专题2-3 函数、数列、三角函数中大小比较问题讲-2018
- 格式:doc
- 大小:394.87 KB
- 文档页数:7
数学中三个比较大小的题
数学中比较大小的题目是数学习题中非常常见的题型,主要考察学生的数学思维和比较分析能力。
下面将介绍三个比较大小的题目,分别涉及实数大小比较、代数式大小比较和函数值大小比较。
一、实数大小比较
题目1:比较下列各组实数的大小:
(1) -5.2与-4.8;
(2) 0.2与-0.1;
(3) 3.5与-2.5。
解:(1)因为| -5.2| = 5.2,| -4.8| = 4.8,且5.2>4.8,所以-5.2<-4.8。
(2)因为0.2>0,-0.1<0,所以0.2>-0.1。
(3)因为3.5>0,-2.5<0,所以3.5>-2.5。
二、代数式大小比较
题目2:已知x>0,y>0,且x≠y,比较(x+y)(x-y)与(x+y)^2的大小。
解:因为x>0,y>0,且x≠y,所以(x+y)(x-y) =
x^2-y^2<x^2+2xy+y^2=(x+y)^2。
因此(x+y)(x-y)<(x+y)^2。
三、函数值大小比较
题目3:已知函数f(x)=-3x+5,当x>0时,比较f(x)与0的大小。
解:因为f(x)=-3x+5,当x>0时,f(x)<0。
因此f(x)<0。
专题能力提升练七三角恒等变换与解三角形(45分钟80分)一、选择题(每小题5分,共30分)1.cos15°-4sin215°cos15°=()A. B. C.1D.【解析】选D.cos 15°-4sin215°cos 15°=cos 15°-2sin 15°×2sin 15°cos 15°=cos 15°-2sin 15°sin 30°=cos 15°-sin 15°=2cos(15°+30°)=.2.(2018·永州二模)已知△ABC的内角A,B,C的对边分别是a,b,c,若+=2a,则△ABC是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形【解析】选 C.因为+=2a,所以由正弦定理可得,+=2sinA≥2=2,所以sin A=1,当=时,“=”成立,所以A=,b=c,所以△ABC是等腰直角三角形.3.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB= ( )A.4B.C.D.2【解析】选A.cos C=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cos C,得AB2=25+1-2×1×5×=32,所以AB=4.4.若向量a=,向量b=(1,sin22.5°),则a·b=( )A.2B.-2C.D.-【解析】选A.由题得a·b=tan67.5°+=tan 67.5°+=tan 67.5°-tan 22.5°=tan 67.5°-==2×=2×=2.【加固训练】(2018·会宁一中一模)已知x为锐角,=,则a的取值X围为( ) A.[-2,2] B.(1,)C.(1,2]D.(1,2)【解析】选C.由=,可得:a=sin x+cos x=2sin,又x∈,所以x+∈,所以a的取值X围为(1,2].5.在锐角△ABC中,A=2B,则的取值X围是( )A.(-1,3)B.(1,3)C.(,)D.(1,2)【解析】选D.====3-4sin2B.因为△ABC是锐角三角形,所以得<B<⇒sin2B∈.所以=3-4sin2B∈(1,2).6.(2018·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C= ()A. B. C. D.【解析】选C.由题意S△ABC=absin C=,即sin C=,由余弦定理可知sin C=cos C,即tan C=1,又C∈(0,π),所以C=.【加固训练】(2018·某某一模) 已知△ABC中,sinA,sinB,sinC成等比数列,则的取值X围是( )A. B.C.(-1,]D.【解析】选 B.由已知可知sin2B=sin A·sin C,即b2=ac,cos B==≥=,即0<B≤,sin B+cos B=sin∈(1,],原式==,设t=sin B+cos B,即原式==t-(1<t≤),函数是增函数,当t=1时,函数等于0,当t=时,函数等于,所以原式的取值X围是.二、填空题(每小题5分,共10分)7.(2018·全国卷Ⅱ)已知tan=,则tanα=________.【解析】因为tan=tan=,所以=,解得tan α=.答案:【加固训练】(2018·某某市一模) 已知cos=,则sin2α=________.【解析】sin 2α=sin=-cos2=1-2cos2=1-2×=-.答案:-8.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC 比AB长0.5米,为了稳定广告牌,要求AC越短越好,则AC最短为________.【解题指南】首先根据余弦定理找出边BC与AC之间的关系,用边BC表示出边AC,结合函数知识即可求解.【解析】由题意设BC=x(x>1)米,AC=t(t>0)米,依题设AB=AC-0.5=(t-0.5)米,在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC·BCcos 60°,即(t-0.5)2=t2+x2-tx,化简并整理得:t=(x>1),即t=x-1++2,因为x>1,故t=x-1++2≥2+,当且仅当x=1+时取等号,此时取最小值2+. 