高等代数期末卷及答案
- 格式:docx
- 大小:31.24 KB
- 文档页数:5
高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。
答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。
答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。
答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。
答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。
答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。
答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。
高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。
参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
2020-2021《高等代数》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共40分,每小题4分)1.向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为____________,它的一组基为__________________.2.已知111α⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则_______,_______a b ==特征向量α对应的特征值0___________λ=.3.k 满足___________时,二次型22212312132(1)22f x x k x kx x x x =--+---是负定的。
4.设矩阵20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪ ⎪⎝⎭相似,则_________,________x y ==.5.在空间[]n P x 中,设变换σ为()(1)()f x f x f x →+-,则σ在基0(1)(1)1,(1,2,1)!i x x x i i n i εε--+===-下的矩阵为____________________.6.相似矩阵的特征值__________.7.向量)1,3,2,4(),4,3,2,1(==βα,则内积=),(βα___________. 8.若A 是实对称矩阵,则 A 的特征值为____________.9.n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于___________________.10.对于线性空间V 中向量)1(,,,21≥r r ααα ,若在数域P 中有r 个不全为零的数r k k k ,,,21 ,使02211=+++r r k k k ααα ,则向量r ααα,,,21 称为_________.二、(15分)设V 是实数域上由矩阵A 的全体实系数多项式组成的空间,其中2100100,200A ωωω⎛⎫- ⎪== ⎪ ⎪⎝⎭,求V 的维数和一组基.三、(15分)用非退化线性替换化二次型22212312132322448x x x x x x x x x ---++为标准形.四、(15分)在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在基1234,,,ηηηη下的坐标,设(1,0,1,0)ξ=1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩; 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩.五、(15分)设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换σ在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭ 1)求σ在基11242234334442,3,,2ηεεεηεεεηεεηε=-+=--=+=下的矩阵; 2)求σ的核与值域.2020-2021《高等代数》期末课程考试试卷A 答案一、填空(共40分,每小题4分)1、向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为__2n -__________,它的一组基为122(1,1,0,,0,0),(0,0,1,,0,0),,(0,0,0,,1,0)n εεε-=-==_。
北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
数学与应用数学《高等代数》第一学期期末考试试卷(闭卷A 卷)一、单项选择题(每小题2分,共10分)1. 若123123123a a a b b b m c c c =,则111122223333253253253a c b b a c b b a c b b --=-( ). A .30m B 。
-15m C .6m D 。
-6m 2. n 阶矩阵A 可逆的充分必要条件是( )。
A .∣A ∣=0B 。
r (A )<n C. A 是满秩矩阵 D. A 是退化矩阵 3.下列说法不正确的是( )。
A .任何一个多项式都是零次多项式的因式 B. 如果f(x)∣g (x),g (x)∣h (x),则f (x )∣h(x)C 。
