知sinα=,α∈(,π),tan(π-β)=,求tan(α-2β)的值.34.解:由题设sinα=,α∈(,π),可知cosα=-,tanα=-又因tan(π-β)=,tanβ=-,所以tan2β=tan(α-2β)=35.(1994全国理,22)已知函数f(x)=tan x,x∈(0,),若x1、x2∈(0,),且x1≠x2,证明[f(x1)+f(x2)]>f().35.证明:tan x1+tan x2=因为x1,x2∈(0,),x1≠x2,所以2sin(x1+x2)>0,cos x1cos x2>0,且0<cos(x1-x2)<1,从而有0<cos(x1+x2)+cos(x1-x2)<1+cos(x1+x2),由此得tan x1+tan x2>,所以(tan x1+tan x2)>tan即[f(x1)+f(x2)]>f().36.已知函数⑴求它的定义域和值域;⑵求它的单调区间;⑶判断它的奇偶性;⑷判断它的周期性.解(1)x必须满足sin x-cos x>0,利用单位圆中的三角函数线及,k∈Z∴函数定义域为,k∈Z∵∴当x∈时,∴∴∴函数值域为[)(3)∵定义域在数轴上对应的点关于原点不对称,∴不具备奇偶性(4)∵ f(x+2π)=f(x)∴函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分sin x-cos x的符号;以Ⅱ、Ⅲ象限角平分线为标准,可区分sin x+cos x的符号37. 求函数f (x)=的单调递增区间解:∵f (x)= 令,∴y=,t是x的增函数,又∵0<<1,∴当y=为单调递增时,cost 为单调递减且cost>0,∴2k≤t<2k+ (kZ),∴2k≤<2k+ (kZ) ,6k-≤x<6k+ (kZ),∴f (x)=的单调递减区间是[6k-,6k+) (kZ)38. 已知f(x)=5sin x cos x-cos2x+(x∈R)⑴求f(x)的最小正周期;⑵求f(x)单调区间;⑶求f(x)图象的对称轴,对称中心。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高中数学三角函数练习题及答案解析(附答案)一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】(1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。
三角函数题解1.2003上海春;15把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位;再沿y 轴向下平移1个单位;得到的曲线方程是A.1-y sin x +2y -3=0B.y -1sin x +2y -3=0C.y +1sin x +2y +1=0D.-y +1sin x +2y +1=02.2002春北京、安徽;5若角α满足条件sin2α<0;cos α-sin α<0;则α在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.2002上海春;14在△ABC 中;若2cos B sin A =sinC;则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.2002京皖春文;9函数y =2sin x 的单调增区间是 A.2k π-2π;2k π+2πk ∈ZB.2k π+2π;2k π+23πk ∈Z C.2k π-π;2k πk ∈Z D.2k π;2k π+πk ∈Z5.2002全国文5;理4在0;2π内;使sin x >cos x 成立的x 取值范围为 A.4π;2π∪π;45πB.4π;π C.4π;45πD.4π;π∪45π;23π6.2002北京;11已知fx 是定义在0;3上的函数;fx 的图象如图4—1所示;那么不等式fx cos x <0的解集是A.0;1∪2;3B.1;2π∪2π;3图4—1C.0;1∪2π;3D.0;1∪1;37.2002北京理;3下列四个函数中;以π为最小正周期;且在区间2π;π上为减函数的是 A.y =cos 2xB.y =2|sin x |C.y =31cos xD.y =-cot x8.2002上海;15函数y =x +sin|x |;x ∈-π;π的大致图象是9.2001春季北京、安徽;8若A 、B 是锐角△ABC 的两个内角;则点P cos B -sin A ;sin B -cos A 在A.第一象限B.第二象限C.第三象限D.第四象限10.2001全国文;1tan300°+cot405°的值是 A.1+3B.1-3C.-1-3D.-1+311.2000全国;4已知sin α>sin β;那么下列命题成立的是 A.若α、β是第一象限角;则cos α>cos β B.若α、β是第二象限角;则tan α>tan β C.若α、β是第三象限角;则cos α>cos β D.若α、β是第四象限角;则tan α>tan β12.2000全国;5函数y =-x cos x 的部分图象是13.1999全国;4函数fx =M sin ωx +ϕω>0;在区间a ;b 上是增函数;且fa =-M ;fb =M ;则函数gx =M cos ωx +ϕ在a ;b 上A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m14.1999全国;11若sin α>tan α>cot α-2π<α<2π);则α∈A.