13-14高数A2期中试卷
- 格式:doc
- 大小:202.00 KB
- 文档页数:2
高数A2试题参考答案一、填空题:1. 2222xdx ydy x y ++ ;2. 110(,)dy f x y dx ⎰;; 4. (3,3)- 5. 22x Ce -+二、选择题:1).D 2).A 3) C . 4).C 5).B 三、计算题:(共21分)1、略解:123uyf f f x∂'''=++∂ 221112132232332222uy f yf yf f f f x∂''''''''''''=+++++∂ 2、略解:D⎰⎰ 220sin d d πππθρρρ=⎰⎰=26π-3、略解:补上曲面1∑:0,z =(,)x y ∈22:x y R +≤xy D ,取上则 有高斯公式得333x dydz y dzdx z dxdy ∑++⎰⎰ =11333333x dydz y dzdx z dxdy x dydz y dzdx z dxdy ∑+∑∑++-++⎰⎰⎰⎰=-32222222()03sin Rx y z dv d d d ππθϕρρϕρΩ++-=-⎰⎰⎰⎰⎰⎰ 565R π=-4、略解:补上OA:0,y x =从0到4。
设L 与OA 所围成的区域为D , 则2222(2)(2)(2)(2)LL OAy xy dx x x y dy y xy dx x x y dy +++++=++++⎰⎰-22(2)(2)OAy xy dx xx y dy ++++⎰=4[22(21)]0Dx x dxdy dx +-+-⎰⎰⎰2Ddxdy π==⎰⎰5、略解:方程20y y y '''--=的特征方程为2r -r-2=0,其根为121,2r r =-=, 故微分方程20y y y '''--=的通解为212x x y C e C e -=+1λ=不是特征方程的根,故设x y ae *=,代入原方程可得1a =- 22x y y y e '''--=的一个特解为x y e =-6、略解:从点A (1,1)到点B (2,2)的方向的方向余弦为cos 22sin αα==在点A (1,1)处4,2,z zx y∂∂==∂∂cos sin z z zl x xαα∂∂∂=+=∂∂∂ (1,1)|42grandz i j =+7、略解:(1)lim1(1)n n n n n ρ→∞-==+ ,∴级数的收敛半径11R ρ==。
某某一中期中考试试题纸高一数学一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={2,3},B={2,3,4},C={2,4,5}则()A B C ⋂⋃= ( )A .{2,3,4}B .{2,3,5}C .{3,4,5}D .{2,3,4,5}2.下列四组函数中,表示同一函数的是( )A .y =x -1与yB .y =x -1与y =x -1x -1C .y =lg x -2与y =lg x100D .y =4lg x 与y =2lg x 23.已知函数2log (0)()3(0)xx x f x x >⎧=⎨≤⎩, 那么)]41([f f 的值为( )A .91 B .9 C .91-D .9- 4.下列函数中,是偶函数且在区间),0(+∞上是减函数的为 ( )A.1y x -= B. 2y x = C. 2y x -= D.xy )21(=5.已知0.312a ⎛⎫= ⎪⎝⎭,20.3b -=,12log 2c =,则,,a b c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >> 6.知函数f (x )=31323-+-ax ax x 的定义域是R ,则实数a 的取值X 围是( )A .a >31B .-12<a ≤0C.-12<a <0D .a ≤31 7. 设奇函数()x f 在()∝+,0上为增函数,且(),01=f 则不等式()()0<--xx f x f 的解集( )A.()()∝+⋃-,10,1B.()()1,01,⋃-∝-C. ()()∝+⋃-∝-,11,D.()()1,00,1⋃-8. 若关于x 的方程1|31|x k +-=有两个不相等的实根,则实数k 的取值X 围是( )A .(1,0)-B .(0,1)C .(1,)+∞D .(1,2)9. 设函数()f x =K ,定义函数(),()(),()K f x f x Kf x K f x K ≤⎧=⎨>⎩若对于函数()f x =定义域内的任意 x ,恒有()()K f x f x =,则( )A .K 的最大值为B .K 的最小值为C .K 的最大值为1D .K 的最小值为110.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x m =.在此基础上给出下列关于函数(){}f x x x =-的四个结论:①函数()y f x =的定义域为R ,值域为1[0,]2;②函数()y f x =的图象关于直线()2k x k Z =∈对称;③函数()y f x =是偶函数;④函数()y f x =在11[,]22-上是增函数.其中正确结论的个数是( )A.1B.2C.3D.4二、填空题(本大题共7小题,每小题4分,满分28分)11.142()(0.25)lg 252lg 23+--=. (答案化到最简)12.已知函数(21)32f x x +=+,且()4f a =,则a =.13. 已知集合2{,1,3}P a a =+-,2{1,21,3}Q a a a =+--,若{3}P Q =-,则a 的值是.14. 函数log (23)8a y x =-+的图象恒过定点P ,P 在幂函数()f x 的图象上, 则(3)f =. 15. 函数)65(log 221+-=x x y的单调减区间为.16.32R ()0()f x x f x x x ≥=+已知定义在上的奇函数,当时,,()f x =则.17.已知函数212,1(),1ax a x f x x ax x +-<⎧=⎨-≥⎩,若存在12,x x ∈R ,12x x ≠,使12()()f x f x =成立,则实数a 的取值X 围是.三、解答题(本大题共5小题,满分42分)18. 已知函数25y x x =+-的定义域为集合Q,集合{|121},P x a x a =+≤≤+.,(1)若3a =,求()R C P Q ;(2)若P Q ⊆,某某数a 的取值X 围.19. 某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当t ∈[0,14]时,曲线是二次函数图象的一部分,当t ∈[14,40]时,曲线是函数log (5)83a y x =-+ (a >0且a ≠1)图象的一部分.根据专家研究,当注意力指数p 大于等于80时听课效果最佳. (1)试求p =f (t )的函数关系式;(2)老师在什么时段内安排核心内容能使得学生听课效果最佳?请说明理由.20.已知函数33()(log )(log 3)27xf x x = (1)若11[,]279x ∈,求函数()f x 最大值和最小值; (2)若方程()0f x m +=有两根,αβ,试求αβ⋅的值.21.已知函数24()(01)2x xa a f x a a a a+-=>≠+且是定义在),(+∞-∞上的奇函数. (1)求a 的值;(2)求函数)(x f 的值域;(3)当]1,0(∈x 时,()22xtf x ≥-恒成立,某某数t 的取值X 围.22.设函数22()(21)3f x x a x a a =++++(1)若f(x)在[0,2]上的最大值为0,某某数a 的值;(2)若f(x)在区间[,]αβ上单调,且{}|(),[,]y y f x x αβαβ=≤≤=,某某数a 的取值X 围。
试卷类型:A 卷河北冀州中学2013—2014学年度下学期期中考试高二年级文科数学试题考试时间120分钟 试题分数150分第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、在等比数列{an}中,a1+a3=5,a2+a4=10,则a7= ( ) A.64 B.32 C.16 D.1282、等差数列{an}中,已知a1=-12,S13=0,使得an>0的最小正整数n 为 ( ) A.7 B.8 C.9 D.103、在等比数列{an}中,a1+an=34,a2an -1=64,且前n 项和Sn=62,则项数n 等于( ) A.4 B.5 C.6 D.74、圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( ) A.233π B.23π C.736π D.733π5、函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( ).A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值6、定义在R 上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则在R 上方程f(x)=0的实根个数为( )A.1B.2C.3D.47、某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π 8、已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3 B .-17 C .-43D .-79、在锐角△ABC 中,角A ,B 所对的边长分别为a ,b.若2asin B =3b ,则角A 等于A.π3B.π4C.π6D.π12( )10、已知向量a 、b 的夹角为45°,且|a |=1,|2a -b |=10,则| b |=( ) A .3 2 B .2 2 C . 2 D .1 11、如果幂函数222(33)m m y m m x--=-+的图象不过原点,则m 取值是( ).A .12m -≤≤B .1m =或2m =C .2m =D .1m = 12、若函数()log ()m f x m x =-在区间[3,5]上的最大值比最小值大1,则实数m=A .3.3.2.2+ ) 第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分。