如A 是n 阶矩阵,则()()()()-+=+-A E A E A E A ED 。
如A 是n 阶矩阵,则m k k m =A A A A4。
设向量组α,β,γ线性无关,α,β,δ线性相关,则( ).A .α一定能由β,γ,δ线性表示B 。
δ一定能由α,β,γ线性表示C 。
β一定不能由α,γ,δ线性表示 D. δ一定不能由α,β,γ线性表示 5。
对于n 元方程组,下列命题正确的是( ).A .如果0Ax =只有零解,则Ax b =也只有零解 B. 如果0Ax =有非零解,则Ax b =有无穷多解C. 如果Ax b =有两个不同的解,则0Ax =有无穷多解 D 。
Ax b =有唯一解的充分条件是()r n =A二、填空题(每空2分,共20分)1. 若A =⎪⎪⎪⎭⎫ ⎝⎛321•(4,5,6),则∣A ∣= 。
2。
f (x )=1-x x 34+,则)x (f )5(=3.p (x )是不可约多项式,对于任一多项式f (x ),已知p(x) f (x ),则(p (x),f (x))= .4. 已知∣A ∣=4521-01113011-2101,则A 12—A 22+A 32-A 42=__ . 5. 设A =⎪⎪⎪⎭⎫ ⎝⎛300020001,(1A -)*是1A -的伴随矩阵,则(1A -)*= .6. 若(1,0,5,2)T =1α, (3,2,3,4)T =--2α, ()3,1,,3Tt =3α线性无关,则t = .7. 设ɑ=(0,1,—1),β=(1,0,-2),则向量组ɑ,β的秩= . 8. 设f (x)∈R [x ],deg f(x)≤2 ,且f(1)=1,f (—1)=2,f (2)=0,则f (x )= . 9. 一个n 阶矩阵是非退化的充分必要条件是它的秩= . 10. 设3阶矩阵A 的伴随矩阵为*A ,∣A ∣=1,则∣—2*A ∣= . 三、计算题(每小题10分,共50分)1.问k,m ,n 满足什么条件时,x 2+kx+1能整除x 3+mx+n.2。
数学与应用数学专业本科期末考试试卷(A )课程名称: 高等代数 任课教师: 考试时间: 120 分钟 考试性质(学生填写“√”):正常考试( )缓考补考( )重修( )提前修读( )一、填空题(每小题2分)1. 设n x f =∂))((, 且)()(x f x g , )()(x g x f , 则))((x g ∂=_________.2. 在数域P 上有根, 但是在P 上不可约的多项式是__________多项式.3. )(x f 是首项系数为1的实系数三次多项式. 若0)()3(==i f f , 则)(x f =_________________.4. 在行列式55511511a a a a 中, 含有32a 且带有负号的项共有_________项.5. 在行列式1314021b a -中, b 的代数余子式为-24, 则a =________.6. 当矩阵A=______时, 秩A=0.7. 已知A 为三阶矩阵, 且A =1, 则A 2-=_________.8. 向量组{k ααα,,,21 }和{m βββ,,,21 }的秩分别是s 和t , 则{k αα,,1 ,m ββ,,1 }的秩r 与s ,t 适合关系式____________.9. 设A 为n 阶方阵, X 1, X 2均为方程组AX=B 的解, 且21X X ≠, 则A =____.10. 设A, B 都是三阶方阵, 秩A=3, 秩B=2, 则秩(AB)=____________.二、单选题(每小题2分)).(A) S 1={Z n m mn ∈,2}; (B) S 2={Z b a bi a ∈+,};(C) S 3={Z z nz ∈}; (D) S 4={Q b a b a ∈+,2}.2. 设0)(≠x f , 且)())(),((x d x g x f =, )()()()()(x d x v x g x u x f =+, 则错误的结....论.是( ). (A) 1))()(,)()((=x d x g x d x f ; (B) )())(),((x d x v x u =; (C) )())(),()((x d x g x g x f =+; (D) )())(),((m m m x d x g x f =.3. 设行列式D 1=333231232221131211a a a a a a a a a , D 2=313233212223111213a a a a a a a a a ,则下面结论正确的有( ). (A)D 2=-D 1; (B)D 2=0; (C)D 2与D 1无关; (D)D 2=D 1.4. )(x f =xx x x x111123111212-中 4x 的系数为( )(A) 1, (B) 2, (C) 0, (D) 3.5. 22)13)()(1()(--+=x i x x x f 在复数域上的标准分解式是( )(A)22)13)()(1(--+x i x x ; (B) 22)13())((--+x i x i x ;(C)22)31())((--+x i x i x ; (D) 22)31())((9--+x i x i x .6.若r ααα,,,21 是线性无关的向量组, 则r r k k k ααα,,,2211 也线性无关的条件是( )(A) r k k k ,,,21 不全为零, (B) r k k k ,,,21 全为零, (C) r k k k ,,,21 全不为零, (D)以上结论都错.7. 在一个含有n 个未知数m 个方程的线性方程组中,若方程组有解,则( ) (A) m >n ; (B) m <n ; (C) m =n ; (D)与m ,n 的大小无关. 8. 