-2π;-4π B.-4π;0C.0;4πD.4π;2π15.1999全国文、理;5若fx sin x 是周期为π的奇函数;则fx 可以是 A.sin x B.cos x C.sin2x D.cos2x16.1998全国;6已知点P sin α-cos α;tan α在第一象限;则在0;2π内α的取值范围是 A.2π;43π∪π;45πB.4π;2π∪π;45π C.2π;43π∪45π;23πD.4π;2π∪43π;π 17.1997全国;3函数y =tan 3121-x π在一个周期内的图象是18.1996全国若sin 2x >cos 2x ;则x 的取值范围是 A.{x |2k π-43π<x <2k π+4π;k ∈Z } B.{x |2k π+4π<x <2k π+45π;k ∈Z }C.{x |k π-4π<x <k π+4π;k ∈Z }D.{x |k π+4π<x <k π+43π;k ∈Z }19.1995全国文;7使sin x ≤cos x 成立的x 的一个变化区间是A.-43π;4πB.-2π;2πC.-4π;43πD.0;π20.1995全国;3函数y =4sin3x +4π+3cos3x +4π的最小正周期是A.6πB.2πC.32πD.3π21.1995全国;9已知θ是第三象限角;若sin 4θ+cos 4θ=95;那么sin2θ等于 A.322 B.-322 C.32D.-32 22.1994全国文;14如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;那么a 等于A.2B.-2C.1D.-123.1994全国;4设θ是第二象限角;则必有 A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θ D.sin2θ-cos 2θ 24.2002上海春;9若fx =2sin ωx 0<ω<1)在区间0;3π上的最大值是2;则ω= .25.2002北京文;13sin 52π;cos 56π;tan 57π从小到大的顺序是 .26.1997全国;18︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.1996全国;18tan20°+tan40°+3tan20°·tan40°的值是_____.28.1995全国理;18函数y =sin x -6πcos x 的最小值是 .29.1995上海;17函数y =sin 2x +cos 2x在-2π;2π内的递增区间是 .30.1994全国;18已知sin θ+cos θ=51;θ∈0;π;则cot θ的值是 .31.2000全国理;17已知函数y =21cos 2x +23sin x cos x +1;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到32.2000全国文;17已知函数y =3sin x +cos x ;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到33.1995全国理;22求sin 220°+cos 250°+sin20°cos50°的值. 34.1994上海;21已知sin α=53;α∈2π;π;tan π-β=21; 求tan α-2β的值.35.1994全国理;22已知函数fx =tan x ;x ∈0;2π;若x 1、x 2∈0;2π;且x 1≠x 2;证明21fx 1+fx 2>f 221x x +.36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f x =121log cos()34x π+的单调递增区间38. 已知fx =5sin x cos x -35cos 2x +325x ∈R ⑴求fx 的最小正周期; ⑵求fx 单调区间;⑶求fx 图象的对称轴;对称中心..39若关于x 的方程2cos 2π + x - sin x + a = 0 有实根;求实数a 的取值范围..参考答案1.答案:C解析:将原方程整理为:y =x cos 21+;因为要将原曲线向右、向下分别移动2π个单位和1个单位;因此可得y =)2cos(21π-+x -1为所求方程.整理得y +1sin x +2y +1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解;可直接化为:y +1cos x -2π+2y +1-1=0;即得C 选项.2.答案:B解析:sin2α=2sin αcos α<0 ∴sin αcos α<0 即sin α与cos α异号;∴α在二、四象限; 又cos α-sin α<0 ∴cos α<sin α由图4—5;满足题意的角α应在第二象限3.答案:C解析:2sin A cos B =sin A +B +sin A -B 又∵2sin A cos B =sin C ; ∴sin A -B =0;∴A =B 4.答案:A解析:函数y =2x 为增函数;因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.5.答案:C解法一:作出在0;2π区间上正弦和余弦函数的图象;解出两交点的横坐标4π和45π;由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线;由正弦线、余弦线知应选C.