2023学年第二学期高二年级数学期中考试试卷(A )(答案在最后)时间:120分钟满分:150分注:请将试题的解答全部写在答题纸的相应位置,写在试卷上无效.一、填空题(本大题共有12小题,第1-6题每题4分,第7-12题每题5分,满分54分)考生应在答题纸的相应位置直接填写结果.1.设随机变量X 服从二项分布19,3B ⎛⎫ ⎪⎝⎭,则[]D X =_________.2.8位选手参加射击比赛,最终的成绩(环数)分别为42,38,45,43,41,47,44,46,这组数据的第75百分位数是_________.参考表格:3.在一个22⨯列联表中,通过数据计算28.325χ=,则这两个变量间有关的可能性为________.参考表格:()20P x χ≥0.050.0250.0100.0010x 3.841 5.024 6.63510.8284.曲线()ln f x x x =+在1x =处的切线方程是________.5.某同学在一次考试中,8道单选题中有6道有思路,2道没思路,有思路的有90%的可能性能做对,没思路的有25%的可能性做对,则他在8道题中随意选择一道题,做对的概率是__________.6.“守得住经典,当得了网红”,这是时下人们对国货最高的评价,网络平台的发展让越来越多的消费者熟悉了国货品牌的优势,使得各大国货品牌都受到高度关注,销售额迅速增长,已知某国货品牌2023年8-12月在D 网络平台的月销售额y (单位:百万元)与月份x 具有线性相关关系,并根据这5个月的月销售额,求得回归方程为 4.23ˆy x =+,则该国货品牌2023年8-12月在D 网络平台的总销售额为______百万元.7.今天星期三,再过1天是星期四,那么再过20242天是星期_________.8.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=________.(用数字作答)9.双曲线具有如下光学性质:从一个焦点发出的光线经双曲线反射后,反射光线的反向延长线一定经过另一个焦点.已知双曲线()2222:10x yC a ba b-=>,,如图从C的一个焦点F射出的光线,经过P Q,两点反射后,分别经过点M和N.若12cos13PM PQ PM PQ PQN∠+=-=-,,则C的离心率为_________. 10.函数()11,03ln,0x xf xx x⎧+≤⎪=⎨⎪>⎩,若方程()0f x ax-=恰有3个根,则实数a的取值范围为______.11.一只蜜蜂从蜂房A出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房........此类推,用na表示蜜蜂爬到n号蜂房的方法数.设集合{}232025S a a a=,,,,集合B是集合S的非空子集,则B中所有元素之和为奇数的概率为________.12.现有6根绳子,共有12个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这6根绳子恰好能围成一个圈的概率为______.二、选择题(本大题共有4小题,第13-14题每远4分,第15-16题每题5分,满分18分)毎题有且只有一个正确选项.考生应在答題纸的相应位置,将正确选项用2B铅笔涂黑.13.要调查下列问题,适合采用全面调查(普查)的是()A.某城市居民3月份人均网上购物的次数B.某品牌新能源汽车最大续航里程C.检测一批灯泡的使用寿命D.调查一个班级学生每周的体育锻炼时间14.对两个变量的三组数据进行统计,得到以下散点图,关于两个变量相关系数的比较,正确的是()A.123r r r >>B.231r r r >>C.132r r r >>D.321r r r >>15.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布2(38,7)N ,从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布2(44,2)N ,下地铁后从地铁站步行到单位要5分钟,从统计的角度出发,下列说法中合理的有()参考数据:若2()~(,)P Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=A .若8:00出门,则开私家车不会迟到B.若8:02出门,则乘坐地铁上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大D.若8:12出门,则乘坐地铁几乎不可能上班不迟到16.n S 是数列{}n a 前n 项和,11243,41n n a a a n +==--,给出以下两个命题:命题211212:2n p a a a a a a n n +++=+ ;命题q :对任意正整数n ,不等式()ln 21n S n n >++恒成立.下列说法正确的是()A.命题p q 、都是真命题B.命题p 为真命题,命题q 为假命题C.命题p 为假命题,命题q 为真命题D.命题p q 、都是假命题三、解答题(本大题共5题,满分78分)解答下列各题须在答题纸的相应位置写出必要的步骤.17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点.(1)求异面直线EF 与BC 所成的角;(2)求三棱锥11C B D F -的体积.18.已知函数2()6ln(1),f x ax x a =-+为常数.(1)若()y f x =在1x =处有极值,求a 的值并判断1x =是极大值点还是极小值点;(2)若()y f x =在[]23,上是增函数,求实数a 的取值范围.19.本市某区对全区高中生的身高(单位:厘米)进行统计,得到如下的频率分布直方图.(1)若数据分布均匀,记随机变量X 为各区间中点所代表的身高,写出X 的分布列及期望.(2)现从身高在区间[)170,190的高中生中分层抽样抽取一个160人的样本.若身高在区间[)170,180中样本的均值为176厘米,方差为10;身高在区间[)180,190中样本的均值为184厘米,方差为16,试求这160人身高的方差.20.已知椭圆()22:11x C y t t+=>的左、右焦点分别为12F F 、,直线():0l y kx m m =+≠与椭圆C 交于M N 、两点(M 点在N 点的上方),与y 轴交于点E .(1)当3t =时,点A 为椭圆C 上除顶点外任一点,求12AF F △的周长;(2)当4t =且直线l 过点()10D -,时,设EM DM EN DN λμ== ,,求证:λμ+为定值,并求出该值;(3)若椭圆C 的离心率为223,当k 为何值时,22OM ON +恒为定值;并求此时MON △面积的最大值.21.对于有穷数列()12,,,3m a a a m ≥ ,若存在等差数列{}n b ,使得11221m m m b a b a b a b +≤<≤<<≤< ,则称数列{}n a 是一个长为m 的“弱等差数列”.(1)证明:数列124,,是“弱等差数列”;(2)设函数()sin f x x x =,()f x 在()0,2024内的全部极值点按从小到大的顺序排列为12,,,m a a a ,证明:12,,,m a a a 是“弱等差数列”;(3)证明:存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.2023学年第二学期高二年级数学期中考试试卷(A )时间:120分钟满分:150分注:请将试题的解答全部写在答题纸的相应位置,写在试卷上无效.一、填空题(本大题共有12小题,第1-6题每题4分,第7-12题每题5分,满分54分)考生应在答题纸的相应位置直接填写结果.1.设随机变量X 服从二项分布19,3B ⎛⎫ ⎪⎝⎭,则[]D X =_________.