若矩阵A 的秩为r ,则( )(A)A 有r 阶非零子式; (B)A 有r 阶非零子式且任意r +1阶子式为0; (C)A 的任意r +1阶子式为0; (D)A 的r 阶子式都不等于0. 9. 下列矩阵中( )不是初等矩阵(A)⎪⎪⎪⎭⎫ ⎝⎛-100010001; (B)⎪⎪⎪⎭⎫ ⎝⎛101010100; (C)⎪⎪⎪⎭⎫ ⎝⎛010100001; (D)⎪⎪⎪⎭⎫⎝⎛100010101.10. 若数域P 上三元齐次线性方程组0=AX 的基础解系中仅含有一个向量,则其系数矩阵的秩是( )(A) 0; (B) 1; (C) 2; (D) 3.三、判断正误(每小题2分)1. 若)()()(21x f x f x g +, 且)()()(21x f x f x g -, 则)()(1x f x g ,且)()(2x f x g .( )2. 若n 级行列式D ≠0, 则D 的n-1阶子式不全为零. ( )3. 初等矩阵的逆矩阵仍为初等矩阵. ( )4. 若A,B 均为n 阶可逆矩阵, 则A+B 也是n 阶可逆矩阵. ( )5. 等价的向量组含有相同个数的向量. ( ) 四、计算题(第1、2小题每题10分,第3小题15分)1. 计算n 阶行列式nnna a a a a a a a a a a a +++111321321321.2. 设111111022110110211X --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求矩阵X .3. 用导出组的基础解系表出线性方程组⎪⎪⎩⎪⎪⎨⎧=+-++-=---+=-++=+-++55493123236232335432154321432154321x x x x x x x x x x x x x x x x x x x 的全部解.五、证明题(第1小题7分,第2小题8分)1. 设P[x]的多项式)(x f 与不可约多项式)(x p 有一个公共根, 则)()(x f x p .2. 若方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++++++11212111221111212111n n n n n n n n nn n n n n b x a x a x a b x a x a x a b x a x a x a 有解, 则行列式111111111+++n nn n n nnn n b a a b a a b a a=0.。
延安大学继续教育学院高等代数期末考试试题及答案注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合2A x x x B=--<=-,则{|340},{4,1,3,5}A、{4,1}-B、A B={1,5}C、{3,5}D、{1,3}2、若3zz=++,则||=12i iA、0B、1C D、23、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 、14B 、12C 、14D 、12+ 4、设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A 、15 B 、25 C 、12D 、455、某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A 、y a bx =+B 、2y a bx =+C 、e x y a b =+D 、ln y a b x =+6、已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A 、1B 、2C 、3D 、47、设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A 、10π9B 、7π6C 、4π3D 、3π28、设3log 42a =,则4a -=A 、116B 、19C 、18D 、169、执行下面的程序框图,则输出的n =A 、17B 、19C 、21D 、2310、设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=A 、12B 、24C 、30D 、3211、设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为A 、72B 、3C 、52D 、212、已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A 、64πB 、48πC 、36πD 、32π二、填空题:本题共4小题,每小题5分,共20分。
2020-2021《高等代数》期末课程考试试卷B1专业: 考试日期: 所需时间:120分钟 总分:100分 闭卷一、选择题(5分×5)1设A 为型矩阵,B 为型矩阵,E 为m 阶单位矩阵,若AB=E ,则( )AA 、秩r(A)=m, 秩r(B)=mB 、秩r(A)=m, 秩r(B)=nC 、秩r(A)=n, 秩r(B)=mD 、秩r(A)=n, 秩r(B)=n2设向量组123,,ααα线性无关,则下列向量组线性相关的是(A ).(A ) 122331,,αααααα---; (B ) 122331,,αααααα+++; (C ) 1223312,2,2αααααα---; (D ) 1223312,2,2αααααα+++.3线性方程组Ax b =的系数矩阵式45⨯矩阵,且A 的行向量线性无关,则错误的命题是( D ).