如图4—7 6.答案:C图4—5解析:解不等式fx cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <3 7.答案:B解析:A 项:y =cos 2x =22cos 1x+;x =π;但在区间2π;π上为增函数.B 项:作其图象4—8;由图象可得T =π且在区间2π;π上为减函数.C 项:函数y =cos x 在2π;π区间上为减函数;数y =31x 为减函数.因此y =31cos x 在2π;π区间上为增函数.D 项:函数y =-cot x 在区间2π;π上为增函数. 8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |;x ∈-π;π为非奇非偶函数. 选项A 、D 为奇函数;B 为偶函数;C 为非奇非偶函数. 9.答案:B解析:∵A 、B 是锐角三角形的两个内角;∴A +B >90°; ∴B >90°-A ;∴cos B <sin A ;sin B >cos A ;故选B. 10.答案:B 解析:tan300°+cot405°=tan360°-60°+cot360°+45°=-tan60°+cot45°=1-3.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反;所以可排除A 、C;在第二象限内正弦函数与正切函数的增减性也相反;所以排除B.只有在第四象限内;正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y =-x cos x 是奇函数;它的图象关于原点对称;所以排除A 、C;当 x ∈0;2π时;y =-x cos x <0.13.答案:C图4—8解法一:由已知得M >0;-2π+2k π≤ωx +ϕ≤2π+2k πk ∈Z ;故有gx 在a ;b 上不是增函数;也不是减函数;且当ωx +ϕ=2k π时gx 可取到最大值M ;答案为C.解法二:由题意知;可令ω=1;ϕ=0;区间a ;b 为-2π;2π;M =1;则gx 为cos x ;由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin ωx +ϕ的性质;兼考分析思维能力.要求对基本函数的性质能熟练运用正用逆用;解法二取特殊值可降低难度;简化命题. 14.答案:B解法一:取α=±3π;±6π代入求出sin α、tan α、cot α之值;易知α=-6π适合;又只有-6π∈-4π;0;故答案为B.解法二:先由sin α>tan α得:α∈-2π;0;再由tan α>cot α得:α∈-4π;0评述:本题主要考查基本的三角函数的性质及相互关系;1995年、1997年曾出现此类题型;运用特殊值法求解较好.15.答案:B解析:取fx =cos x ;则fx ·sin x =21sin2x 为奇函数;且T =π. 评述:本题主要考查三角函数的奇偶与倍角公式. 16.答案:B解法一:P sin α-cos α;tan α在第一象限;有tan α>0; A 、C 、D 中都存在使tan α<0的α;故答案为B.解法二:取α=3π∈2,4ππ;验证知P 在第一象限;排除A 、C;取α=65π∈43π;π;则P 点不在第一象限;排除D;选B.解法三:画出单位圆如图4—10使sin α-cos α>0是图中阴影部分;又tan α>0可得24παπ<<或π<α<45π;故选B. 评述:本题主要考查三角函数基础知识的灵活运用;突出考查了转化思想和转化方法的选择;采用排除法不失为一个好办法.17.答案:A解析:y =tan 3121-x π=tan 21x -32π;显然函数周期为T =2π;且x =32π时;y =0;故选A.评述:本题主要考查正切函数性质及图象变换;抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x =cos 2x -sin 2x <0;所以2k π+2π<2x <2k π+23π;k ∈Z .解得k π+4π<x <k π+43π;k ∈Z 注:此题也可用降幂公式转化为cos2x <0. 解析二:由sin 2x >cos 2x 得sin 2x >1-sin 2x ;sin 2x >21.因此有sin x >22或sin x <-22.由正弦函数的图象或单位圆得2k π+4π<x <2k π+43π或2k π+45π<x <2k π+47πk ∈Z ;2k π+45π<x <2k π+47π可写作2k +1π+4π<x <2k +1π+43π;2k 为偶数;2k +1为奇数;不等式的解可以写作n π+4π<x <n π+43π;n ∈Z . 评述:本题考查三角函数的图象和基本性质;应注意三角公式的逆向使用. 19.答案:A 解法一:由已知得:2 sin x -4π≤0;所以2k π+π≤x -4π≤2k π+2π;2k π+45π≤x ≤2k π+49π;令k =-1得-43π≤x ≤4π;选A. 解法二:取x =32π;有sin 2132cos ,2332-==ππ;排除C 、D;取x =3π;有sin3π=213cos ,23=π;排除B;故选A. 解法三:设y =sin x ;y =cos x .在同一坐标系中作出两函数图象如图4—11;观察知答案为A.