高一数学试卷及答案
- 格式:doc
- 大小:219.50 KB
- 文档页数:7
2024-2025学年江苏省南通市如皋中学高一(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.函数y=2sin(−x2+π3)的最小正周期是( )A. πB. −4πC. 4πD. 2π2.下列三角函数值为正数的是( )A. tan300°B. sin210°C. cos210°D. sin(−5π3)3.全集U=R,集合A={x|xx−4≤0},集合B={x|log2(x−1)>2},则∁U(A∪B)为( )A. (−∞,0]∪[4,5]B. (−∞,0)∪(4,5]C. (−∞,0)∪[4,5]D. (−∞,4]∪(5,+∞)4.已知幂函数f(x)=(m2−5m+7)x m+1为奇函数,则实数m的值为( )A. 4或3B. 2或3C. 3D. 25.若a=(1.1)−12,b=(0.9)−12,c=log1.10.6,则它们的大小顺序是( )A. a<b<cB. b<a<cC. c<a<bD. a<c<b6.幂函数y=x a,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连结AB,线段AB恰好被其中的两个幂函数y=x a,y=x b的图象三等分,即有BM=MN=NA,那么a−1b=( )A. 0B. 1C. 12D. 27.已知a>0且a≠1,函数在区间(−∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a||x|−b|的图象是( )A. B. C. D.8.已知函数其中ω>0.若f(x)= 2sin (ωx +π4),f(x)在区间(π2,3π4)上单调递增,则ω的取值范围是( )A. (0,4] B. (0,13] C. [52,3] D. (0,13]∪[52,3]二、多选题:本题共3小题,共18分。
高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。
2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。
2023-2024学年浙江省杭州市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ∈Z |x (x ﹣3)<0},B ={﹣1,2,3},则A ∩B =( ) A .{2}B .{2,3}C .{﹣1,1,2,3}D .∅2.若a ,b ∈R ,则“ab >2”是“a >√2且b >√2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.函数f(x)=lnx +1x−1的定义域为( ) A .(0,+∞)B .(1,+∞)C .(0,1)∪(1,+∞)D .(﹣∞,1)∪(1,+∞)4.要得到函数y =2sin2x 的图象,只要将函数y =2sin (2x +1)的图象( ) A .向左平移1个单位 B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位5.若函数f(x)={2x −3,x >0g(x),x <0是奇函数,则g (﹣2)=( )A .1B .﹣1C .−114D .1146.若sinθ+cosθ=√105(0<θ<π),则tan θ+2sin θcos θ的值为( ) A .−3310B .−185C .−95D .1257.已知a >1,b >0,且a +1b =2,则4a−1+b 的最小值为( ) A .4B .6C .8D .98.已知函数f(x)=√x +2+1ax+1(a ∈R),若对于定义域内任意一个自变量x 都有f (x )>0,则a 的最大值为( ) A .0B .12C .1D .2二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的或不选的得0分. 9.下列各式的值为12的是( )A .sin (﹣930°)B .2sinπ12sin 5π12C .cos33°cos27°+sin33°sin27°D .tan22.5°1−tan 222.5°10.下列函数的值域为R 且在定义域上单调递增的函数是( ) A .f (x )=(x ﹣1)3 B .f (x )=2023xC .f (x )=log 2023xD .f(x)={−1x ,x ≠00,x =011.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数,则下列叙述正确的是( ) A .[cos π4]=0B .函数y =cos x ﹣[cos x ]有3个零点C .y =[cos x ]的最小正周期为2πD .y =[cos x ]的值域为{﹣1,0,1}12.已知函数f (x )=sin (ωx +φ)(ω>0)在区间(π6,2π3)上单调递增,则下列判断中正确的是( )A .ω的最大值为2B .若φ=−π6,则ω∈(0,1]C .若f(5π12)>0,则f(π6)+f(2π3)<0 D .若函数y =f(x)−√32两个零点间的最小距离为π6,则ω=2 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.log 135−log 1345+432的值为.14.已知函数f (x )的定义域为R ,且满足f (x )+f (﹣x )=0,f (x +1)﹣f (﹣x )=0,则f (x )可以是 .(写出一个即可)15.已知sin(α+π4)=35,0<α<π,则cos(2α+π4)的值为 .16.已知下列五个函数:y =x ,y =1x,y =x 2,y =lnx ,y =e x ,从中选出两个函数分别记为f (x )和g (x ),若F (x )=f (x )+g (x )的图象如图所示,则F (x )= .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.(10分)已知集合A ={x|y =√−2x 2+x +1},集合B ={x |(x +a ﹣1)(x ﹣2a )≥0,a ∈R }. (1)当a =1时,求∁R (A ∪B ); (2)若A ∩B =A ,求实数a 的值.18.(12分)如图所示,在平面直角坐标系xOy 中,角α和角β(0<α<π2<β<2π3)的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点A 、B 两点,点A 的横坐标为35,点C 与点B 关于x 轴对称.(1)求cos(2α−π2)sin 2α+cos2α的值;(2)若cos ∠AOC =−6365,求cos β的值.19.(12分)已知函数f(x)=a x −1a x +a−1(a ∈R ,且a ≠1)是定义在R 上的奇函数.(Ⅰ)求a 的值;(Ⅱ)若关于t 方程f (t 2﹣2t )+f (4﹣kt )=0在[1,3]有且仅有一个根,求实数k 的取值范围. 20.(12分)设函数f(x)=2sin(x −π3),g(x)=f(x −π6)⋅f(x +π6).(Ⅰ)求函数f (x )的对称中心;(Ⅱ)若函数g (x )在区间[0,m ]上有最小值﹣1,求实数m 的最小值.21.(12分)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表.经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本R (x )万元,且R(x)={2x 2+80x +200,0<x <50201x +6400x −5200,x ≥50.由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额﹣固定成本﹣可变成本)(1)求2024年的利润W (x )(单位:万元)关于年产量x (单位:千只)的函数关系式. (2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?22.(12分)已知函数f(x)=|x −3x+2|+m .(1)若函数y =f (x )有4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),求证:x 1x 2x 3x 4=9;(2)是否存在非零实数m ,使得函数f (x )在区间[a ,b ](0<a <b )上的取值范围为[2m a ,2mb]?