(A) 齐次方程组0TA x =只有零解; (B )齐次方程组0T A Ax =必有非零解; (C) 对任意的b ,方程组Ax b =必有无穷多解; (D) 对任意的b ,方程组TA x b =必有唯一解.4 设102011101A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,矩阵B 满足2AB A B E =--,则()B E -=.B(A )17;(B )97-;(C )97;(D )1-.5 设,A B 是满足0AB =的任意两个非零矩阵,则( A ). (A )A 的列向量组线性相关,B 的行向量组必线性相关; (B )A 的列向量组线性相关,B 的列向量组必线性相关; (C )A 的行向量组线性相关,B 的行向量组必线性相关; (D )A 的行向量组线性相关,B 的行向量组必线性相关.二、填空题 (5分×5)6 设A 为3阶矩阵,2A =-,把A 按行分块为123A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭,则行列式312123___.A A A A -= ——67设1231212011311042025kA ⎛⎫⎪- ⎪⎪=⎪- ⎪ ⎪⎝⎭,且A 得秩为3,k =___1___.8 设()1,,(1,,,)Ti i in a a i r r n α==<是n 维实向量,且1,,r αα线性无关,已知()1,,T n b b β=是线性方程组11110n r rn a a x a a ⎛⎫ ⎪=⎪ ⎪⎝⎭的非零解,判断向量组1,,,r ααβ的线性相关性.___________【解】根据定义来判断.设()1,,,0r s ααβ=,这里()11,,Tr s s s +=.由题意,0T i αβ=,则0T i βα=.由()1,,,0r s ααβ=得()1110T r r r s s s βααβ++++=,即()1110T T T r r r s s s βαβαββ++++=.所以10T r s ββ+=,10r s +=.又因为1,,r αα线性无关,10r s s ===.所以向量组1,,,r ααβ的线性无相关.院系:—————— 专业班级:——————— 姓名:——————— 学号:——————装 订 线9 判断二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定_______.【解】f 所对应的矩阵为524212425-⎛⎫ ⎪- ⎪ ⎪--⎝⎭,它的顺序主子式5245250,0,2120.21425->>->--所以 f 正定.10已知平面上三条不同直线的方程分别为230,230,ax by c bx cy a ++=++=230,cx ay b ++=试证明这三条直线交于一点的充要条件是0a b c ++=.三、解答题. (10分×5)11设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,100x b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(1) 证明行列式(1)nA n a =+;(2) 当a 为何值时,该方程组有唯一解,并求1x ; (3) 当a 为何值时,该方程组有无穷多解,并求通解.【解】(1) 方法一:数学归纳法证明(1)nn D n a =+.1k =时,12D a =,假设1k n ≤-时,(1)kk D n a =+.则当k n =时,21221222(1)(1).n n n n n n D aD a D ana a n a n a ----=-=--=+方法二:递推法.由2122n n n D aD a D --=-,得到211212222321()()().n n n n n n n nn n D aD aD a D a D aD a D aD aD aD a ---------=-=-=-==-=所以,()122221212(2)(1)(1).n n n n n n nn n n nD a a a aD a a D n a aD n a aD n a -----=++=+==-+=-+=+(2) 当0a ≠时,0n D ≠,方程组有唯一解.11(1)(1)n nna nx n a n a-==++. (3) 当0a =时,()1r A n =-,(|)1r A b n =-,所以方程组有无穷多解,通解为01100000x k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.12246123__4812n A A -⎛⎫⎪=-= ⎪ ⎪-⎝⎭已知,则.【解】()()()()212123422212312381238444(8)n n A A A A A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1,故111,所以。
1山东师范大学成人高等教育期末考试试题(时间:120分钟 共100分)年级: 专业: 考试科目: 高等代数试题类别: A (A/B/C) 考试形式___(开、闭卷)一、选择题 (每题4分共20分) 1、 以下行列式中( )的值必为零(A )n 阶行列式中有一行的元素全是0 (B )行列式中有两行含有相同的公因子 (C )行列式中有一行与另一列对应元素成比例 (D )行列式D 的转置行列式D D T -= 2、n 元齐次线性方程组0=AX 有非零解的充分必要条件是:( )(A )n A R =)( (B )n A R <)( (C )n A R >)( (D ))(A R 与n 无关 3、 设有矩阵23⨯A ,33⨯B ,32⨯C ,则下面( )运算可行 (A )BC (B )ABC (C )AC (D )BC AB -4、 一个n 维向量组)1(,,,21>s s αααΛ线性相关的充要条件是其中( )(A )含有零向量 (B )有两个向量的对应分量成比例(C )至少有一个向量是其余向量的线性组合 (D )每一个向量是其余向量的线性组合5、 已知矩阵⎥⎦⎤⎢⎣⎡=0110A ,则矩阵A 的特征值为( ) (A )1,1- (B )1,0 (C )1,0- (D )2,0二、填空题(每题2分共12分)1、5000054000543005432054321的值为______________ 2、已知行列式543432321---=D ,其转置行列式_____________________=T D 3、若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=625972413A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=6297213y x B ,已知B A =,则_____________________==y x4、设A 为4阶方阵,且A =2,则_________________2=A5、1+n 个n 维向量构成的向量组一定是线性____________________的6、线性方程组B AX =有解的充分必要条件是__________________________ 三、判断题 (每题4分共20分)1、任何两个矩阵都可以相加减 ( )2、333231232221131211333231232221131211a a a a a a a a a k ka ka ka ka ka ka ka ka ka = ( ) 3、若齐次线性方程组0=AX 有非零解,则系数矩阵的行列式为0 ( )4、在一个向量组s ααα,,,21Λ中,如果有部分向量组线性相关,则向量组s ααα,,,21Λ 必线性相关 ( )5、对于矩阵B A ,,有TTTB A AB =)( ( ) 四、计算下列各题(每题6分共18分)1、求行列式122305403--中元素2的余子式和2-的代数余子式。
一、单选题(32分. 共8题, 每题4分)1.下列说法错误的是________.A)若向量组线性无关,则其中任意两个向量线性无关;B)若向量组中任意两个向量线性无关,则线性无关;C)向量组线性相关;D)若向量组线性无关,则线性无关.设n维列向量线性无关, 则n维列向量2.A)向量组可由向量组线性表示;B)向量组可由向量组线性表示;C)向量组与向量组等价;D)矩阵与矩阵相抵.3.设线性方程组的解都是线性方程组的解,则____.A) ;B) ;C) ; D).4.设n阶方阵A的伴随矩阵,非齐次线性方程组有无穷多组解,则对应的齐次线性方程组的基础解系____.A) 不存在; B) 仅含一个非零解向量;C) 含有两个线性无关的解向量; D) 含有三个线性无关的解向量.5.下列子集能构成的子空间的是________.A) ; B);C) ; D).6.设V是数域K上的线性空间, V上的线性变换在基下的矩阵为A且,若在基下的矩阵为B, 则________.A) ; B) 2; C) ; D)不能确定.7.设V是维向量空间,和是V上的线性变换,则的充分必要条件是________.A) 和都是可逆变换; B) Ker=Ker;C) ; D) 和在任一组基下的表示矩阵的秩相同.8.设是线性空间V到U的同构映射, 则下列命题中正确的有________个.(Ⅰ) 为可逆线性映射;(Ⅱ) 若W是V的s维子空间, 则是U的s维子空间;(Ⅲ) 在给定基下的表示矩阵为可逆阵;(Ⅳ) 若, 则.A) 1 B) 2 C) 3D) 4二、填空题(32分. 共8题,每题4分)1.若矩阵经过行初等变换化为, 那么向量组的一个极大无关组是_________________, 其余向量由此极大无关组线性表示的表示式为________________.2.设3维向量空间的一组基为,则向量在这组基下的坐标为____.3.设,均为线性空间V的子空间,则____.4.数域上所有三阶反对称矩阵构成的线性空间的维数是____.而____是它的一组基.5.已知上的线性变换定义如下:,则Ker=____.Im=____.6.设是数域上维线性空间V到维线性空间U的线性映射, 则为满射的充分必要条件是____.(请写出两个)7.设和是线性空间V的两组基,从到的过渡矩阵为. 若是V上的线性变换且,则在基下的表示矩阵是____ .8.设是线性空间V上的线性变换,在基下的表示矩阵为,其中A为矩阵,则存在V的一个非平凡-不变子空间____.三、(8分) 设线性空间V的向量组线性无关,,考虑向量组.求证:或者该向量组线性无关,或者可由线性表示.四、(10分) 设,分别是数域上的齐次线性方程组与的解空间. 证明.五、(10分) 设. 证明:的充分必要条件是存在,,使得且.六、 (8分) 设V, U, W是有限维线性空间,,是线性映射. 求证:存在线性映射使得的充分必要条件是.附加题: (本部分不计入总分)设V, U, W 是有限维线性空间且,,是线性映射. 证明:存在可逆线性映射使得的充分必要条件是.一、填空:(每空2分,共30分)1、n 元二次型正定的充分必要条件是它的正惯性指数______________。
大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。
A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。
A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。
A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。
A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。