解法四:画出单位圆;如图4—12;若sin x ≤cos x ;显然应是图中阴影部分;故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象;属基本求范围题;入手容易;方法较灵活;排除、数形结合皆可运用.20.答案:C图4—12图4—11解析:y =4sin3x +4π+3cos3x +4π=554sin3x +4π+53cos3x +4π=5sin3x +4π+ϕ其中tan ϕ=43所以函数y =sin3x +4π+3cos3x +4π的最小正周期是T =32π. 故应选C.评述:本题考查了a sin α+b cos α=22b a +sin α+ϕ;其中sinϕ=22ba b +;cos ϕ=22ba a +;及正弦函数的周期性.21.答案:A解法一:将原式配方得sin 2θ+cos 2θ2-2sin 2θcos 2θ=95 于是1-21sin 22θ=95;sin 22θ=98;由已知;θ在第三象限; 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π 故2θ在第一、二象限;所以sin2θ=322;故应选A. 解法二:由2k π+π<θ<2k π+23π;有4k π+2π<4k π+3πk ∈Z ;知sin2θ>0;应排除B 、D;验证A 、C;由sin2θ=322;得2sin 2θcos 2θ=94;并与sin 4θ+cos 4θ=95相加得sin 2θ+cos 2θ2=1成立;故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;表明:当x =-8π时;函数取得最大值12+a ;或取得最小值-12+a ;所以有sin -4π+a ·cos -4π2=a 2+1;解得a =-1.评述:本题主要考查函数y =a sin x +b cos x 的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角;则2k π+2π<θ<2k π+πk ∈Z ;即2θ为第一象限角或第三象限角;从单位圆看是靠近轴的部分如图4—13;所以tan2θ>cot 2θ. 解法二:由已知得:2k π+2π<θ<2k π+π;k π+4π<2θ< k π+2π;k 为奇数时;2n π+45π<2θ<2n π+23πn ∈Z ; k为偶数时;2n π+4π<2θ<2n π+2πn ∈Z ;都有tan 2θ>cot 2θ;选A.评述:本题主要考查象限角的概念和三角函数概念;高于课本.24.答案:43 解析:∵0<ω<1 ∴T =ωπ2>2π ∴fx 在0;3π区间上为单调递增函数∴fx max =f3π即2sin23=ωπ又∵0<ω<1 ∴解得ω=4325.答案:cos56π<sin 52π<tan 57π 解析:cos56π<0;tan 57π=tan 52π ∵0<x <2π时;tan x >x >sin x >0 ∴tan 52π>sin 52π>0 ∴tan 57π>sin 52π>cos 56π26.答案:2-3解析:︒︒︒︒=︒︒-︒-︒︒︒+︒-︒=︒︒-︒︒︒+︒8cos 15cos 8cos 15sin 8sin 15sin )815cos(8sin 15cos )815sin(8sin 15sin 7cos 8sin 15cos 7sin图4—133230sin 30cos 115tan -=︒︒-=︒=.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ;∴tan20°+tan40°=3-3tan20°tan40°;∴tan20°+tan40°+3tan20°tan40°=3.28.答案:-43 解析:y =sin x -6πcos x =21sin2x -6π-sin 6π=21sin2x -6π-21当sin2x -6π=-1时;函数有最小值;y 最小=21-1-21=-43. 评述:本题考查了积化和差公式和正弦函数有界性或值域.29.答案:2,23ππ-解析:y =sin2x +cos 2x =2sin 42π+x ;当2k π-2π≤2x +4π≤2k π+2πk ∈Z 时;函数递增;此时4k π-23π≤x ≤4k π+2πk ∈Z ;只有k =0时;-23π;2π-2π;2π. 30.答案:-43 解法一:设法求出sin θ和cos θ;cot θ便可求了;为此先求出sin θ-cos θ的值. 将已知等式两边平方得1+2sin θcos θ=251 变形得1-2sin θcos θ=2-251;即sin θ-cos θ2=2549 又sin θ+cos θ=51;θ∈0;π 则2π<θ<43π;如图4—14 所以sin θ-cos θ=57;于是 sin θ=54;cos θ=-53;cot θ=-43. 解法二:将已知等式平方变形得sin θ·cos θ=-2512;又θ∈0;π;有cos θ<0<sin θ;且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根;故有cos θ=-53; sin θ=54;得cot θ=-43. 评述:本题通过考查三角函数的求值考查思维能力和运算能力;方法较灵活. 31.解:1y =21cos 2x +23sin x cos x +1=412cos 2x -1+41+432sin x cos x +1 =41cos2x +43sin2x +45=21cos2x ·sin 6π+sin2x ·cos 6π+45=21sin2x +6π+45y 取得最大值必须且只需2x +6π=2π+2k π;k ∈Z ;图4—14即x =6π+k π;k ∈Z .