【答案】2【解析】【分析】根据给定条件,利用二项分布的方差公式计算得解.【详解】依题意,11[]9(1)233D X =⨯⨯-=.故答案为:22.8位选手参加射击比赛,最终的成绩(环数)分别为42,38,45,43,41,47,44,46,这组数据的第75百分位数是_________.参考表格:【答案】45.5【解析】【分析】先排序,再由875%6⨯=,可取第6和第7个数之和的一半即可得解.【详解】先排序可得38,41,42,43,44,45,46,47,由875%6⨯=,所以第75百分位数是454645.52+=.故答案为:45.53.在一个22⨯列联表中,通过数据计算28.325χ=,则这两个变量间有关的可能性为________.参考表格:()20P x χ≥0.050.0250.0100.0010x 3.841 5.024 6.63510.828【答案】99%##0.99【解析】【分析】根据独立性检验的知识确定正确答案.【详解】由于28.325 6.635χ=>,所以两个变量之间有关系的可能性为99%.故答案为:99%4.曲线()ln f x x x =+在1x =处的切线方程是________.【答案】21y x =-【解析】【分析】求出函数的导函数,把1x =代入即可得到切线的斜率,然后根据(1,1)和斜率写出切线的方程即可.【详解】解:由函数ln y x x =+知1'1y x=+,把1x =代入'y 得到切线的斜率112k =+=则切线方程为:12(1)y x -=-,即21y x =-.故答案为:21y x =-【点睛】本题考查导数的几何意义,属于基础题.5.某同学在一次考试中,8道单选题中有6道有思路,2道没思路,有思路的有90%的可能性能做对,没思路的有25%的可能性做对,则他在8道题中随意选择一道题,做对的概率是__________.【答案】5980【解析】【分析】根据全概率公式求解即可.【详解】设事件A 表示“考生答对”,设事件B 表示“考生选到有思路的题”则小明从这8道题目中随机抽取1道做对的概率为:3159()()()()(0.90.254480P A P B P A B P B P A B =+=⨯+⨯=∣∣.故答案为:5980.6.“守得住经典,当得了网红”,这是时下人们对国货最高的评价,网络平台的发展让越来越多的消费者熟悉了国货品牌的优势,使得各大国货品牌都受到高度关注,销售额迅速增长,已知某国货品牌2023年8-12月在D 网络平台的月销售额y (单位:百万元)与月份x 具有线性相关关系,并根据这5个月的月销售额,求得回归方程为 4.23ˆyx =+,则该国货品牌2023年8-12月在D 网络平台的总销售额为______百万元.【答案】225【解析】【分析】根据样本中心点()x y 在回归直线上的性质,先计算出x ,代入回归方程求得y ,再用y 代表月平均销售额,即可算得总销售额.【详解】依题意,89101112105x ++++==,因样本中心点()x y 在回归直线上,代入得:4.210345y =⨯+=,所以该国货品牌2023年8-12月在D 网络平台的总销售额为545225⨯=百万元.故答案为:225.7.今天星期三,再过1天是星期四,那么再过20242天是星期_________.【答案】天(或日)【解析】【分析】首先由67432642026474724284(71)⨯+==⨯=+,再利用二项展开式即可得解.【详解】由()()6742024674326740674167367467467467422484714C 7C 7C ⨯+==⨯=+=⋅+⋅++ ()067416736736746746744C 7C 7C 74=⋅+⋅+⋅+ ,所以20242除7余4,所以再过20242天是星期天.故答案为:天(或日).8.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=________.(用数字作答)【答案】15【解析】【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.9.双曲线具有如下光学性质:从一个焦点发出的光线经双曲线反射后,反射光线的反向延长线一定经过另一个焦点.已知双曲线()2222:10x y C a b a b-=>,,如图从C 的一个焦点F 射出的光线,经过P Q ,两点反射后,分别经过点M 和N .若12cos 13PM PQ PM PQ PQN ∠+=-=- ,,则C 的离心率为_________.【答案】3【解析】【分析】作出MP ,QN 的反向延长线交于双曲线的左焦点1F ,由已知可得PM PQ ⊥ ,112cos 13PQF ∠=,设1||13||12,F Q t PQ t ==,可得||2,23,PF t a t ==由勾股定理可求得1||,F F =进而可求C 的离心率.【详解】由双曲线的光学性质可知MP ,QN 的反向延长线交于双曲线的左焦点1F ,如图所示:由||||PM PQ PM PQ +=- ,两边平方可得222222PM PM PQ PQ PM PM PQ PQ ++=-+ ,所以0PM PQ = ,所以PM PQ ⊥ ,所以190∠=︒F PF ,又12cos 13PQN ∠=-,所以112cos 13PQF ∠=,设1||13||12,F Q t PQ t ==,则1||5PF t =,设||FQ m =,则||12FP t m =-,根据双曲线定义,可得11||||||||2PF PF QF QF a -=-=,所以5(12)132t t m t m a --=-=,解得10m t =,所以||2,23,PF t a t ==在1Rt F PF 中,222211||||||29,F F PF PF t =+=所以1||,F F =所以C的离心率为3c e a ==.故答案为:3.10.函数()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若方程()0f x ax -=恰有3个根,则实数a 的取值范围为______.【答案】11,3e ⎡⎫⎪⎢⎣⎭【解析】【分析】画出()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩的图象,再分析()y f x =与直线y ax =的交点个数即可.【详解】画出函数()f x 的图象,如图所示:由题意可知0a >,先求y ax =与ln y x =相切时的情况,由图可得此时ln y x =,1y x'=设切点为()00,ln x x ,则0001ln a x x ax ⎧=⎪⎨⎪=⎩,解得0e x =,1e a =,此时直线e x y =,此时直线e x y =与()y f x =只有两个公共点,所以1e a <,又斜率11e 3>,又当13a =时13y x =与11,(0)3y x x =+≤平行,13y x =与()y f x =有三个公共点,而当13a <,直线y ax =与()y f x =有四个交点,故11,3e a ⎡⎫∈⎪⎢⎣⎭.故答案为:11,3e ⎡⎫⎪⎢⎣⎭11.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房........此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数.设集合{}232025S a a a = ,,,,集合B 是集合S 的非空子集,则B 中所有元素之和为奇数的概率为________.【答案】20232024221-【解析】【分析】根据题意,得到数列{}n a 满足12n n n a a a --=+,求得在{}232025S a a a = ,,,偶数项共有675项,奇数项为1349项,得到S 中有202421-的非空子集,以及B 中所有元素之和为奇数的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意知,该蜜蜂爬到1号蜂房的路线数为1,第2号蜂房的路线数为2,第3号蜂房的路线数为3,第4号蜂房的路线数为5,第5号蜂房的路线数为8, ,则第n 号蜂房的路线数为12(3,N )n n n a a a n n *--=+≥∈,所以54575686713,21,34,a a a a a a a a a =+==+==+= ,即数列{}n a 为1,2,3,5,8,13,21,34, ,其中25811,,,,a a a a 为偶数,所以在{}232025S a a a = ,,,偶数项共有675项,奇数项为1349项,又由{}232025S a a a = ,,,,可得S 中有202421-的非空子集,若B 中元素之和为奇数,则B 中的奇数共有奇数个,偶数可以随意,所以满足条件的B 的个数为:01267513134867513482023675675675675134913491349(C C C C )(C C C )222+++++++=⋅= ,所以B 中所有元素之和为奇数的概率为20232024221P =-.