答案:2+三、解答题(每小题10分,共40分)9.(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB.(2)若DC=2,求BC.【解析】(1)在△ABD中,由正弦定理得=.由题设知,=,所以sin∠ADB=.由题意知,∠ADB<90°,所以cos∠ADB==.(2)由题意及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2×=25. 所以BC=5.10.如图,在△ABC中,AB=2,cosB=,点D在线段BC上.(1)若∠ADC=,求AD的长.(2)若BD=2DC,△ACD的面积为,求的值.【解题指南】(1)首先利用同角三角函数间的基本关系求得sin B的值,然后利用正弦定理即可求得AD的长.(2)首先利用三角形面积间的关系求得S△ABC,然后利用三角形面积公式结合余弦定理即可求得的值.【解析】(1)在三角形中,因为cos B=,所以sin B=,在△ABD中,由正弦定理得=,又AB=2,∠ADB=,sin B=.所以AD=.(2)因为BD=2DC,所以S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,所以S△ABC=4,因为S△ABC=AB·BCsin∠ABC,所以BC=6,因为S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD,S△ABD=2S△ADC,所以=2·,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC.所以AC=4,所以=2·=4.11.已知函数f(x)=2sinxcosx+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间上的最大值和最小值.(2)若f(x0)=,x0∈,求cos2x0的值.【解析】(1)f(x)=2sin xcos x+2cos2x-1=(2sin xcos x)+(2cos2x-1)=sin 2x+cos 2x=2sin,所以函数f(x)的最小正周期为π;因为x∈,所以2x+∈,sin∈,所以函数f(x)=2sin在区间上的最大值为2,最小值为-1.(2)由(1)可知f(x0)=2sin,又因为f(x0)=,所以sin=,由x0∈,得2x0+∈,从而cos=-=-,所以cos 2x0=cos=cos cos +sin sin =12.在△ABC中,D是边BC上的点,AB=AD=,cos∠BAD=.(1)求sinB.(2)若AC=4,求△ADC的面积.【解题指南】(1)直接利用余弦定理和正弦定理求出结果.(2)利用(1)的结论和余弦定理求出三角形的面积.【解析】(1)在△ABD中,BD2=AB2+AD2-2AB·AD·cos∠BAD=7+7-2×××=12,得BD=2.由cos∠BAD=,得sin∠BAD=,在△ABD中,由正弦定理得=,所以sin B=×=.(2)因为sin B=,B是锐角,所以cos B=,设BC=x,在△ABC中,AB2+BC2-2AB·BC·cos B=AC2,即7+x2-2·x··=16,化简得:x2-2x-9=0,解得x=3或x=-(舍去),则CD=BC-BD=3-2=,由∠ADC和∠ADB互补,得sin∠ADC=sin∠ADB=sin B=,所以△ADC的面积S=·AD·DC·sin∠ADC=×××=.【加固训练】(2018·某某二模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为acsin2B.(1)求sinB的值.(2)若c=5,3sin2C=5sin2B·sin2A,且BC的中点为D,求△ABD的周长.【解析】(1)由S△ABC=acsinB=acsin2B,得sin B=2sin B·cos B,因为0<B<π,所以sin B>0,故cos B=,又sin2B+cos2B=1,所以sin B=.(2)由(1)和3sin2C=5sin2B·sin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,因为c=5,所以a=4,BD=a=2,在△ABD中,由余弦定理得:AD2=c2+BD2-2c·BD·cos B=52+22-2×5×2×=24,所以AD=2.所以△ABD的周长为c+BD+AD=7+2.(建议用时:50分钟)1.(2018·某某一模)南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S=,c>b>a),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A.82平方里B.83平方里C.84平方里D.85平方里【解析】选C.由题意可得:a=13,b=14,c=15代入:S===84,则该三角形田面积为84平方里.2.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若2sin=1,且a=2,则△ABC 的面积的最大值为( )A. B. C. D.2【解析】选B.sin=,-=,A=,由于a=2为定值,由余弦定理得4=b2+c2-2bccos ,即4=b2+c2+bc.