若存在,求出m 的取值范围;若不存在,请说明理由.2023-2024学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ∈Z |x (x ﹣3)<0},B ={﹣1,2,3},则A ∩B =( ) A .{2}B .{2,3}C .{﹣1,1,2,3}D .∅解:集合A ={x ∈Z |x (x ﹣3)<0}={x ∈Z |0<x <3}={1,2},B ={﹣1,2,3},则A ∩B ={2}. 故选:A .2.若a ,b ∈R ,则“ab >2”是“a >√2且b >√2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:当ab >2时,可能a 、b 都小于−√2,不能推出“a >√2且b >√2”,充分性不成立; 当a >√2且b >√2时,必定可以得到ab >2,充要性成立. 故选:B . 3.函数f(x)=lnx +1x−1的定义域为( ) A .(0,+∞)B .(1,+∞)C .(0,1)∪(1,+∞)D .(﹣∞,1)∪(1,+∞)解:由函数f(x)=lnx +1x−1,可得x >0,且x ≠1, 故函数的定义域为{x |x >0,且x ≠1},即(0,1)∪(1,+∞). 故选:C .4.要得到函数y =2sin2x 的图象,只要将函数y =2sin (2x +1)的图象( ) A .向左平移1个单位 B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位解:将函数y =2sin (2x +1)的图象向右平移12个单位,可得y =2sin2x 的图象,故选:D .5.若函数f(x)={2x −3,x >0g(x),x <0是奇函数,则g (﹣2)=( )A .1B .﹣1C .−114D .114解:当x <0时,f (﹣x )>0,则f(﹣x)=2﹣x﹣3,则﹣f(x)=2﹣x﹣3,故f(x)=3﹣2﹣x,所以g(x)=f(x)=3﹣2﹣x,故g(﹣2)=3﹣22=﹣1.故选:B.6.若sinθ+cosθ=√105(0<θ<π),则tanθ+2sinθcosθ的值为()A.−3310B.−185C.−95D.125解:由sinθ+cosθ=√105(0<θ<π),可得θ为钝角,且|sinθ|>cosθ,故tanθ<﹣1,把条件平方可得sinθcosθ=−3 10,∴sinθcosθsin2θ+cos2θ=−310,tanθtan2θ+1=−310,即得tanθ=﹣3,所有tanθ+2sinθcosθ=﹣3−35=−185.故选:B.7.已知a>1,b>0,且a+1b =2,则4a−1+b的最小值为()A.4B.6C.8D.9解:由a+1b=2,得(a−1)+1b=1,其中a﹣1>0,b>0.所以4a−1+b=[(a−1)+1b](4a−1+b)=5+4b(a−1)+b(a−1)≥5+2√4=9,当且仅当b(a﹣1)=2,即a=53,b=3时,等号成立.综上所述,4a−1+b的最小值为9.故选:D.8.已知函数f(x)=√x+2+1ax+1(a∈R),若对于定义域内任意一个自变量x都有f(x)>0,则a的最大值为()A.0B.12C.1D.2解:若a=0,则f(x)=√x+2+1>0恒成立,符合题意;若a>0,①当1a=−2,即a=12时,f(x)=√2+x+2x+2,定义域为{x|x>﹣2},此时f(x)>0显然成立,符合题意;②当−1a <−2,即0<a <12时,定义域为[﹣2,+∞),则ax +1≥﹣2a +1>0,此时f (x )>0恒成立,符合题意; ③当−1a >−2,即a >12时,定义域为{x |x ≥﹣2且x ≠−1a },则取x =﹣t −1a ,则f (﹣t −1a )=√−1a −t +2−1at,令0<t ≤2−1a ,当t →0时,−1at →﹣∞,f (﹣t −1a )=√−1a −t +2−1at 可以取得负值,不符合题意;若a <0,则函数定义域为{x |x ≥﹣2且x ≠−1a },令x =−1a +t ,则f (−1a +t )=√−1a +t +2+1at,当t >0且t →0时,1at→﹣∞,f (−1a +t )=√−1a +t +2+1at 可以取得负值,不符合题意,综上,0<a ≤12,即a 的最大值为12.故选:B .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的或不选的得0分. 9.下列各式的值为12的是( )A .sin (﹣930°)B .2sinπ12sin 5π12C .cos33°cos27°+sin33°sin27°D .tan22.5°1−tan 222.5°解:对于A :sin(−930°)=−sin(720°+210°)=sin30°=12,故A 正确;对于B :2sinπ12sin 5π12=2sin π12sin(π2−π12)=2sin π12cos π12=sin π6=12,故B 正确; 对于C :cos33°cos27°+sin33°sin27°=cos (33°﹣27°)=cos6°,故C 错误; 对于D :tan22.5°1−tan 222.5°=12×2tan22.5°1−tan 222.5°=12tan45°=12,故D 正确. 故选:ABD .10.下列函数的值域为R 且在定义域上单调递增的函数是( ) A .f (x )=(x ﹣1)3 B .f (x )=2023xC .f (x )=log 2023xD .f(x)={−1x ,x ≠00,x =0解:根据幂函数的性质及函数图象的平移可知,f (x )=(x ﹣1)3在R 上单调递增且f (x )的值域为R ,A 符合题意;根据指数函数的性质可知,f (x )=2023x 的值域为(0,+∞),不符合题意;根据对数函数的性质可知,f (x )=log 2023x 在(0,+∞)上单调递增且值域为R ,符合题意; f (x )={−1x ,x ≠00,x =0在R 上不单调,不符合题意.故选:AC .11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数,则下列叙述正确的是( ) A .[cos π4]=0B .函数y =cos x ﹣[cos x ]有3个零点C .y =[cos x ]的最小正周期为2πD .y =[cos x ]的值域为{﹣1,0,1}解:根据题意,依次分析选项:对于A ,[cos π4]=[√22]=0,A 正确;对于B ,当x =k π+π2,k ∈Z 时,cos x =0时,有cos x ﹣[cos x ]=0,即x =k π+π2,k ∈Z 是函数y =cos x ﹣[cos x ]的零点,同理:x =k π,k ∈Z 也是函数y =cos x ﹣[cos x ]的零点, 故函数y =cos x ﹣[cos x ]的零点有无数个,B 错误;对于C ,在区间[0,2π)上,y =[cos x ]={ 1,x =00,0<x ≤π2−1,π2<x <3π20,32≤x <2π,易得y =[cos x ]的最小正周期为2π,C 正确; 对于D ,由C 的结论,y =[cos x ]的值域为{﹣1,0,1},D 正确. 故选:ACD .12.已知函数f (x )=sin (ωx +φ)(ω>0)在区间(π6,2π3)上单调递增,则下列判断中正确的是( )A .ω的最大值为2B .若φ=−π6,则ω∈(0,1]C .若f(5π12)>0,则f(π6)+f(2π3)<0 D .若函数y =f(x)−√32两个零点间的最小距离为π6,则ω=2 解:由于函数f (x )=sin (ωx +φ)(ω>0)在区间(π6,2π3)上单调递增,故有T 2=πω≥2π3−π6=π2,求得ω≤2,可得ω的最大值为2,故A 正确;若φ=−π6,由于ωx +φ∈(ωπ6−π6,2ωπ3−π6),则2ωπ3+φ=2ωπ3−π6≤π2,求得ω≤1,故ω∈(0,1],故B 正确; 由于π6+2π32=5π12∈(π6,2π3),故当f(5π12)>0时,f(π6)+f(2π3)>0,C 错误;令y =f(x)−√32=0,得f (x )=√32,设y =f (x )与y =√32距离最近的两交点的横坐标分别为x 1,x 2,依题意,得[|ωx 1+φ﹣(ωx 2+φ)|]min =2π3−π3=π3,即ω|x 1﹣x 2|min =π3, 因为函数y =f(x)−√32两个零点间的最小距离为π6,即|x 1﹣x 2|min =π6, 所以ω=2,D 正确. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.log 135−log 1345+432的值为10 .解:原式=lo g 1319+23=2+8=10.故答案为:10.14.已知函数f (x )的定义域为R ,且满足f (x )+f (﹣x )=0,f (x +1)﹣f (﹣x )=0,则f (x )可以是 f (x )=sin (πx )(答案不唯一) .(写出一个即可) 解:因为函数f (x )的定义域为R ,且f (x )+f (﹣x )=0,即f (﹣x )=﹣f (x ), 所以f (x )是R 上的奇函数, 又因为f (x +1)﹣f (﹣x )=0, 所以f (x +1)=f (﹣x )=﹣f (x ), 所以f (x +2)=﹣f (x +1)=f (x ), 所以f (x )的周期为2,所以f (x )的解析式可以是f (x )=sin (πx ). 故答案为:f (x )=sin (πx )(答案不唯一).15.已知sin(α+π4)=35,0<α<π,则cos(2α+π4)的值为 −17√250.解:由于0<α<π,故α+π4∈(π4,5π4),由于sin π4=√22>sin(α+π4)=35,故α+π4∈(3π4,π),所以α的终边不可能在第一象限内,只能在第二象限内,故cos(α+π4)=−45,所以sinα=sin[(α+π4)−π4]=sin(α+π4)cosπ4−cos(α+π4)sinπ4=35×√22+45×√22=7√210,由于α的终边在第二象限内,故cosα=−√1−sin2α=−√210,所以cos(2α+π4)=cos[α+(α+π4)]=cosαcos(α+π4)−sinαsin(α+π4)=√210×45−35×7√210=−17√250.故答案为:−17√2 50.16.已知下列五个函数:y=x,y=1x,y=x2,y=lnx,y=e x,从中选出两个函数分别记为f(x)和g(x),若F(x)=f(x)+g(x)的图象如图所示,则F(x)=x2+1x.解:根据题意,由函数F(x)的定义域为{x|x≠0},则f(x)、g(x)中一定没有y=lnx,一定有函数y=1 x ,设f(x)=1 x ,当g(x)=x时,F(x)=x+1x,F(x)为奇函数,不符合题意,当g(x)=e x时,F(x)=e x+1x,当x→﹣∞时,F(x)<0,不符合题意;当g(x)=x2时,F(x)=x2+1x,当x<﹣1时,F(x)=x3+1x<0,当x<﹣1时,F(x)>0,当﹣1<x<0时,F(x)<0,当x>0时,F(x)>0,符合题意;故F(x)=x2+1 x .故答案为:x2+1 x .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.(10分)已知集合A={x|y=√−2x2+x+1},集合B={x|(x+a﹣1)(x﹣2a)≥0,a∈R}.(1)当a=1时,求∁R(A∪B);(2)若A∩B=A,求实数a的值.解:(1)由﹣2x2+x+1≥0,可得−12≤x≤1,故A={x|−12≤x≤1},当a=1时,B={x|x≥2或x≤0},故A ∪B ={x |x ≥2或x ≤1},所以∁R (A ∪B )={x |1<x <2};(2)若A ∩B =A ,则A ⊆B ,因为A ={x |−12≤x ≤1},B ={x |(x +a ﹣1)(x ﹣2a )≥0,a ∈R }. 当2a =1﹣a ,即a =13时,B =R ,符合题意, 当2a >1﹣a ,即a >13时,B ={x |x ≥2a 或x ≤1﹣a }, 则{a >132a ≤−12或{a >131−a ≥1,此时a 不存在; 当2a <1﹣a ,即a <13时,B ={x |x ≥1﹣a 或x ≤2a }, 则{a <131−a ≤−12或2a ≥1,此时a 不存在,所以a =13. 18.(12分)如图所示,在平面直角坐标系xOy 中,角α和角β(0<α<π2<β<2π3)的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点A 、B 两点,点A 的横坐标为35,点C 与点B 关于x 轴对称.(1)求cos(2α−π2)sin 2α+cos2α的值; (2)若cos ∠AOC =−6365,求cos β的值.解:(1)∵A 的横坐标为35,又|OA |=1,且A 在第一象限, ∴A 的纵坐标为45, ∴cos α=35,sin α=45,∴tan α=sinαcosα=43, ∴cos(2α−π2)sin 2α+cos2α=sin2αsin 2α+cos 2α−sin 2α =2sinαcosαcos 2α=2tan α=83;(2)∵cos ∠AOC =−6365, ∴由图可知sin ∠AOC =√1−cos 2∠AOC =√1−(6365)2=1665, 根据题意可得OC 为α﹣∠AOC 的终边,又点C 与点B 关于x 轴对称,OB 为β的终边,∴cos β=cos (α﹣∠AOC )=cos αcos ∠AOC +sin αsin ∠AOC =35×(−6365)+45×1665=−513. 19.(12分)已知函数f(x)=a x −1a x +a−1(a ∈R ,且a ≠1)是定义在R 上的奇函数. (Ⅰ)求a 的值;(Ⅱ)若关于t 方程f (t 2﹣2t )+f (4﹣kt )=0在[1,3]有且仅有一个根,求实数k 的取值范围. 解:(Ⅰ)因为y =f (x )是定义在R 上的奇函数,所以f (﹣1)=﹣f (1),即a −1−1a −1+a−1=−a−12a−1, 即1a −11a +a−1=−a−12a−1,1−a a 2−a+1=−a−12a−1, 所以a 2﹣a +1=2a ﹣1,解得a =1(舍)或a =2,所以a =2.当a =2时,f (x )=2x−12x +1,定义域为R , f (﹣x )=2−x −12−x +1=12x −112x +1=1−2x 1+2x =−2x −12x +1=−f (x ), 所以函数y =f (x )是R 上的奇函数,故a =2;(Ⅱ)因为f (x )=2x−12x +1=1−22x +1, 设x 1<x 2,则f (x 1)﹣f (x 2)=22x 2+1−22x 1+1=2(2x 1−2x2)(2x 1+1)(2x 2+1)<0, 所以f (x 1)<f (x 2),所以y =f (x )在R 上单调递增,又因为关于t 方程f (t 2﹣2t )+f (4﹣kt )=0在[1,3]有且仅有一个根,即关于t 方程f (t 2﹣2t )=﹣f (4﹣kt )=f (kt ﹣4)在[1,3]有且仅有一个根,t 2﹣2t =kt ﹣4在[1,3]有且仅有一个根,易得t =0不满足;当t ≠0时,k =t +4t−2在t ∈[1,3]有且仅有一个根, 令h (t )=t +4t−2,t ∈[1,3], 由对勾函数的性质可知y =h (t )在[1,2]上单调递减,在[2,3]上单调递增,所以h (t )min =h (2)=2,又h (1)=3,h (3)=73, 如图所示:由此可得当k =2或73<k ≤3时,满足k =t +4t −2在t ∈[1,3]有且仅有一个根, 所以实数k 的取值范围为(73,3]∪{2}. 20.(12分)设函数f(x)=2sin(x −π3),g(x)=f(x −π6)⋅f(x +π6). (Ⅰ)求函数f (x )的对称中心;(Ⅱ)若函数g (x )在区间[0,m ]上有最小值﹣1,求实数m 的最小值.解:(Ⅰ)令x −π3=k π,k ∈Z ,则x =π3+kπ,k ∈Z , 故函数的对称中心为(k π+π3,0),k ∈Z ; (Ⅱ)g(x)=f(x −π6)⋅f(x +π6)=4sin (x −π2)sin (x −π6)=﹣4cos x (√32sin x −12cos x ) =﹣2√3sin x cos x +2cos 2x=−√3sin2x +cos2x +1=2cos (2x +π3)+1, 若函数g (x )在区间[0,m ]上有最小值﹣1,即cos (2x +π3)在[0,m ]上取得最小值﹣1,令2x +π3=π,可得x =π3, 故m 的最小值为π3. 