故答案为:20232024221-.12.现有6根绳子,共有12个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这6根绳子恰好能围成一个圈的概率为______.【答案】256693【解析】【分析】直接根据圆排列及古典概型计算.【详解】依题意,环排列有:11111108642C C C C C 3840⋅⋅⋅⋅=种,总的连接方式有:22222121086466C C C C C 66452815610395A 720⋅⋅⋅⋅⨯⨯⨯⨯==种,所以恰好能围成一个圈的概率为384025610395693P ==.故答案为:256693.二、选择题(本大题共有4小题,第13-14题每远4分,第15-16题每题5分,满分18分)毎题有且只有一个正确选项.考生应在答題纸的相应位置,将正确选项用2B 铅笔涂黑.13.要调查下列问题,适合采用全面调查(普查)的是()A.某城市居民3月份人均网上购物的次数B.某品牌新能源汽车最大续航里程C.检测一批灯泡的使用寿命D.调查一个班级学生每周的体育锻炼时间【答案】D 【解析】【分析】结合普查和抽查的适用条件即可求解.【详解】A ,B 选项中要调查的总体数量和工作量都较大,适合采用抽查;C 选项的检测具有毁损性,适合抽查;D 选项要调查的总体数量较小,工作量较小,适合采用普查,故选:D.14.对两个变量的三组数据进行统计,得到以下散点图,关于两个变量相关系数的比较,正确的是()A.123r r r >>B.231r r r >>C.132r r r >>D.321r r r >>【答案】C 【解析】【分析】根据散点图中点的分布的特征,确定3个图对应的相关系数的正负以及大小关系,可得答案.【详解】由散点图可知第1个图表示的正相关,故10r >;第2,3图表示的负相关,且第2个图中的点比第3个图中的点分布更为集中,故23,0r r <,且23r r >,故230r r <<,综合可得231r r r <<,即132r r r >>,故选:C15.江先生每天9点上班,上班通常开私家车加步行或乘坐地铁加步行,私家车路程近一些,但路上经常拥堵,所需时间(单位:分钟)服从正态分布2(38,7)N ,从停车场步行到单位要6分钟;江先生从家到地铁站需要步行5分钟,乘坐地铁畅通,但路线长且乘客多,所需间(单位:分钟)服从正态分布2(44,2)N ,下地铁后从地铁站步行到单位要5分钟,从统计的角度出发,下列说法中合理的有()参考数据:若2()~(,)P Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=A.若8:00出门,则开私家车不会迟到B.若8:02出门,则乘坐地铁上班不迟到的可能性更大C.若8:06出门,则乘坐地铁上班不迟到的可能性更大D.若8:12出门,则乘坐地铁几乎不可能上班不迟到【答案】D 【解析】【分析】对于A ,由(59)0.0013P Z ≥=即可判断;对于BC ,分别计算开私家车及乘坐地铁不迟到的概率即可判断;对于D ,计算(38)0.0013P Z ≤=即可判断【详解】对于A ,当满足1(1759)10.9974(59)0.001322P Z P Z -<≤-≥===时,江先生仍旧有可能迟到,只不过发生的概率较小,故A 错误;对于B ,若8:02出门,①江先生开私家车,当满足1(2452)(52)(2452)0.97722P Z P Z P Z -<<≤=+<<=时,此时江先生开私家车不会迟到;②江先生乘坐地铁,当满足()()().1P 40Z 48P Z 48P 40Z 48097722-<<≤=+<<=时,此时江先生乘坐地铁不会迟到;此时两种上班方式,江先生不迟到的概率相当,故B 错误;对于C ,若8:06出门,①江先生开私家车,当满足1(3145)(48)(45)(3145)0.84132P Z P Z P Z P Z -<<≤>≤=+<<=时,此时江先生开私家车不会迟到;②江先生乘坐地铁,当满足().1P Z 44052≤==时,此时江先生乘坐地铁不会迟到;此时两种上班方式,显然江先生开私家车不迟到的可能性更大,故C 错误;对于D ,若8:12出门,江先生乘坐地铁上班,当满足()().1P 38Z 50P Z 38000132-<<≤==时,江先生乘坐地铁不会迟到,此时不迟到的可能性极小,故江先生乘坐地铁几乎不可能上班不迟到,故D 正确.故选:D.【点睛】关键点点睛:本题解决的关键是分别分析得江先生使用不同交通工具在路上所花时间,结合正态分布的对称性求得其对应的概率,从而得解.16.n S 是数列{}n a 前n 项和,11243,41n n a a a n +==--,给出以下两个命题:命题211212:2n p a a a a a a n n +++=+ ;命题q :对任意正整数n ,不等式()ln 21n S n n >++恒成立.下列说法正确的是()A.命题p q 、都是真命题B.命题p 为真命题,命题q 为假命题C.命题p 为假命题,命题q 为真命题D.命题p q 、都是假命题【答案】A 【解析】【分析】由题意可求出12n a a a 的表达式,利用等差数列的求和公式可判断命题p ;证明出当01x <≤时,ln 1≤-x x ,可得出212ln2121n n n +≤--,再结合放缩法可判断命题q .【详解】因为()()11244223,4121212121n n n n a a a a a n n n n n +⎛⎫==-=-=-- ⎪--+-+⎝⎭,所以()12221121n n a a n n +-=-+--,所以,数列221n a n ⎧⎫-⎨⎬-⎩⎭为常数列,则122121n a a n -=-=-,所以22112121n n a n n +=+=--;所以123521211321n n a a a n n +=⨯⨯⨯=+- ,令21n b n =+,则12n n b b +-=,所以数列{}n b 为首项为3,公差为2的等差数列,因此()()2112123213572122n n n a a a a a a n n n +++++=+++++=+ ,即命题p 正确;设()1ln x x x ϕ=--,其中01x <≤,则()111xx x xϕ'-=-=,当01x <<时,()0x ϕ'<,()x ϕ单调递减,则()()10x ϕϕ≥=,即ln 1≤-x x ,当且仅当1x =时,等号成立,所以21212ln1212121n n n n n ++<-=---,即2235212ln ln ln 3211321n n S n n n n +⎛⎫=++++>++++ ⎪--⎝⎭ ,则()3521ln ln 211321n n S n n n n +⎛⎫=+⨯⨯⨯=++ ⎪-⎝⎭,所以命题q 正确.故选:A.三、解答题(本大题共5题,满分78分)解答下列各题须在答题纸的相应位置写出必要的步骤.17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点.(1)求异面直线EF 与BC 所成的角;(2)求三棱锥11C B D F -的体积.【答案】(1)arccos 3.(2)43.【解析】【分析】(1)分别以1,,DA DC DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出异面直线EF 与BC 所成的角.(2)先求出11C B D S ,再由向量法求出点F 到平面11D B C 的距离,由此根据1111C B D F F B D C V V --=即可求出三棱锥11C B D F -的体积.【小问1详解】以D 为坐标原点,分别以1,,DA DC DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,∵在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为线段1,DD BD 的中点,∴(0,0,1),(1,1,0),(2,2,0),(0,2,0)E F B C ,∴(1,1,1),(2,0,0)EF BC =-=-,设异面直线EF 与BC 所成的角为π,(0]2θθ∈,,则|||2|3cos cos ,|3||||32|EF BC EF BC EF BC θ⋅=〈〉==⋅⨯,∴异面直线EF 与BC 所成的角为3arccos 3.【小问2详解】∵在棱长为2的正方体1111ABCD A B C D -中,11112B D B C D C ===,∴111322222322B DC S ⨯== ∵112,2,2),0,0,2),(0,2,0),(1,1,0)((B D C F ,∴1111(2,20),(0,22),(1,1,2)D B D D C F ==-=-,,,设平面11D B C 的法向量(,,)n x y z =,则1110n D B n D C ⎧⋅=⎪⎨⋅=⎪⎩,∴220220x y y z +=⎧⎨-=⎩,令1x =,则可取(1,1,1)n =--r ,∴点F 到平面11D B C 的距离1||33||3n D F d n ⋅== ,∴三棱锥11C B D F -的体积11111111234233333C BD F F B D C B D C V V S d --==⨯=⨯⨯= .18.