根据基本不等式得4=b2+c2+bc≥2bc+bc=3bc,即bc≤,当且仅当b=c时,等号成立.S△=bcsin A≤··=.3.在△ABC中,a,b,c分别是内角A,B,C的对边,sinAcosB-(c-cosA)·sinB=0,则边b=________.【解析】由sin Acos B-(c-cos A)·sin B=0,得sin Acos B+cos Asin B=csin B,所以sin C=csin B,即=sin B,由正弦定理=,故b==1.答案:14.在△ABC中,角A,B,C的对边分别为a,b,c,设△ABC的面积为S,若3a2=2b2+c2,则的最大值为________.【解析】因为3a2=2b2+c2,所以3a2=3b2-b2+3c2-2c2,所以b2+2c2=3(b2+c2-a2)=6bccos A,所以==tan A.由题得a2=,所以 cos A===≥=,所以tan A=≤=,当且仅当b=c时取等号.所以的最大值为.答案:【加固训练】(2018·某某中学模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知a=,(b2+c2-3)tanA=bc,2cos2=(-1)cosC,则△ABC的面积等于________.【解析】条件(b2+c2-3)tan A=bc即为(b2+c2-a2)tan A=bc,由余弦定理得2bccos Atan A=bc,所以得sin A=,又A为锐角,所以A=.又2cos2=1+cos(A+B)=1-cos C=(-1)cos C,所以cos C=,得C=,故B=.在△ABC中,由正弦定理得=,所以c===.故△ABC的面积S=acsin B=×××sin =.答案:5.△ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2=a2-bc.(1)求sinA.(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.【解析】(1)由(b-c)2=a2-bc,得b2+c2-a2=bc,即=,由余弦定理得cos A=,因为0<A<π,所以sin A=.(2)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A,由正弦定理得b+c=2a=4,所以16=(b+c)2,所以16=b2+c2+2bc.由(1)得16=a2+bc,所以16=4+bc,解得bc=,所以S△ABC=bcsin A=××=.6.(2018·某某一模)△ABC的内角为A,B,C的对边分别为a,b,c,已知=+.(1)求sin(A+B)+sinAcosA+cos(A-B)的最大值.(2)若b=,当△ABC的面积最大时,求△ABC的周长.【解题指南】(1)先根据正弦定理将边角关系转化为角的关系,再根据三角公式转化为二次函数求解.(2)根据余弦定理利用基本不等式求解.【解析】(1)由=+得:=,a=bcos C+csin B,即sin A=sin Bcos C+sin Csin B,所以cos B=sin B,B=;由sin(A+B)+sin Acos A+cos(A-B)=(sin A+cos A)+sin Acos A,令t=sin A+cos A,原式=t2+t-,当且仅当A=时,上式取最大值,最大值为.(2)S=acsin B=ac,b2=a2+c2-2accos B,即2=a2+c2-ac≥(2-)ac,ac≤2+,当且仅当a=c=等号成立;S max=,周长L=a+b+c=2+.7.(2018·某某二模) 如图,在平面四边形ABCD中,AB=2,AC=2,∠ADC= ∠CAB=90°,设∠DAC=θ.(1)若θ=60°,求BD 的长度;(2)若∠ADB=30°,求tanθ.【解题指南】(1)在△ABD中,利用余弦定理直接求出BD.(2)在△ABD中,写出正弦定理再化简即得解.【解析】(1)由题意可知,AD=1.在△ABD中,∠DAB=150°,AB=2,AD=1,由余弦定理可知,BD2=(2)2+12-2×2×1×=19,BD=.(2)由题意可知,AD=2cos θ,∠ABD=60°-θ,在△ABD中,由正弦定理可知,=,所以=4,所以tan θ=.。
关于“指数函数、对数函数⼤⼩⽐较问题”的探索2019-07-15关于⼤⼩⽐较的问题,是⾼考不可缺少的⼀个考点,但是考⽣遇到这道题往往有点不知所措,即使能做出来,也要花上相当多的时间,这不仅会影响这类题⽬的得分率,还会在很⼤程度上影响学⽣的考试状态.为此在历年的⾼考前,我都要进⾏这类题⽬的专门训练,下⾯是我近些年为⾼三学⽣复习“⼤⼩⽐较”专题时总结出的⼀点经验,供⼴⼤⾼考学⼦学习借鉴.【问题⼀】设a=log54,b=(log53)2,c=log54,⽐较a、b、c的⼤⼩.解:因为y=logax(a>0,且a≠1)在a>1时为增函数,在0<a<1时为减函数,所以,0=log51<log53<log54<log55=1.⼜易知log53>(log53)2,⼜因为log45>log44=1,所以显然有c>a>b.⼩结:本题显然由对数性质可得.解题后反思本题还能否⽤其他⽅法来解决.【问题⼆】设a=log3π,b=log23,c=log32,⽐较a、b、c的⼤⼩.解:因为π>3,⼜log3π>log33=1,即a>1,此题关键是处理好b、c的⼤⼩⽐较,由于b、c这两者间没有相同的底数,但是注意观察就发现,有b>c,所以有a>b>c.