21.(12分)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表.经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本R (x )万元,且R(x)={2x 2+80x +200,0<x <50201x +6400x−5200,x ≥50.由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额﹣固定成本﹣可变成本)(1)求2024年的利润W (x )(单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?解:(1)W (x )=0.2×1000×x ﹣R (x )﹣100=200x ﹣R (x )﹣100,当0<x <50时,W (x )=200x ﹣(2x 2+80x +200)﹣100=﹣2x 2+120x ﹣300,当x ≥50时,W(x)=200x −(201x +6400x −5200)−100=−(x +6400x)+5100, 故W (x )={−2x 2+120x −300(0<x <50)−(x +6400x)+5100(x ≥50); (2)若0<x <50,W (x )=﹣2x 2+120x ﹣300=﹣2(x ﹣30)2+1500,当x =30时,W (x )max =1500,若x ≥50,W(x)=−(x +6400x)+5100≤−2√6400+5100=4940,当且仅当x =80时,等号成立, 所以当x =80时,W (x )max =4940,故2024年的年产量为80千部时,企业所获利润最大,最大利润是4940万元.22.(12分)已知函数f(x)=|x −3x+2|+m . (1)若函数y =f (x )有4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),求证:x 1x 2x 3x 4=9;(2)是否存在非零实数m ,使得函数f (x )在区间[a ,b ](0<a <b )上的取值范围为[2m a ,2m b]?若存在,求出m 的取值范围;若不存在,请说明理由.证明:(1)因为函数f(x)=|x −3x+2|+m 有4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 所以方程f(x)=|x −3x+2|+m =0有4个不同的解x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 于是方程x −3x +2+m =0,−(x −3x+2)+m =0都各有两个不同的解, 即方程x 2+(2+m )x ﹣3=0,x 2+(2﹣m )x ﹣3=0各有两个实数根,于是x 1x 2x 3x 4=9;解:(2)f(x)=|x −3x +2|+m ={x −3x +2+m ,x ≥1−x +3x−2+m ,0<x <1, 所以y =f (x )在(0,1)上单调递减,在(1,+∞)上单调递增; ①若函数f (x )在[a ,b ]上不单调,则有0<a ≤1<b ,且f(1)=m =2m a , 由于m ≠0,所以a =2,与假设矛盾;②当1≤a <b 时,有{f(a)=2m a f(b)=2m b ,即{a −3a +2+m =2m a b −3b +2+m =2m b , 所以{a 2+(m +2)a −3−2m =0b 2+(m +2)b −3−2m =0, 所以a ,b 是一元二次方程x 2+(m +2)x ﹣3﹣2m =0的两个不相等的实数根, 记g (x )=x 2+(m +2)x ﹣3﹣2m ,有{Δ=(m +2)2+4(2m +3)>0−m+22≥11+(m +2)−3−2m >0,所以m <−6−2√5, ③当0<a <b ≤1时,应有{f(a)=2m b f(b)=2m a ,即{−a +3a −2+m =2m b −b +3b −2+m =2m a, 两式相减得到ab +3=﹣2m ∈(3,4),所以m ∈(−2,−32), 两式相加得:a +b =(2m+3)(m−2)3, 又ab =﹣(2m +3),∴1a +1b =a+b ab =2−m 3∈(2,+∞), ∴m <﹣4,与m ∈(−2,−32)矛盾, 此时满足条件的实数m 不存在,综合以上讨论,满足条件的实数m 的取值范围是(−∞,−6−2√5).。
贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。
,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。
2023-2024学年山东省聊城市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M ={0,1,2,3},N ={x |x <2},则M ∩(∁R N )=( ) A .(﹣∞,2)B .(2,3)C .{2,3}D .{1,2,3}2.下列函数中,既是周期函数又是偶函数的是( ) A .y =tan x B .y =|tan x |C .y =sin|x |D .y =cos(x 2+π6)3.已知tan α=﹣2,且0<α<π,则cos α﹣sin α的值为( ) A .−3√55B .−2√55C .−√55D .√554.已知a =log 30.5,b =log 0.50.3,c =sin 17π4,则( ) A .c >b >aB .c >a >bC .b >a >cD .b >c >a5.如图,一个半径为4米的筒车按逆时针方向每分钟转1.5圈,筒车的轴心O 距离水面的高度为2米.设筒车上的某个盛水筒P 到水面的距离为d (单位:m )(在水面下则d 为负数),若以盛水筒P 刚浮出水面时开始计算时间,则d 与时间t (单位:s )之间的关系可以表示为( )A .d =4sin(π20t −π6)+2 B .d =4sin(π20t +π6)+2C .d =4sin(π10t −π6)+2 D .d =4sin(π10t +π6)+2 6.函数f(x)=1−4x1+4x ln|x|的图象大致为( )A .B .C .D .7.若φ是三角形的一个内角,且函数y =2sin (3x +φ)在区间(−2π9,π12)上单调,则φ的取值范围为( )A .[0,π6]B .[π6,π4]C .[π4,π2]D .[2π3,5π6]8.已知函数f(x)={|x 2−3|,x <03x ,x >0,若函数g (x )=f (x )﹣m (m ∈R )有三个零点a ,b ,c ,且a <b <c ,则c ab的最小值为( )A .49B .23C .32D .94二、选择题:本题共4小题,每小题满分20分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分. 9.以下说法正确的是( )A .“∀x ∈R ,3x 2﹣2≥0”的否定是“∃x ∈R ,3x 2﹣2<0”B .“x >3”是“log 3(2x +1)>2”的充分不必要条件C .若一扇形弧长为3π2,圆心角为π2,则该扇形的面积为9π4D .“∀x ∈R ,2ax 2+ax −38≤0”是真命题,则﹣3≤a ≤0 10.若实数a 、b 满足2a <2b <1,则下列不等式恒成立的是( ) A .ac 2<bc 2B .c 2+1a >c 2+1bC .log 0.2(a 2+1)<log 0.2(b 2+1)D .a+b2≥√ab11.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则( )A .f(x)=2cos(2x +π3)B .f (x )在[π6,2π3]上单调递增C .若x 1、x 2∈(π12,7π12),x 1≠x 2且f (x 1)=f (x 2),则f (x 1+x 2)=1D .把f (x )的图象向右平移5π12个单位长度,然后再把所得曲线上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g (x )的图象,则g (x )=2sin x12.