7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。
8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。
9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。
10. 若矩阵A与B相似,则A与B有相同的_________。
三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。
高代期末考试题及答案解析一、选择题(每题2分,共20分)1. 设矩阵A是一个3x3的方阵,且|A| = 3,那么矩阵A的伴随矩阵的行列式是:A. 9B. 27C. 81D. 243答案:B解析:矩阵A的伴随矩阵记为adj(A),根据行列式的性质,|adj(A)| = |A|^(n-1),其中n是矩阵的阶数。
因此,|adj(A)| = 3^(3-1) = 9。
2. 向量空间V中,若向量v1和v2线性无关,则下列哪个向量与v1和v2都线性无关?A. v1 + v2B. 2v1C. 3v2D. v1 - v2答案:A解析:线性无关意味着任何向量不能表示为另一个向量的倍数。
选项B、C和D都是v1或v2的倍数,因此它们与v1或v2线性相关。
选项A是v1和v2的和,它既不是v1的倍数也不是v2的倍数,因此与v1和v2都线性无关。
二、填空题(每空1分,共10分)1. 设线性方程组的系数矩阵为A,增广矩阵为[A|b],若|A| = 0且b 不在A的列空间中,则该方程组有____个解。
答案:无穷解析:当系数矩阵A的行列式为0时,表示A不是满秩矩阵,方程组可能无解或有无穷多解。
如果增广矩阵的列向量b不在A的列空间中,则方程组无解。
2. 矩阵B的特征值是λ1和λ2,那么矩阵B的特征多项式是____。
答案:(λ-λ1)(λ-λ2)解析:矩阵的特征多项式是其特征方程的展开式,特征方程为|λI - B| = 0,其中I是单位矩阵。
对于有两个特征值的矩阵B,其特征多项式通常为(λ-λ1)(λ-λ2)。
三、简答题(每题10分,共20分)1. 请简述什么是矩阵的秩,并说明如何计算一个矩阵的秩。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大数目。
计算矩阵的秩通常有两种方法:一是利用初等行变换将矩阵转换为行简化阶梯形矩阵(或简化行阶梯形),秩即为非零行的数目;二是通过高斯消元法,将矩阵转换为行简化阶梯形,秩即为主元所在的行数。
2. 解释什么是线性变换,并给出一个线性变换的例子。
沈阳农业大学理学院第一学期期末考试《高等代数》试卷(1)填空(共35分, 每题5分)1. 设 , 则 69_ ..2. 当 _2,-2 .时, 有重因式。
3.令 , 是两个多项式.且 被 整除.则 . 0.. . _.. .4.行列式.2.。
5.矩阵的积 。
6.7. 的一般解为134234523423x x x x x x⎧=+⎪⎪⎨⎪=--⎪⎩, 34,x x 任意取值。
二、(10分)令()f x ,()g x 是两个多项式。
求证((),())1f x g x =当且仅当(()(),()())1f x g x f x g x +=。
证: 必要性.设 。
(1%)令 为 的不可约公因式, (1%)则由 知()|()p x f x 或()|()p x g x 。
(1%)不妨设 , 再由 得 。
故 矛盾。
(2%).. 充分性.由 知存在多项式 使()(()())()()()1u x f x g x v x f x g x ++=,(2%)从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。
(1%)三、(16分) 取何值时, 线性方程组12312312321(21)31(3)21ax bx x ax b x x ax bx b x b ++=⎧⎪+-+=⎨⎪+++=-⎩ 有唯一解、没有解、有无穷解? 在有解情况下求其解。
解:21212131011032100122201011000122a b a b a b b a b b b b b a bb b b ⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪+-+-⎝⎭⎝⎭-⎛⎫ ⎪→- ⎪ ⎪+-⎝⎭(5%)当 时, 有唯一解: (4%)当 时, 有无穷解: 任意取值; 当 时, 有无穷解: 任意取值;(3%) 当 或 时, 无解。
(4%)四、(10分)设 都是非零实数, 证明123121111...11111...111111 (11)...(1). (1)11...11nn i ina a a a a a a a =+++=++∑证: 对n 用数学归纳法。
沈阳农业大学理学院第一学期期末考试
《高等代数》试卷(1)
1 •设 f (x) = x 4
+x ? +4x - 9 ,贝H f (一3) = 69 .. 2•当 t = _2,-2 . 时,f(x)=x 3
—3x+t 有重因式。
3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2
x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2
=23 。
1 1 —
-2 0 1
x , 2x 2 2x 3 x 4 二 0
7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为
x( ~'X 2 _'4x 3 ~3x 4 = 0
题号
-一-
-二二
-三
四
五
六
七
总分
得分
、填空(共35分,每题5 分)
得分
4.行列式
1 -3
5.