已知函数2()6ln(1),f x ax x a =-+为常数.(1)若()y f x =在1x =处有极值,求a 的值并判断1x =是极大值点还是极小值点;(2)若()y f x =在[]23,上是增函数,求实数a 的取值范围.【答案】(1)32a =;1x =是()y f x =的极小值点(2)实数a 的取值范围为)1,2∞⎡+⎢⎣【解析】【分析】(1)先根据函数在1x =处有极值求出a 的值,将a 值代入原函数求导进行判断函数在1x =左右的导函数正负号即可得到结果;(2)()y f x =在[]23,上是增函数,转化成()0f x '≥在[]23x ∈,恒成立,进而分离参数转化成23a x x≥+在[]23x ∈,恒成立进行求解即可得到结果.【小问1详解】()f x 的定义域为[)1,∞-+,则6()21f x ax x-'=+;由题意,()y f x =在1x =处有极值,即()01f '=,即230a -=;∴32a =;∴63(2)(1)()311x x f x x x x+-=-'=++,∴当1x >时,()0f x '>,()f x 为增函数;当11x -<<时,()0f x '<,()f x 为减函数;∴1x =是()y f x =的极小值点.【小问2详解】∵()y f x =在[]23,上是增函数,∴()0f x '≥在[]23x ∈,恒成立,即有6201ax x-≥+,23a x x ∴≥+在[]23x ∈,恒成立,只需求2max3a x x ⎛⎫≥ ⎪+⎝⎭;[]23x ∈ ,,[]22116,1224x x x ⎛⎫∴+=+-∈ ⎪⎝⎭,2311,42x x ⎡⎤∴∈⎢⎥+⎣⎦;12a ∴≥,∴a 的取值范围为)1,2∞⎡+⎢⎣.19.本市某区对全区高中生的身高(单位:厘米)进行统计,得到如下的频率分布直方图.(1)若数据分布均匀,记随机变量X 为各区间中点所代表的身高,写出X 的分布列及期望.(2)现从身高在区间[)170,190的高中生中分层抽样抽取一个160人的样本.若身高在区间[)170,180中样本的均值为176厘米,方差为10;身高在区间[)180,190中样本的均值为184厘米,方差为16,试求这160人身高的方差.【答案】(1)分布列见详解,期望为171.7(2)27.25【解析】【分析】(1)依据分布列和期望的定义即可求得X 的分布列及期望;(2)依据方差的定义去求这160人的方差.【小问1详解】由(0.0270.0250.0220.010.001)101x +++++⨯=,解得0.015x =,所以X 的分布列为:X155165175185195205P0.220.270.250.150.10.01()0.221550.271650.251750.151850.11950.01205171.7E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】由于身高在区间[)170,180,[)180,190的人数之比为5:3,所以分层抽样抽取160人,区间[)170,180,[)180,190内抽取的人数分别为100人与60人.在区间[)170,180中抽取的100个样本的均值为176,方差为10,即176x =,2110s =,在区间[)180,190中抽取的60个样本的均值为184,方差为16,即184y =,2216s =,所以这160人身高的均值为10017660184179160z ⨯+⨯==,从而这160人身高的方差为2s 22221210060()()160100s x z s y z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦221006010(176179)16(184179)27.25160160⎡⎤⎡⎤=⨯+-+⨯+-=⎣⎦⎣⎦,因此这160人身高的方差为27.25.20.已知椭圆()22:11x C y t t+=>的左、右焦点分别为12F F 、,直线():0l y kx m m =+≠与椭圆C 交于M N 、两点(M 点在N 点的上方),与y 轴交于点E .(1)当3t =时,点A 为椭圆C 上除顶点外任一点,求12AF F △的周长;(2)当4t =且直线l 过点()10D -,时,设EM DM EN DN λμ==,,求证:λμ+为定值,并求出该值;(3)若椭圆C 的离心率为223,当k 为何值时,22OM ON +恒为定值;并求此时MON △面积的最大值.【答案】(1)(2)83(3)32【解析】【分析】(1)根据椭圆定义求解三角形周长;(2)联立:(0)l y kx m m =+≠与22:19x C y +=,得到两根之和两根之积,由,EM DM EN DN λμ== 得到121211x x x x λμ+=+++,结合两根之和,两根之积求出答案;(3)先由离心率得到椭圆方程,联立直线方程,得到两根之和,两根之积,表达出()()()2222222919121691k m k OM ON k -+++=+⨯+,结合22||||OM ON +为定值得到13k =±,并求出此时MN ,和点O 到直线l 的距离d ,利用基本不等式得到32MON S ≤.【小问1详解】当3t =时,椭圆方程为22:13x C y +=,故a =c =,由椭圆定义可得,12AF F △的周长为22a c +=;【小问2详解】4t =时,椭圆方程为22:14x C y +=,故联立:(0)l y kx m m =+≠与22:14x C y +=可得,()222418440k x kmx m +++-=设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++,因为直线l 过点()10D -,,所以0k m =-+,即k m =,所以22121222844,4141k k x x x x k k --+==++因为()10D -,,设()0,E E y ,所以()11,E x EM y y =- ,()111,D x M y =+ ,()22,E x EN y y =- ,()221,x DN y =+ ,又因为,EM DM EN DN λμ== ,所以()()11221,1x x x x λμ=+=+,所以111x x λ=+,221x x μ=+,所以121212*********x x x x x x x x x x λμ+++=+=-+++++222222841844413224218231k k k k k k +=--=+--+++=++,所以λμ+为定值83.【小问3详解】由题意得3=,解得9t =,椭圆方程2219x y +=,联立2299y kx m x y =+⎧⎨+=⎩,消元得()2229118990k x kmx m +++-=,当()()2222Δ324369110k m k m =-+->,即22910k m -+>时,设()()1122,,,M x y N x y ,则1221891km x x k -+=+,21229991m x x k -⋅=+,又因为M 、N 在椭圆上,则121219y x =-,222219y x =-,则22222212121199x x OM ON x x +=+-++-()()2221112222228899x x x x x x ⎡⎤=++=+-⋅⎣+⎦()()()()()2222222222299191912162169191k m m k k m k k k ⎡⎤-++-++⎢⎥=+=+⨯⎢⎥++⎣⎦当22OM ON +为定值时,即与2m 无关,故2910k -=,得13k =±,此时219MN k ===+又点O 到直线l的距离d ==所以12MON S d MN =⨯⨯=△()222333322222m m +-==≤⋅=,当且仅当m =1m =±时,等号成立,因为2291k m ∆=-+,经检验,此时Δ0>成立,所以MON △面积的最大值为32.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.21.对于有穷数列()12,,,3m a a a m ≥ ,若存在等差数列{}n b ,使得11221m m m b a b a b a b +≤<≤<<≤< ,则称数列{}n a 是一个长为m 的“弱等差数列”.(1)证明:数列124,,是“弱等差数列”;(2)设函数()sin f x x x =,()f x 在()0,2024内的全部极值点按从小到大的顺序排列为12,,,m a a a ,证明:12,,,m a a a 是“弱等差数列”;(3)证明:存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【解析】【分析】(1)找到一个符合条件的数列{}n b 即可证明;(2)令()0f x '=得到极值点符合的等式关系,即为y x =-和tan y x =图象交点的横坐标,再结合二者图象的特点找到交点的位置,确定数列{}n b 即可证明;(3)先构造一个等比数列{}n a ,其通项公式为()()1202411,2,,2024n n n a k k n --=+= ,证明存在一个正整数k ,使其为长为2024的“弱等差数列”即可.