已知函数f (x )的定义域为R ,对任意a ,b ∈R ,都有f (a )f (b )=f (a +b ),当x >0时,0<f (x )<1,且f (0)≠0,则( ) A .∀x ∈R ,都有f(−x)=−1f(x)B .当x <0时,f (x )>1C .f (x )是减函数D .若f(3)=12,则不等式f(2t 2−5t)>116的解集为(−32,4)三、填空题:本题共4小题,每小题5分,共20分. 13.已知幂函数y =f (x )的图象通过点(3,√33),则f (4)= .14.若a ,b >0,且2ab ﹣8=a +2b ,则a +2b 的最小值为 .15.在△ABC 中,A =π3,AB 边上的高等于√33AB ,则tan ∠ACB = .16.定义在R 上的函数f (x )满足f (x +2)为偶函数,且f (x )在(﹣∞,2)上单调递减,若x ∈[12,3],不等式f (ax )<f (x ﹣2)恒成立,则实数a 的取值范围为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)函数y =log 12x(x ∈[116,2])的值域为A ,y =√1x+a−1(a ∈R)的定义域为B . (1)求A ;(2)若B ⊆A ,求实数a 的取值范围.18.(12分)在平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边过点P (6,﹣8).(1)求sin(π−α)+3cos(π+α)cos(3π2−α)+2sin(π2+α)的值; (2)已知β为锐角,sin(α+β)=−√210,求β.19.(12分)为了巩固拓展脱贫攻坚的成果,振兴乡村经济,某地政府利用电商平台为脱贫乡村进行直播带货,既方便了人们购物和交流,又有效地解决了农产品销售困难的问题.为了支持家乡的发展,越来越多的人注册成为某电商平台的会员进行购物和交流.已知该平台建立前3年的会员人数如下表所示:为了描述建立平台年数x (x ∈N *)与该平台会员人数y (千人)的关系,现有以下三种函数模型供选择: ①y =ax+b(a >0);②y =d log c x +e (d >0,c >1);③y =ka x +m (k >0,a >1). (1)根据表中数据选出最恰当的函数模型,并说明理由,同时求出该函数的解析式;(2)根据第(1)问选择的函数模型,预计平台建立t 年的会员人数将超过100.2万人,求t 的最小值.参考数据:ln2≈0.693,ln3≈1.099,ln5≈1.609.20.(12分)已知函数f(x)=13x−1−1+3 2.(1)判断函数f(x)在(1,+∞)上的单调性,并根据定义证明你的判断;(2)函数y=h(x)的图象关于点P(a,b)成中心对称图形的充要条件是y=h(x+a)﹣b为奇函数.依据上述结论,证明:f(x)的图象关于点(1,1)成中心对称图形.21.(12分)已知函数f(x)=4√3sinωx2cosωx2+4cos2ωx2+1(ω>0),A、B是f(x)的图象与直线y=﹣1的两个相邻交点,且|AB|=π.(1)求ω的值及函数f(x)在[0,π2]上的最小值;(2)若关于x的不等式f2(x)﹣(3m+2)f(x)﹣m﹣13≤0恒成立,求实数m的取值范围.22.(12分)若存在实数a、b使得φ(x)=af(x)+bg(x),则称函数φ(x)为函数f(x),g(x)的“T (a,b)函数”.(1)若函数φ(x)=e x为函数f(x)、g(x)的“T(1,2)函数”,其中f(x)为奇函数,g(x)为偶函数,求函数f(x)、g(x)的解析式;(2)设函数f(x)=ln(e x+1),g(x)=x,是否存在实数a、b使得函数φ(x)为函数f(x)、g(x)的“T(a,b)函数”,且同时满足:①φ(x)是偶函数;②φ(x)的值域为[2ln2,+∞).若存在,求出a、b的值;若不存在,请说明理由.注:e=2.71828⋯为自然对数的底数.2023-2024学年山东省聊城市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M={0,1,2,3},N={x|x<2},则M∩(∁R N)=()A.(﹣∞,2)B.(2,3)C.{2,3}D.{1,2,3}解:因为N={x|x<2},所以∁R N={x|x≥2},又因为集合M={0,1,2,3},故M∩(∁R N)={0,1,2,3}∩{x|x≥2}={2,3}.故选:C.2.下列函数中,既是周期函数又是偶函数的是()A.y=tan x B.y=|tan x|C.y=sin|x|D.y=cos(x2+π6)解:根据题意,依次分析选项:对于A,y=tan x,是正切函数,是奇函数,不满足题意,故A错误;对于B,若y=f(x)=|tan x|,其定义域为{x|x≠π2+kπ,k∈Z},关于原点对称,且f(﹣x)=|tan(﹣x)|=|tan x|=f(x),所以y=f(x)=|tan x|是偶函数,又f(x+π)=|tan(x+π)|=|tan x|=f(x),所以y=f(x)=|tan x|是周期函数,故B正确;对于C,函数y=sin|x|的图象如图:由此可知函数y=sin|x|不是周期函数,故C错误;对于D,若y=f(x)=cos(x2+π6),则f(2π3)=cos(π3+π6)=0≠f(−2π3)=cos(−π3+π6)=−√32,所以该函数不是偶函数,故D错误.故选:B.3.已知tanα=﹣2,且0<α<π,则cosα﹣sinα的值为()A.−3√55B.−2√55C.−√55D.√55解:因为tanα=﹣2,且0<α<π,所以α∈(π2,π),则{tanα=sinαcosα=−2sin2α+cos2α=1,解得sinα=2√55,cosα=−√55.则cosα−sinα=−√55−2√55=−3√55. 故选:A .4.已知a =log 30.5,b =log 0.50.3,c =sin 17π4,则( ) A .c >b >aB .c >a >bC .b >a >cD .b >c >a解:因为a =log 30.5<0,b =log 0.50.3>1,c =sin 17π4=sin π4=√22,所以a <c <b . 故选:D .5.如图,一个半径为4米的筒车按逆时针方向每分钟转1.5圈,筒车的轴心O 距离水面的高度为2米.设筒车上的某个盛水筒P 到水面的距离为d (单位:m )(在水面下则d 为负数),若以盛水筒P 刚浮出水面时开始计算时间,则d 与时间t (单位:s )之间的关系可以表示为( )A .d =4sin(π20t −π6)+2 B .d =4sin(π20t +π6)+2C .d =4sin(π10t −π6)+2 D .d =4sin(π10t +π6)+2 解:设d =Asin(ωt +φ)+b(A >0,ω>0,−π2<φ<π2),由题意可知,d max =A +b =6,d min =﹣A +b =﹣2,解得A =4,b =2,函数d =4sin(ωt +φ)+2(A >0,ω>0,−π2<φ<π2)的最小正周期为T =601.5=40,则ω=2πT =2π40=π20, 当t =0时,d =4sin φ+2=0,可得sinφ=−12,又因为−π2<φ<π2,则φ=−π6,故d =4sin(πt 20−π6)+2,故选:A .6.函数f(x)=1−4x1+4x ln|x|的图象大致为( )A .B .C .D .解:由函数f(x)=1−4x1+4x ln|x|,可知定义域为(﹣∞,0)∪(0,+∞),且定义域关于原点对称. 因为f(−x)=1−4−x1+4−x ln|−x|=4x−14x+1ln|x|=−f(x), 所以函数f(x)=1−4x 1+4x ln|x|为奇函数,故排除选项B ; 因为f(1)=1−41+4ln|1|=0,故排除选项A ; 因为f(12)=1−21+2ln 12=13ln2>0,故排除选项D .故选:C .7.若φ是三角形的一个内角,且函数y =2sin (3x +φ)在区间(−2π9,π12)上单调,则φ的取值范围为( ) A .[0,π6]B .[π6,π4]C .[π4,π2]D .[2π3,5π6]解:当x ∈(−2π9,π12)时,3x +φ∈(−2π3+φ,π4+φ), 由于φ是三角形的一个内角,所以0<φ<π, 则−2π3<−2π3+φ<π3,π4<π4+φ<5π4, 由于函数y =2sin (3x +φ)在区间(−2π9,π12)上单调, 所以{−π2≤−2π3+φπ4+φ≤π2,解得π6≤φ≤π4, 即φ的取值范围为[π6,π4].