所以当函数y 取得最大值时;自变量x 的集合为{x |x =6π+k π;k ∈Z }.2将函数y =sin x 依次进行如下变换: ①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②把得到的图象上各点横坐标缩短到原来的21倍纵坐标不变;得到函数 y =sin2x +6π的图象;③把得到的图象上各点纵坐标缩短到原来的21倍横坐标不变;得到函数 y =21sin2x +6π的图象;④把得到的图象向上平移45个单位长度;得到函数y =21sin2x +6π+45的图象;综上得到函数y =21cos 2x +23sin x cos x +1的图象.评述:本题主要考查三角函数的图象和性质;考查利用三角公式进行恒等变形的技能以及运算能力.32.解:1y =3sin x +cos x =2sin x cos6π+cos x sin6π=2sin x +6π;x ∈Ry 取得最大值必须且只需x +6π=2π+2k π;k ∈Z ;即x =3π+2k π;k ∈Z .所以;当函数y 取得最大值时;自变量x 的集合为{x |x =3π+2k π;k ∈Z }2变换的步骤是:①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②令所得到的图象上各点横坐标不变;把纵坐标伸长到原来的2倍;得到函数 y =2sin x +6π的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.评述:本题主要考查三角函数的图象和性质;利用三角公式进行恒等变形的技能及运算能力.33.解:原式=211-cos40°+211+cos100°+21sin70°-sin30° =1+21cos100°-cos40°+21sin70°-41=43-sin70°sin30°+21sin70° =43-21sin70°+21sin70°=43. 评述:本题考查三角恒等式和运算能力.34.解:由题设sin α=53;α∈2π;π; 可知cos α=-54;tan α=-43又因tan π-β=21;tan β=-21;所以tan2β=34tan 1tan 22-=-ββtan α-2β=2471134432tan tan 12tan tan =++-=+-βαβα 35.证明:tan x 1+tan x 2=2121212211cos cos sin cos cos sin cos sin cos sin x x x x x x x x x x +=+ 2121cos cos )sin(x x x x +=)cos()cos()sin(2212121x x x x x x -+++=因为x 1;x 2∈0;2π;x 1≠x 2;所以2sin x 1+x 2>0;cos x 1cos x 2>0;且0<cos x 1-x 2<1; 从而有0<cos x 1+x 2+cos x 1-x 2<1+cos x 1+x 2; 由此得tan x 1+tan x 2>)cos(1)sin(22121x x x x +++;所以21tan x 1+tan x 2>tan 221x x +即21fx 1+fx 2>f 221x x +.36.解1x 必须满足sin x -cos x >0;利用单位圆中的三角函数线及52244k x k ππππ+<<+;k ∈Z ∴函数定义域为)45k 2,4k 2(π+ππ+π;k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时;0sin()14x π<-≤∴0sin cos x x <-∴121log 2y -≥∴ 函数值域为+∞-,213∵()f x 定义域在数轴上对应的点关于原点不对称;∴()f x 不具备奇偶性4∵ fx+2π=fx ∴ 函数fx 最小正周期为2π 注;利用单位圆中的三角函数线可知;以Ⅰ、Ⅱ象限角平分线为标准;可区分sin x -cos x 的符号;以Ⅱ、Ⅲ象限角平分线为标准;可区分sin x +cos x 的符号37.解:∵f x =121log cos()34x π+令431π+=x t ;∴y=t cos log 21;t 是x 的增函数;又∵0<21<1;∴当y=t cos log 21为单调递增时;cost 为单调递减 且cost>0;∴2k π≤t<2k π+2πk ∈Z;∴2k π≤431π+x <2k π+2π k ∈Z ;6k π-43π≤x<6k π+43π k ∈Z;∴f x =)431cos(log 21π+x 的单调递减区间是6k π-43π;6k π+43πk ∈Z38.解: 1T=π 2增区间k π-12π;k π+125π;减区间k π+]1211k ,125π+ππ 3对称中心62k π+π;0;对称轴π+π=1252k x ;k ∈Z39.解:原方程变形为:2cos 2x - sin x + a = 0 即 2 - 2sin 2x - sin x + a = 0;∴817)41(sin 22sin sin 222-+=-+=x x x a ;∵- 1≤sin x ≤1 ;∴81741sin m in -=-=a x 时,当; 11sin m ax ==a x 时,当; ∴a 的取值范围是1,817-。