【小问1详解】存在数列21125,,3,366是等差数列,且211251234366<<<<<<,所以数列124,,是“弱等差数列”.【小问2详解】()sin cos f x x x x +'=,令()0f x '=得tan x x -=,所以极值点即为y x =-和tan y x =图象交点的横坐标,由y x =-和tan y x =在()0,∞+内的图象可知,在每个周期都有一个交点,所以令12n n b -=π,则1n n n b a b +<<,所以12,,,m a a a 是“弱等差数列”.【小问3详解】构造正整数等比数列{}n a ,()()1202411,2,,2024n n n a k k n --=+= ,其中k 是待定正整数,下面证明:存在正整数k ,使得等比数列{}n a 是长为2024的“弱等差数列”.取20242024202320231,1,b a b a =-=-若存在这样的正整数k 使得()()()()2202220232023202220211232023202420251111b k b k k b k k b k k b k b ≤<≤+<≤+<<≤+<≤+< 成立,所以()()()2023202220222024202320242023111d b b a a k k k k =-=-=+-+=+,由()()1202411,2,,2024n n n a k k n --=+= ,得()()()()112022202412024202311111n n n n n n n n a a k k k k k k k d ------+-=+-+=+<+=,于是()()()202420232024120242024n n n n a a a a a a b n d b -=+-++->--= ()12023n ≤≤,又因为2024202420241b a a =-<,所以当1,2,,2024n = 时,<n n b a ,而()()()1211211n n n n a a a a a a b n d b -+=+-++-<+-= ,所以1122202420242025b a b a b a b ≤<≤<<≤< ,最后说明存在正整数k 使得12a b <,由()()()()()202320222022122024202211211320241m b b d k m k k k k -=-=+---+=++-->,上式对于充分大的k 成立,即总存在满足条件的正整数k .所以,存在长为2024的“弱等差数列”{}n a ,且{}n a 是等比数列.【点睛】思路点睛:新定义题目解题策略:(1)依据新定义取特殊值证明其成立;(2)如果有多个条件,先假设符合其中一个条件,再证明其余的条件也符合.。
淮北一中2013——2014学年度第一学期期中考试高一年级数学试卷满分150分 时间120分钟第Ⅰ卷(选择题 共50分)一,选择题:(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的.)(1)设A 、B 为非空集合,定义集合A*B 为如图非阴影部分表示的集合,若{|},A x y ={|3,0},xB y y x ==>则A*B= ( )().0,2A (].1,2B [][).0,12,C ⋃+∞ []().0,12,D ⋃+∞(2).下列四组函数中,表示同一个函数的是 ( )()().1,A f x x g x =+=()()2.B f x g x =()()21.,11x C f x g x x x -==-+ ()2log .()2,x D f x g x x ==(3).若函数()()()2211log 1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[](2)f f = ( ) 2.log 5A .2B .1C .0D (4)函数y =()()(.1A -⋃ ()().2,11,2B -⋃ [)(].2,11,2C --⋃)(.1D ⎡-⋃⎣(5)下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数;(3)是偶函数.这样的函数是 ( )A.y =x 3+1B.y =log 2(|x |+2)C.y =(12)|x |D.y =2|x |(6)已知偶函数()f x 在区间[)0,+∞单调递减,则满足()()ln 1f x f >的x 取值范围是 ( )1.,1A e ⎛⎫ ⎪⎝⎭ ()1.0,1,B e ⎛⎫⋃+∞ ⎪⎝⎭ 1C.,e e ⎛⎫⎪⎝⎭()().0,1,D e ⋃+∞ (7)若关于x 的方程22350x x m ---+=有4个根,则m 的取值范围为 ( )A B().0,4A ().5,9B (].0,4C (].5,9D(8)在同一坐标系中,函数1()x y a=与log ()a y x =-(其中0a >且1a ≠)的图象 可能是 ( )(9)已知()()314,1log ,1aa x a x f x x x -+<⎧⎪=⎨≥⎪⎩是R 上的减函数,那么a 的取值范围是( )().0,1A 1.0,3B ⎛⎫ ⎪⎝⎭ 1.,17C ⎡⎫⎪⎢⎣⎭ 11.,73D ⎡⎫⎪⎢⎣⎭(10)已知一元二次不等式()<0f x 的解集为{1|<-1>}2x x x 或,则(10)>0x f 的解集为( ){.|<-1>lg2}A x x x 或 {}.|-1<<lg2B x x {}.|>-lg2C x x {}.|<-lg2D x x第Ⅱ卷(非选择题 共100分)二,填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.) (11)已知)1fx =+()f x =__________________(12)已知0.43a =,30.4b =,0.4log 3c =则,,c a b 的大小关系为________________ (13)函数212()log (32)f x x x =+-的单调递减区间为___________________(14)若函数(a 01)x y a a =>≠且在[]1,1-上的最大值与最小值的差是1,则a =_________ (15)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为“格点”,如果函数()f x 的图像恰好通过()k k N *∈个格点,则称函数()f x 为“k 阶格点函数”。
高二下学期期中考试数学(理)试题一、 选择题:(每题5分,共12道小题,满分60分)1、命题“若4πα=,则tan 1α=”的逆否命题是( ) A. 若4πα≠,则tan 1α≠ B. 若4πα=,则tan 1α≠C. 若tan 1α≠,则4πα≠ D. 若tan 1α≠,则4πα=4、设,a b R ∈,i 是虚数单位,则“复数z=a+bi 为纯虚数”是“ab=0”的( ) A.充分不必要条件 B. 必要不充分条件C.充要条件D.既不充分也不必要条件5、若22223000,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a 、b 、c 的大小关系是( ) A.a<c<b B.a<b<c C.c<b<a D.c<a<b6、将甲、乙、丙、丁、戊共五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少报送一人,且甲不能被保送到北大,则不同的保送方案种数为( )A.150B.114C.100D.727、对于11(0,),22a b a b abx x x x ∈+∞+≥+≥⋅、(大前提),小前提),所以 12x x+≥(结论)。
以上推理过程中的错误为( ) A.小前提 B.大前提 C.结论 D.无错误8、若4cos 5α=-,α是第三象限的角,则1+tan 21tan 2αα-等于( ) A. 12- B. 12 C.2 D.-2 9、设(1,2),(,1),(,0)(0,0,OA OB a OC b a b O =-=-=->>为坐标原点),若A 、B 、C 三点共线,则21a b+的最小值为( )A.4B. 92C.8D.9 10、已知点P 在曲线221:1169x y C -=上,点Q 在曲线222:(5)1C x y -+=上,点R 在曲线223:(5)1C x y ++=上,则PQ PR -的最大值是( )A.6B.8C.10D.12二、填空题:(每题5分,满分20分)13、函数2(3)x y x e =-的单调递增区间为 。