故选:B .8.已知函数f(x)={|x 2−3|,x <03x ,x >0,若函数g (x )=f (x )﹣m (m ∈R )有三个零点a ,b ,c ,且a <b <c ,则c ab的最小值为( )A .49B .23C .32D .94解:画出f(x)={|x 2−3|,x <03x,x >0的图象和y =m 的图象,如下:由题意得a2﹣3=3﹣b2=m,3c=m,且m∈(0,3),即a=−√3+m,b=−√3−m,c=3m ,故cab=m√9−m2=22≥3m2+9−m22=23,当且仅当m2=9﹣m2,即m=3√22时,等号成立,即cab的最小值为23.故选:B.二、选择题:本题共4小题,每小题满分20分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.以下说法正确的是()A.“∀x∈R,3x2﹣2≥0”的否定是“∃x∈R,3x2﹣2<0”B.“x>3”是“log3(2x+1)>2”的充分不必要条件C.若一扇形弧长为3π2,圆心角为π2,则该扇形的面积为9π4D.“∀x∈R,2ax2+ax−38≤0”是真命题,则﹣3≤a≤0解:对于A,“∀x∈R,3x2﹣2≥0”的否定是“∃x∈R,3x2﹣2<0”,故A正确;对于B,log3(2x+1)>2即log3(2x+1)>log39,解得x>4,因为x>4⇒x>3所以“x>3”是“log3(2x+1)>2”的必要不充分条件,故B错误;对于C,扇形弧长为3π2,圆心角为π2,所以扇形的半径长为3π2π2=3,则该扇形面积为12×3×3π2=9π4,故C正确;对于D,因为“∀x∈R,2ax2+ax−38≤0”是真命题,即2ax2+ax−38≤0,对∀x∈R恒成立.当a=0时,命题成立;当a≠0时,{a<0Δ=a2+3a≤0,解得﹣3≤a<0,综上可得,﹣3≤a≤0,故D正确.故选:ACD .10.若实数a 、b 满足2a <2b <1,则下列不等式恒成立的是( ) A .ac 2<bc 2B .c 2+1a >c 2+1bC .log 0.2(a 2+1)<log 0.2(b 2+1)D .a+b2≥√ab解:因为函数y =2x 为R 上的增函数,由2a <2b <1=20,可得a <b <0, 对于A ,当c =0时,ac 2<bc 2不成立,故A 不正确; 对于B ,因为a <b <0,所以c 2+1a−c 2+1b=(c 2+1)(b−a)ab>0,故c 2+1a>c 2+1b,B 正确;对于C ,因为a <b <0,则|a |>|b |>0,可得a 2>b 2>0,所以a 2+1>b 2+1>0,因为函数y =log 0.2x 为(0,+∞)上的减函数,所以log 0.2(a 2+1)<log 0.2(b 2+1),C 正确; 对于D 选项,由于a <b <0,所以a+b2<0<√ab ,故D 不正确.故选:BC .11.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则( )A .f(x)=2cos(2x +π3)B .f (x )在[π6,2π3]上单调递增C .若x 1、x 2∈(π12,7π12),x 1≠x 2且f (x 1)=f (x 2),则f (x 1+x 2)=1D .把f (x )的图象向右平移5π12个单位长度,然后再把所得曲线上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g (x )的图象,则g (x )=2sin x 解:对于A 选项,由图可知,A =f (x )max =2, 函数f (x )的最小正周期T 满足3T 4=5π6−π12=3π4,可得T =π,则ω=2πT =2ππ=2, 则f (x )=2cos (2x +φ), 又因为f(5π6)=2cos(5π3+φ)=2,可得cos(5π3+φ)=1, 因为0<φ<π,则5π3<φ+5π3<8π3,所以,φ+5π3=2π,可得φ=π3,所以,f(x)=2cos(2x+π3),A对;对于B选项,当π6≤x≤2π3时,2π3≤2x+π3≤5π3,所以f(x)在[π6,2π3]上不单调,B错;对于C选项,当π12<x<7π12时,π2<2x+π3<3π2,由2x+π3=π可得x=π3,所以,函数f(x)在区间(π12,7π12)内的图象关于直线x=π3对称,若x1、x2∈(π12,7π12),x1≠x2且f(x1)=f(x2),则x1+x2=2π3,所以,f(x1+x2)=f(2π3)=2cos5π3=2cos(2π−π3)=2cosπ3=1,C对;对于D选项,把f(x)的图象向右平移5π12个单位长度,可得到函数y=2cos[2(x−5π12)+π3]=2cos(2x−π2)=2sin2x的图象,再将所得曲线上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图象,则g(x)=2sin x,D对.故选:ACD.12.已知函数f(x)的定义域为R,对任意a,b∈R,都有f(a)f(b)=f(a+b),当x>0时,0<f(x)<1,且f(0)≠0,则()A.∀x∈R,都有f(−x)=−1f(x)B.当x<0时,f(x)>1C.f(x)是减函数D.若f(3)=12,则不等式f(2t2−5t)>116的解集为(−32,4)解:令a=b=0,则[f(0)]2=f(0),又f(0)≠0,所以f(0)=1.当x<0时,﹣x>0,所以0<f(﹣x)<1,又f(x)f(﹣x)=f(x﹣x)=f(0)=1,所以f(x)=1f(−x),即f(x)>1.故A错误,B正确;设x1<x2,则f(x1)﹣f(x2)=f(x1﹣x2+x2)﹣f(x2)=f(x1﹣x2)f(x2)﹣f(x2)=f(x2)[f(x1﹣x2)﹣1],又x1<x2,所以x1﹣x2<0,所以f(x1﹣x2)>1,又当x<0时,f(x)>1,当x>0时,0<f(x)<1,f(0)=1,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)在R上单调递减.C正确;因为f(3)=12,所以f(12)=f(6)f(6)=f(3)f(3)f(6)=[f(3)]4=116,所以f(2t 2−5t)>116,即f (2t 2﹣5t )>f (12), 又f (x )在R 上单调递减,所以2t 2﹣5t <12,解得−32<t <4,所以不等式f (2t 2﹣5t )>f (12)的解集为(−32,4),D 正确.故选:BCD .三、填空题:本题共4小题,每小题5分,共20分. 13.已知幂函数y =f (x )的图象通过点(3,√33),则f (4)=12. 解:设幂函数y =f (x )的解析式为y =x α, ∵幂函数y =x α过点(3,√33),∴√33=3α,∴α=−12,∴该函数的解析式为y =x −12,∴f(4)=4−12=2−1=12.故答案为:12.14.若a ,b >0,且2ab ﹣8=a +2b ,则a +2b 的最小值为 8 . 解:因为a ,b >0,且a +2b ≥2√2ab ,则2ab ≤(a+2b)24,又因为2ab ﹣8=a +2b ,所以8+a +2b ≤(a+2b)24,令t =a +2b >0,则t +8≤t 24,即t 2﹣4t ﹣32≥0,解得t ≥8或t ≤﹣4(舍去),当且仅当a =2b =4时,等号成立,所以a +2b 的最小值为8. 故答案为:8.15.在△ABC 中,A =π3,AB 边上的高等于√33AB ,则tan ∠ACB = 3√3 .解:由题意设CD 为AB 边上的高,CD =√33AB =√33c ,又A =π3,所以AD =CD tanA =√33c tan π3=13c <AB =c ,所以垂足D 必定落在线段AB 上面,如图所示:BD =c −13c =23c ,tan ∠BCD =23c 33c=2√33, 又tan ∠ACD =tan(π2−π3)=tan π6=√33,所以tan ∠ACB =2√33+√331−2√33×√33=3√3.故答案为:3√3.16.定义在R 上的函数f (x )满足f (x +2)为偶函数,且f (x )在(﹣∞,2)上单调递减,若x ∈[12,3],不等式f (ax )<f (x ﹣2)恒成立,则实数a 的取值范围为 (13,1) .