■’4 10"
1 0 3
-1、 -1 1 3
'9 -2 -1 2 1 0 2」
2 0 1
< 9 9 11
<1 3 4 丿
6.
z
5 0 0 1 -1
<0 2 1;
0-2 3
矩阵的积
c 亠5 刘=2x3 X4
4
x3, x4任意取值。
X2 二-2x^ --x4
、(10分)令f(x),g(x)是两个多项式。
求证 当且仅当(f(x)
g(x), f(x)g(x))=1。
证:必要性.设(f(x)
g(x), f (x)g(x)) =1。
(1%
令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知
p(x)| f (x)或 p(x) |g(x) o (1%)
不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。
故 p(x) |1 矛盾。
(2%)
充分性.由(f (x)
g(x), f (x)g(x)^1知存在多项式u(x), v(x)使
u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%)
从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%)
故(f (x), g(x)) =1 o (1%)
ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1
有唯一解、没有解、有无穷解?在有解情况下求其解。
解:
a b 2
1
a b 2 1 a 2b -1 3
1 T 0 b —1 1 0
b J*
b+3
2b-1 ,
b+1 2b-2 ‘ (5%)
a 2 -
b 0 1
0 b -1 1 0
L 0 0
b+1 2b —2
当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值;
当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4
,k 任意取值;(3%)
当b = T 或a =0且b =二1且b = 5时,无解。
(4%)
三、(16分)a,b 取何值时,线性方程组 当a(b
2
T) = 0时,有唯一解: 5-b
a(b 1) X 2
2
b+1
x3 = 2b -2
b 1 ;4%) (f(x),g(x)) =1
四、(10分)设a i ,a 2,…,a n 都是非零实数,证明
:对n 用数学归纳法。
当 n=1时,D"i = 1 ■ a^i = a 1
(^ —),结论成立(2%); a 1
假设n-1时成立。
则n 时
1 +a 1 1
1 ■ ■
■ 1 1
1 +q
1 1 ■
■■ 0
1
1 +a
2 1 ■
■ ■ 1
1
1
1 +a
2 1 ■ ■■ 0 D n =
1 1
1 +a 3 ■ ■ ■ 1 1 + 1
1 "a ?
■ ■■ 0
1
1 1 ■ ■
■ 1 1
1 1
1
■ ■■
a n
= a02…an 」a n D n 」(4%)
n4 1 )
D n 4 = aQ ? ■■&* 1 1 + W 有
I y a i 丿
故由归纳原理结论成立。
(1%)
五、(10分)证明f (x) =X
4
V 在有理数域上不可约。
证:令 x 二 y • 1 得(1%)
g(y)二 f (x)二 y 4 4y 3 6y 2 4y 2。
(3%)
取素数p=2满足
2|2,2 |4,2 |6,2 |4,且 2 不整除 1, 4 不整除 2. (2%)
再据艾茵斯坦茵判别法知 g(y^y 4
4y
3
6y 2 4y 2在有理数域上不可约,(2%)
得分
得分
1 a 1 1 1 1 1 a
2 1 1
1 1 a 3 1
1
1
1 1 a n
现由归纳假设
D
n = a
1a
2 ■■■a
n a
n D
n ^ =
a
i a 2 ■■■a n 4*4 a
2■■■a
^^a
n
n .1 1 i
丄 i =1 a i
= a 1a
2 ■■-a
n 4a
n 1+£ - 、im a
i 丿
,(3%)
n
=a
1
a
2 ■■-a n
(1
亠二
从而f (x) = X 4
• 1在有理数域上不可约(2%
六、(9分)令A 为数域F 上秩为r 的m n 矩阵,r 0。
求证:存在秩 为r 的m r 矩阵F 和秩为r 的r n 矩阵G ,使得A 二FG 。
证: A 为数域F 上秩为r 的m n 矩阵,r 0,则存在m m 可逆阵P 和n n 可逆阵Q
使
f i r 0)
A = p Q .(3%
<0 0丿
进而令
F=P
,G=(l r 0)Q (4%
就得 A =FG ( 2%
七、(10分)设A , B 是n n 矩阵,且AB , A - B 可逆。
求证2n 2n
f A B 、
矩阵p =
可逆,且求p 」。
<B A 丿
证:
故P 可逆 (5%
得分
得分
A B A + B B
A + B
B
B A
B +A A
0 A —B
|P|
= =| A B || A- B 卜
0,
令P 4
Y S 」
'A B ¥ X
I
<B A 人T
10 0 I n
」
(1%
‘AX +BT I
n
进而 AY BS BX AT =0
=0 BY AS = I 1 — i
i n
X =2「(A + B )+(A -B) I 1 一 i i n
(1%,解得 Y (A B) -(A-B)
( 3%
T =Y
S = X。