杨家坪中学2013-2014学年高一上学期期中考试数学试题考试时间:120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集 U= R,集合P ={x € N]x v 7} , Q= {x|x — 3> 0},那么图中阴影表示的集合是( )A. {123,4,5,6}B .{x|x > 3}1如1C. {4,5,6}D.{x|3 v x v 7}12 .设 A = {1,3 , a}, B = {1 , a 2— a + 1},若B? A ,则a 的值为()A. 2或1B.2 或-1 C . -2 或 1 D . 1 或-16.已知函数f(x) x 2 ax 是偶函数,则当x [ 1,2]时,f(x)的值域是(A [0,4]B . [1,4]C . [ 4,4]D . [0,2] 7•函数的图像大致是()*勺1 1■ ■■■ II〜\ II J a x o\ i /x x\l0 ;KI 1C ■A1 1 1B”C.匚 i3.已知于()A. 0 B. 29 C . nD . n4.已知函数y = lg(x + a)的图象如图所示,贝U a 的值为( )A. 2B .3C. 4D. 5则f(f(3)) 的值等A. (0, 1) B . ( 1, 2) C . (2, 3)D. (3, +)&已知关于x 的函5•函数f(x) log 3 x x 3的零点所在的区间是()数 在[0 , 1]上是单调递减的函数,贝U a 的取值范围为二、 填空题:本大题共 5小题,每小题5分,共25分.把答案填在答题卷中的横线上 • 11 •若幕函数f x 的图象过点 2业,贝V f 9_____________ 。
,212•设集合A 到B 的映射为f : x T y =,则集合B 中的元素0与A 中对应的元素是 ____________ 。
浙江理工大学2012—2013学年第2学期《高等数学A 》期中试卷本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。
承诺人签名: 学号: 班级:一、选择题(本题共6小题,每小题4分,满分24分) 1.设直线L :223314x y z -+-==-及平面π:30x y z ++-=,则直线L ( ) (A )平行于π (B ) 在π上 (C ) 垂直于π (D ) 与π斜交 2.设(),z f x y =在0M 处存在二阶偏导数,则函数在0M 处( )(A )一阶偏导数必连续 (B )一阶偏导数不一定连续 (C )必可微 (D )xy yx z z ≡ 3.对函数22(,)36f x y x xy y x y =++--,点(0, 3) ( )(A )不是驻点 (B )是驻点但非极值点 (C )是极小值点 (D )是极大值点 4.设 ),(y x f z =在点)0,0(处的偏导数2,1)0,0()0,0(=∂∂-=∂∂yf xf则( )(A )),(y x f z =在点)0,0(处的全微分dy dx dz2)0,0(+-=;(B )),(y x f z =在点)0,0(的某一邻域有定义; (C) 极限),(lim )0,0(),(y x f y x →存在;(D )曲线C :⎩⎨⎧==0),(y y x f z 在点)0,0(,0,0(f 的切线的方向向量k i s-=。
5.累次积分()cos 20cos ,sin d f d πθθρθρθρρ⎰⎰可写成( )(A )()100,dy f x y dx ⎰ (B )()10,dy f x y dx ⎰ (C )()11,dx f x y dy ⎰⎰ (D )()10,dx f x y dy ⎰6.设有平面闭区域{}(,)|11,1D x y x x y =-≤≤≤≤,{}1(,)|01,1D x y x x y =≤≤≤≤,且()f x 是连续奇函数,()g x 是连续偶函数,则()()()Df xg x f y dxdy +=⎡⎤⎣⎦⎰⎰( ) (A) 12()()D g x f y dxdy ⎰⎰ (B )12()()D f x f y dxdy ⎰⎰(C )[]()14()()D f x g x f y dxdy +⎰⎰ (D )0二、填空题(本题共6小题,每小题4分,满分24分)1. 向量23a i j k =++,向量b 的三个方向角均相等且为锐角,则Pr b j a = ;2.函数u =1,2,-2)处的最大变化率是 ,对应方向的方向余弦是 ; 3. 设()z xy xF u =+,而y u x =,()F u 为可导函数,则z zx y x y∂∂+=∂∂ ;4. 设()()2sin 1arctan yz y xy y x e -=⋅--+,则10x y zx==∂=∂ ;5. 设(){},1D x y x y =+≤,则()1Dx y d σ++=⎰⎰ ;6. 设Ω是由曲面22z x y =+与平面4z =所围成的闭区域,则zdv Ω=⎰⎰⎰ .三、计算题(本题共5小题,每题6分,满分30分)1.设(),u f x z =,而(),z x y 是由方程()z x y z ϕ=+所确定的函数,求.du2. 设),,(3x y xy f x z = 其中f 具有连续二阶偏导数,求z y ∂∂及.2yx z∂∂∂3. 计算arctanDydxdy x⎰⎰,其中D 是由圆周22224,1x y x y +=+=及直线0,y y x ==所围成的在第一象限内的闭区域。
秘密★启用前2014年重庆一中高2015级高二下期半期考试数 学 试 题 卷(理科)2014.5数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(每小题5分,共50分) 1.设i 为虚数单位,则2(1)i -=( )A.2B.1i +C.2i -D.22i - 2.(原创)设0,0a b <<g g gg g g.则下列不等式一定成立的是( )A.0a b -<B.2b a a b +>C.||a b ab +≤D.2a b+≤3.(原创)某人将英语单词“apple ”记错字母顺序,他可能犯的错误次数最多是(假定错误不重犯)( )A.60B.59C.58D.574.若一几何体的正视图与侧视图均为边长为1的正方形,且其体积为12.则该几何体的俯视图可以是( )5.(原创)设1212min{,,...,},max{||,||,...,||}(3)n n m x x x M x x x n ==≥,其中(1,2,...,)i x R i n ∈=.那么“12...n x x x ===”是“m M =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为340x y +=,则双曲线离心率e =( ) A.54 B.53 C.43 D.457.若曲线12y x -=在点12(,)a a -处的切线与两坐标轴围成的三角形面积为18.则a =( )A.64B.32C.16D.88.设点,A P 为椭圆2212xy +=上两点.点A 关于x 轴对称点为B (异于点P ).若直线,AP BP 分别与x 轴交于点,M N , 则OM ON ⋅u u u u r=( )A.0B.1C.D.2 9.若27270127(1)(2)(2)...(2)x x a a x a x a x ++=+++++++.则2a =( )A.20B.19C.20-D.19-10.(原创)有六种不同颜色,给如图的六个区域涂色,要求相邻区域不同色,不同的涂色方法共有( )A.4320B.2880C.1440D.720二.填空题.(每小题5分,共25分)11.设随机变量2~(10,)5B ξ,则D ξ= .12.已知正态分布密度曲线22()2()x p x μσ--=,且max ()(20)p x p ==,则方差为 .13.在61(2)x x-展开式中,常数项等于 .14.(原创)一大学生毕业找工作,在面试考核中,他共有三次答题机会(每次问题不同).假设他能正确回答每题的概率均为23,规定有两次回答正确即通过面试,那么该生“通过面试”的概率为 .15.若,(0,1)m n ∈.则(1)()(1)(1)mn m n m n m n --+--的最大值是 .三.解答题.(共75分)62532116.(13分)已知()|||1|f x x x =-+. (1)求不等式()0f x ≤的解集A;(2)若不等式10mx m +->对任何x A ∈恒成立,求m 的取值范围.17.(13分)已知函数2()()4ln(1)f x x t x =+++的图象在点(1,(1))f 处的切线垂直于y 轴.(1)求实数t 的值; (2)求()f x 的极值.18.(原创)(13分)某电视台“挑战60秒”活动规定上台演唱:(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).(II)转盘指针落在I 、II 、III 区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励. (III)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.