解:定义在R 上的函数f (x )满足f (x +2)为偶函数,所以f (x )关于x =2对称, 因为f (x )在(﹣∞,2)上单调递减,所以f (x )在(2,+∞)上单调递增, 所以f (x )越靠近对称轴x =2函数值越小, 所以由f (ax )<f (x ﹣2)得|ax ﹣2|<|x ﹣2﹣2|, 由于x ∈[12,3],所以x ﹣4<ax ﹣2<4﹣x ,可得1−2x <a <6x −1,即x ∈[12,3]时1−2x <a <6x −1恒成立,可得(1−2x )max <a <(6x−1)min ,由于y =1−2x 在x ∈[12,3]时单调递增,(1−2x )max =13,y =6x −1在x ∈[12,3]时单调递减,(6x−1)min =1, 所以13<a <1.故答案为:(13,1).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)函数y =log 12x(x ∈[116,2])的值域为A ,y =√1x+a−1(a ∈R)的定义域为B . (1)求A ;(2)若B ⊆A ,求实数a 的取值范围. 解:(1)因为y =log 12x 在[116,2]上单调递减, 所以,当x =116时y 有最大值,且最大值为log 12116=4, 当x =2时,y 有最小值,最小值为log 122=−1,所以A ={x |﹣1≤x ≤4}.(2)由1x+a −1≥0,得x+a−1x+a≤0,解得﹣a <x ≤﹣a +1,所以,B ={x |﹣a <x ≤﹣a +1},因为B ⊆A ,所以{−a ≥−1−a +1≤4,解得﹣3≤a ≤1.故实数a 的取值范围[﹣3,1].18.(12分)在平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边过点P (6,﹣8).(1)求sin(π−α)+3cos(π+α)cos(3π2−α)+2sin(π2+α)的值; (2)已知β为锐角,sin(α+β)=−√210,求β.解:(1)因为角α的终边过点P (6,﹣8),所以|OP|=√62+(−8)2=10, 则sinα=−810=−45,cosα=610=35,tanα=−43. sin(π−α)+3cos(π+α)cos(3π2−α)+2sin(π2+α)=sinα−3cosα−sinα+2cosα=tanα−3−tanα+2=−43−343+2=−1310. (2)因为角α的终边过点P (6,﹣8),所以α为第四象限角,即2kπ−π2<α<2kπ(k ∈Z),又因为β为锐角,则0<β<π2,可得2kπ−π2<α+β<2kπ+π2(k ∈Z),因为sin (α+β)<0,则2kπ−π2<α+β<2kπ(k ∈Z),因为sin(α+β)=−√210,所以cos(α+β)=√1−sin 2(α+β)=√1−(−√210)2=7√210. 则sin β=sin[(α+β)﹣α]=sin (α+β)cos α﹣cos (α+β)sin α=−√210×35−7√210×(−45)=√22. 所以β=π4.19.(12分)为了巩固拓展脱贫攻坚的成果,振兴乡村经济,某地政府利用电商平台为脱贫乡村进行直播带货,既方便了人们购物和交流,又有效地解决了农产品销售困难的问题.为了支持家乡的发展,越来越多的人注册成为某电商平台的会员进行购物和交流.已知该平台建立前3年的会员人数如下表所示:为了描述建立平台年数x (x ∈N *)与该平台会员人数y (千人)的关系,现有以下三种函数模型供选择: ①y =ax+b(a >0);②y =d log c x +e (d >0,c >1);③y =ka x +m (k >0,a >1). (1)根据表中数据选出最恰当的函数模型,并说明理由,同时求出该函数的解析式;(2)根据第(1)问选择的函数模型,预计平台建立t 年的会员人数将超过100.2万人,求t 的最小值. 参考数据:ln 2≈0.693,ln 3≈1.099,ln 5≈1.609.解:(1)从表中数据可知,所选函数必须满足两个条件:增函数,增长速度越来越快, 因为模型①为减函数,模型②增长速度越来越慢,所以不能选择模型①和②, 模型③符合两个条件,所以选择模型③,将数据代入y =ka x +m (k >0,a >1)可得{14=ka +m20=ka 2+m 29=ka 3+m ,解得{k =8m =2a =32,所以,函数为y =8(32)x +2,x ∈N *;(2)由(1)知f(x)=8(32)x +2,x ∈N *,则8(32)t +2>1002.得(32)t >125,t >log 32125=ln125ln 32=3ln5ln3−ln2≈3×1.6091.099−0.693≈11.89, 故t 的最小值为12. 20.(12分)已知函数f(x)=13x−1−1+32. (1)判断函数f (x )在(1,+∞)上的单调性,并根据定义证明你的判断;(2)函数y =h (x )的图象关于点P (a ,b )成中心对称图形的充要条件是y =h (x +a )﹣b 为奇函数.依据上述结论,证明:f (x )的图象关于点(1,1)成中心对称图形. 解:(1)函数f (x )在(1,+∞)上单调递减.证明如下: 任取x 1,x 2∈(1,+∞),且x 1<x 2,f(x 1)−f(x 2)=13x 1−1−1+32−(13x 2−1−1+32)=(3x 2−1−1)−(3x 1−1−1)(3x 1−1−1)(3x 2−1−1)=13(3x 2−3x1)(3x 1−1−1)(3x 2−1−1). 因为1<x 1<x 2,所以3x 2−3x 1>0,(3x 1−1−1)(3x 2−1−1)>0, 所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上单调递减. (2)证明:设g (x )=f (x +1)﹣1, 则g(x)=13x −1+12=2+3x−12(3x −1)=3x+12(3x−1). 因为函数g (x )定义域为(﹣∞,0)∪(0,+∞), 且g(−x)=3−x+12(3−x −1)=3x+12(1−3x )=−3x+12(3x−1)=−g(x), 所以g (x )为奇函数,图象关于原点对称,因为y=g(x)是由y=f(x)的图象左平移一个单位,再向下平移1个单位,故f(x)的图象关于点(1,1)成中心对称图形.21.(12分)已知函数f(x)=4√3sinωx2cosωx2+4cos2ωx2+1(ω>0),A、B是f(x)的图象与直线y=﹣1的两个相邻交点,且|AB|=π.(1)求ω的值及函数f(x)在[0,π2]上的最小值;(2)若关于x的不等式f2(x)﹣(3m+2)f(x)﹣m﹣13≤0恒成立,求实数m的取值范围.解:(1)函数f(x)=2√3sinωx+2(2cos2ωx2−1)+3=2√3sinωx+2cosωx+3=4sin(ωx+π6)+3,则f(x)min=﹣4+3=﹣1,因为A、B是函数f(x)的图象与直线y=﹣1的两个相邻交点,且|AB|=π,所以函数f(x)的最小正周期为T=π,则ω=2πT=2ππ=2,可得f(x)=4sin(2x+π6)+3.由x∈[0,π2],得π6≤2x+π6≤7π6,所以,−12≤sin(2x+π6)≤1,所以,f(x)min=4×(−12)+3=1,故函数f(x)在[0,π2]上的最小值为1.(2)解:设t=f(x),因为−1≤sin(2x+π6)≤1,所以﹣1≤f(x)≤7.因为不等式f2(x)﹣(3m+2)f(x)﹣m﹣13≤0恒成立,设φ(t)=t2﹣(3m+2)t﹣m﹣13,所以φ(t)=t2﹣(3m+2)t﹣m﹣13≤0在t∈[﹣1,7]上恒成立.所以{φ(−1)≤0φ(7)≤0,即{1+3m+2−m−13=2m−10≤049−21m−14−m−13=22−22m≤0,解得1≤m≤5,故m的取值范围为[1,5].22.(12分)若存在实数a、b使得φ(x)=af(x)+bg(x),则称函数φ(x)为函数f(x),g(x)的“T (a,b)函数”.(1)若函数φ(x)=e x为函数f(x)、g(x)的“T(1,2)函数”,其中f(x)为奇函数,g(x)为偶函数,求函数f(x)、g(x)的解析式;(2)设函数f(x)=ln(e x+1),g(x)=x,是否存在实数a、b使得函数φ(x)为函数f(x)、g(x)的“T(a,b)函数”,且同时满足:①φ(x)是偶函数;②φ(x)的值域为[2ln2,+∞).若存在,求出a、b的值;若不存在,请说明理由.注:e=2.71828⋯为自然对数的底数.解:(1)根据题意,因为φ(x)=e x为f(x)、g(x)的“T(1,2)函数”,所以f(x)+2g(x)=e x①,所以f(﹣x)+2g(﹣x)=e﹣x.因为f(x)为奇函数,g(x)为偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x),所以﹣f(x)+2g(x)=e﹣x②,联立①②得,f(x)=12(e x−e−x),g(x)=14(e x+e−x).(2)假设存在实数a、b使得函数φ(x)为函数f(x)、g(x)的“T(a,b)函数”.则φ(x)=af(x)+bg(x)=aln(e x+1)+bx.①因为φ(x)是偶函数,所以φ(﹣x)=φ(x).即aln(e﹣x+1)﹣bx=aln(e x+1)+bx,则alne x+1e−x+1+2bx=alne x(e x+1)e x(e−x+1)+2bx=alne x(e x+1)e x+1+2bx=ax+2bx=0,整理得(2b+a)x=0.因为(a+2b)x=0对x∈R恒成立,所以a=﹣2b.②φ(x)=aln(e x+1)+bx=a2ln(e x+1)2e x=a2ln(e x+1e x+2).因为e x+1e x+2≥2√e x⋅1e x+2=4,当且仅当x=0取等号,所以ln(e x+1e x+2)≥ln4=2ln2,由于φ(x)的值域为[2ln2,+∞),所以a2×2ln2=2ln2,则a=2,又a=﹣2b,所以b=﹣1.综上,存在a=2,b=﹣1满足要求.。
高一数学试卷 2007.11.13
试卷说明:本卷满分100分,考试时间100分钟。
学生答题时可使用专用计算器。
一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )
A 、A ∅∉ B
A C
A D
、 ⊆A
2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )
A 、{1,2}
B 、{1,5}
C 、{2,5}
D 、{1,2,5} 3、函数2
1
)(--=
x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)
4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )
5、三个数70。
3,0。
37,
,㏑0.3,的大小顺序是( )
A 、 70。
3,0.37,,㏑0.3,
B 、70。
3,,㏑0.3, 0.37
C 、 0.37, , 70。
3,,㏑0.3,
D 、㏑0.3, 70。
3,0.37,
6、若函数f(x)=x 3+x 2
-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
那么方程x 3
+x 2
-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5
7、函数2,02,0
x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )
8、设
()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )
A 、f(xy)=f(x)f(y)
B 、f(xy)=f(x)+f(y)
C 、f(x+y)=f(x)f(y)
D 、f(x+y)=f(x)+f(y)
9、函数y=ax 2
+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值)
A 、97年
B 、98年
C 、99年
D 、00年
二、填空题(共4题,每题4分)
11、f(x)的图像如下图,则f(x)的值域为 ;
12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;
13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;
14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;
②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.
老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
请你写出一个(或几个)这样的函数
0099
98
9796(年)
200
400600
800
1000(万元)
三、解答题(本大题共6小题,满分44分,解答题写出必要的文字说明、推演步骤。
) 15、(本题6分)设全集为R ,{}73|<≤=x x A ,{}102|<<=x x B ,求()R C A B 及
()R C A B
16、(每题3分,共6分)不用计算器求下列各式的值
⑴ ()()
1
223
2
1329.63 1.5--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
---+
⑵
7log 23log lg25lg473
+++
17、(本题8分)设2
2 (1)() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,
(1)在下列直角坐标系中画出()f x 的图象; (2)若()3g t =,求t 值;
2,+∞时单调递增。
(3)用单调性定义证明在[)
18、(本题8分)某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了估测以后各月的产量,以这三个月产品数为依据,用一个函数模拟此产品的月产量y(万件)与月份数x的关系,模拟函数可以选取二次函数y=px2+qx+r或函数y=ab x+c(其中p、q、r、a、b、c均为常数),已知4月份该新产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?求出此函数。
19、(本题8分)已知函数f(x)=㏒a 12-x
, ,0(>a 且
)1≠a ,
(1)求f(x)函数的定义域。
(2)求使f(x)>0的x 的取值范围。
20、(本题8分)已知函数f(x)= 2x
(1)写出函数f(x)的反函数()g x 及定义域;
(2)借助计算器用二分法求()g x =4-x 的近似解(精确度0.1)
高一数学参考答案
命题:碧莲中学
一、 选择题(共10题,每题4分)
二、 填空题(共4题,每题4分)
11、[-4,3] 12、300 13、-x 14、2x y = 或0
,10
,1{
<+≥-=x x x x y 或x
y 2
-
= 三、 解答题(共44分) 15、 解:}102|{)(≥≤=⋃x x x B A C R 或
}10732|{)(<≤<<=⋂x x x B
C R 或
16、解(1)原式=2
32
21
)2
3()827(
1)49(--+-- =2
32
3212)2
3()23(1)23(-⨯-⨯+-- =22)2
3()23(123--+-- =
2
1
(2)原式=2)425lg(3
3
log 4
33+⨯+ =210lg 3log 24
13++-
=4
152241=++-
17、略 18、 解:若y =
c bx ax x f ++=2)( 则由题设
⎪⎩
⎪⎨⎧==-=⇒⎪⎩⎪⎨
⎧=++==++==++=7.035.005.03.139)3(2.124)2(1)1(r q p r q p f r q p f r q p f )(3.17.0435.0405.0)4(2
万件=+⨯+⨯-=∴f
若
c ab x g y x +==)( 则
⎪⎩⎪⎨⎧==-=⇒⎪⎩
⎪⎨⎧=+==+==+=4
.15.08.03.1)3(2.1)2(1)1(32c b a c ab g c ab g c ab g )(35.14.15.08.0)
4(4万件=+⨯-=∴g
∴选用函数c ab y x +=作为模拟函数较好
19、解:(1)12-x >0且2x -1),这个函数的定义域是(∞+⇒>⇒≥000x (2)㏒a 12-x >0,当a>1时,12-x >1;1>⇒x 当0<a<1时,12-x <1且x>010<<⇒x
20、略。