(1)求此人中一等奖的概率;(2)设此人所得奖金为ξ,求ξ的分布列及数学期望E ξ.19.(12分)如图,四棱柱1111ABCD A B C D -中,1DD ABCD ⊥底面.ABCD 为平行四边形,60DAB ∠=︒, 12 2.3AB AD DD ===, ,E F 分别是AB 与1D E 的中点. (1)求证:CE DF ⊥;(2)求二面角A EF C --的平面角的余弦值.C1C A20.(12分)已知抛物线2:2(0)C y px p=>的焦点F到准线的距离为12.过点0(,0)A x1()8x≥作直线l交抛物线C与,P Q两点(P在第一象限内).(1)若A与焦点F重合,且||2PQ=.求直线l的方程;(2)设Q关于x轴的对称点为M.直线PM交x轴于B. 且BP BQ⊥.求点B到直线l的距离的取值范围.21.(原创)(12分)给定数列{na(1)判断2a是否为有理数,证明你的结论;(2)是否存在常数0M>.使na M<对*n N∈都成立? 若存在,找出M的一个值, 并加以证明; 若不存在,说明理由.2014年重庆一中高2015级高二下期半期考试(本部)数 学 答 案(理科)2014.5二.填空题.(每小题5分,共25分)11. 12512. 2 13. 160- 14. 2027 15. 18三.解答题.(共75分)16.(13分)解:(1)22|||1|(1)x x x x ≤+⇔≤+12x ⇔≥-∴1[,)2A =-+∞(2)1,102x mx m ∀≥-+->恒成立11m x ⇔>+对12x ≥-恒成立.max 1()21m x ⇔>=+ ∴m 取值范围是(2,)+∞17.(13分)解:(1)4()2(),1f x x t x '=+++ 由(1)02f t '=⇒=-. (2)∵2(1)()(1)1x x f x x x -'=>-+ 显见10x -<<时, ()0f x '>, 01x <<时, ()0f x '<. 1x >时,()0f x '> ∴()(0)4f x f ==极大值. ()(1)14ln 2f x f ==+极小值.18.(13分)解:(1)1117711588888864P =⨯+⨯+⨯=故10020064E p ξξ=⋅=⨯=∑19.(12分)解:(1)AD=AE, ∠DAB=60° ∴△ADE 为正△在△CDE 中,由余弦定理可求.又22212+=.由每股定理逆定理知CE ⊥DE又DD 1⊥平面ABCD, CE ⊂平面ABCD. ∴CE ⊥DD 1 ∴CE ⊥平面DD 1E, 又DF ⊂平面DD 1E. ∴CE ⊥DF.(2)以直线AB, AA 1分别为x 轴,z 轴建立空间直角坐标系,由题设A(0,0,0), E(1,0,0),D 1(1,22), C 5(,,0)22可求平面AEF 的一个法向量为(0,m =-u u r 平面CEF 的一个法向量为(3,2)n =-u u r∴平面角θ满足|||cos |13||||m n m n θ⋅==u u r u u r u u r u u r又θ为纯角 ∴cos θ= 注:本题(1)也可建坐标直接证明.(2)的坐标系建法不唯一.20.(12分)解:由题2:C y x =(1)A 与下重合,则1(,0)4A 设222221:()(1)04216l y k x k k k x x y x ⎫=-⎪⇒-++=⎬⎪=⎭又由焦半径公式有12121||22PQ x x p x x =++=++=可求21k = ∴1k =±.所求直线l 为:4410x y --=或4410x y +-=(2)可求0(,0)B x -.故△BQM 为等腰直角三角形,设1122(,),(,)P x y Q x y1PB k =. 即2121212121211()41y y y y y y y y x x +=⇒-=⇒+-=-.设0202:0l x x my y my x y x -=⎫⇒--=⎬=⎭ ∴201212040m x y y m y y x⎧=+>⎪+=⎨⎪⋅=-⎩V 从而2041m x +=, 即20140m x =->, 又018x ≥.∴2102m <≤.点0(,0)B x -到直线0:0l x my x --=的距离为2d ====∴1)2d ∈21.(12分)解:(1)2a 是无理数, 若不然,r Q =∈.则21r +=21r =-必为有理数,是无理数矛盾. (2)设1,2,...,)k b k ==则2211, (1,2,...,1),n k k n b a b k b k n b n +==+=-=.于是21221111222222b b b b ++≤=+=+ 23212123222244bb +≤+⋅=++ 234123123424422488b b +≤++⋅=+++ 523452481616b≤++++...≤11234 (24822)n n n b n--≤+++++21112341...248222nn n b n --+≤+++++⋅12341 (24822)n n n n -+=+++++令12341 (24822)n n n n n S -+=+++++.则3332n n n S +=-<. 从而可取3M =(或4M =等).则对*n N ∀∈, 均有3n a <成立.。
姓名 学号 专业 授课教师
答 案 不 得 写 在 此 装 订 线 上 方
安徽工业大学2013级高等数学A2期中考试试题卷
题号 一 二
三
总分
1 2 3 4 5 6 7 8
得分
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在下列
表中)(本大题分8小题, 每小题3分, 共24分)
题号 1 2 3 4 5 6 7 8
答案
1、函数),(yxf在点),(00yx的某邻域内有连续的偏导数是),(yxf在该点可
微分的
(A) 必要但非充分条件 (B) 充分但非必要条件
(C) 充要条件 (D) 既非充分也非必要条件
2、设两空间区域
,0,:22221zRzyx ,:22222Rzyx
,0,0,0zyx
则以下结论正确的是
(A)214xdvxdv (B)
214ydvydv
(C)214zdvzdv (D)
214xyzdvxyzdv
3、 直线431232zyx与平面3zyx的关系是
(A)垂直相交 (B)相交但不垂直
(C)平行但直线不在平面上 (D)直线在平面上
4、 设函数26233222yxxyyxz,则
(A)点)2,2(非函数z极值点
(B)函数z在点)2,2(处取得极大值
(C)函数z在点)2,2(处取得极小值
(D)点)2,2(是函数z的最大值点或最小值点,但不是极值点
5、设D是xoy平面上以)0,0(,)1,1(,)1,1(为顶点的三角形区域,1D 是
D
在第一象限的部分,则Dydxdyxxy)sincos(
(A)1sincos2Dydxdyx (B)12Dxydxdy
(C)0 (D)1
6、设),(yxf是连续函数,则交换ydxyxfdy1010),(的积分次序后得
(A) xdyyxfdx1010),( (B) 1010),(dyyxfdxy
(C) 21010),(xdyyxfdx (D) 21010),(xdyyxfdx
7、 曲线tztytxcos,sin,sin2在对应4/t处切线向量与z轴正
向成锐角,则此向量与y轴正向的夹角余弦为
(A)21 (B)21 (C)22 (D)22
8、设非零向量cba,,满足0cba则ba
(A) bc (B) cb (C) ac (D) ab
二、填空题(本大题分7小题, 每小题4分, 共28分)
1、设L为抛物线2xy上从点)0,0(到点)4,2(的一段弧,则
Ldxyx)(
22
2、设,22zxyu则u在点)1,1,2(处方向导数的最大值为
3、由2222zyxxyz所确定的隐函数),(yxzz在点
)1,0,1(
处的全微分dz
4、过点)4,2,0(且与两平面12zx和23zy平行的直线方程为
____________ _
5、设}10,11|),{(yxyyxD ,则曲面22yxz的面积
为
6、xxyyyxxe210)1(lim
7、设)1(20,10:xyxD,由二重积分的几何意义知
Ddxdyyx)21(
三、解答下列各题(本大题共7小题,总计48分)
1、(本小题8分) 已知),(yxefzxy,f是可微函数,求xz与yz。
2、 (本小题8分) 求对角线为32的长方体的最大体积。
3、(本小题7分) 计算二重积分Ddxdyyx22,其中D是由y轴及圆周
1)1(22yx
所围成的在第一象限内的区域。
4、(本小题7分) 求曲线222yxzxy在点)2,1,1(处的切线方程
5、(本小题7分) 计算三重积分xdxdydz,其中为三个坐标面及
平面12zyx所围成的闭区域。
6、(本小题6分) 计算
dxdyzyzdzdxdydzxzI)1(28)4(
2
,其中
)2(:22zyxz
的下侧曲面。
7、(本小题5分) 计算曲线积分Lyxdyexdxye)()(22,曲线L
是由点)0,0(O沿曲线23xy至点)1,1(A的一段