(引导学⽣看到有log23=12log23>12log22=12,即b>12,⽽对于c=log32=12log32<12log33=12,即c<12.由于看出b、c均⽐a⼩,且均为正数.故⽽可以⽤求商法来判断b、c的⼤⼩,即可得到a、b、c的⼤⼩).⼩结:对性质的综合运⽤是解决问题的关键.【问题三】设a=(35)25,b=(25)35,c=(25)25,⽐较a、b、c的⼤⼩.解:引导学⽣观察发现,a、c的指数均是25,⽽且35>25>0,所以显然有a>c,⼜看到b、c的底数均是25,且0<25<1,所以显然有b⼩结:注意观察,找出特征,进⽽利⽤性质来完成⽐较.【问题四】若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x⽐较a,b,c的⼤⼩.解:因为e是⼀个⼤于2的⽆理数,所以0<1e<1.易知,a<0,b<0,c<0,很显然c>a>b.⼩结:关键是要掌握绝对值⼩于1的数经过乘⽅后与它原来的绝对的⼤⼩进⾏⽐较.【问题五】若a=logπ0.8,b=(12)0.2,c=2-0.5,⽐较a、b、c的⼤⼩.解:因为a是⼀个对数函数,且底数π>1,所以显然有a<0,b=(12)0.2=2-0.2>2-0.5=c>0,所以显然有b>c>a.⼩结:本题关键是考察对数和指数函数的性质,同时在⽐较⼤⼩时,合理的取值也是关键.【问题六】设a=log32,b=ln2,c=5-12,⽐较a,b,c的⼤⼩.解:易知a、b均为正数,且都介于0到1之间,所以可以通过求商来判断它们的⼤⼩.ba=log3e>1,所以a<b.现在关键是⽐较a、c的⼤⼩,所以可以考虑⽤估算法来判断得到c<a,所以b>a>c.⼩结:估算法要求学⽣记住⼀些较为常⽤的数的近似数.有些题在按照常规法解答较慢时,⽤估算解近似值往往能起到事半功倍的效果.总之,⼤⼩⽐较是有规律可循的,但是在考场上要能做到快速准确地答题,仅靠基本理论和常规⽅法是不够的,还需要在平时积累⼀定的解题技巧,尤其是要把规律性与特殊性有效结合,才能做到解题快速、灵活⽽⼜⾼效.注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。
一.方法综述数列的求和问题是数列高考中的热点问题,数列的求和问题会渗透多种数学思想,会跟其他知识进行结合进行考查.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列求和中的新定义问题、子数列中的求和问题、奇偶性在数列求和中的应用、周期性在数列求和中的应用、数列求和的综合问题中都有所涉及,本讲就这类问题进行分析.二.解题策略类型一数列求和中的新定义问题【例1】【湖南师范大学附属中学2019届高三上学期月考(四)】对于数列,定义为的“优值”,现已知某数列的“优值”,记数列的前项和为,则()A.2022 B.1011 C.2020 D.1010【答案】B【解析】由,得,①,②①-②得,即,,所以.故选B.【指点迷津】1.“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2.解决此类问题的一些技巧:(1)抓住“新信息”的特点,找到突破口;(2)尽管此类题目与传统的数列“求通项,求和”的风格不同,但其根基也是我们所学的一些基础知识与方法.所以在考虑问题时也要向一些基本知识点靠拢,弄清本问所考察的与哪个知识点有关,以便找到一些线索.(3)在分类讨论时要遵循“先易后难”的原则,以相对简单的情况入手,可能在解决的过程中会发现复杂情况与该情况的联系,或者发现一些通用的做法与思路,使得复杂情况也有章可循.【举一反三】已知数列{}n a 的前n 项和为n S ,定义11ni i S n =∑为数列{}n a 前n 项的叠加和,若2016项数列1232016,,,a a a a 的叠加和为2017,则2017项数列1220161,,,a a a 的叠加和为( )A. 2017B. 2018C. 22017D. 22018 【答案】A故选A .类型二 子数列中的求和问题【例2】已知有穷数列{}n a 中, 1,2,3,,729n =,且()()1211n n a n +=--,从数列{}n a 中依次取出2514,,,a a a 构成新数列{}nb ,容易发现数列{}n b 是以-3为首项,-3为公比的等比数列,记数列{}n a 的所有项的和为S ,数列{}n b 的所有项的和为T ,则( )A. S T >B. S T =C. S T <D. S 与T 的大小关系不确定 【答案】A【解析】因为()728135727*********s =-+-++⨯-=+⨯=, ()()()133372921n nn b -=--=-≤⨯-,所以6n ≤,当6n =时, 6729b =是n a 中第365项,符合题意,所以()()()()631354613T ---==--,所以S T >,选A. 学科*网【指点迷津】一个数列中某些项的求和问题,关键在于弄清楚新的数列的形式,了解其求和方法.【举一反三】已知*n N ∈,集合13521,,,,2482n nn M -⎧⎫=⎨⎬⎩⎭,集合n M 的所有非空子集的最小元素之和为n T ,则使得80n T >的最小正整数n 的值为( )A. 12B. 13C. 14D. 15 【答案】B∴n T =S 1+S 2+S 3+…+S n =212n -+2237531......222442n n --++++=则21802n -> 的最小正整数n 为13 故选B.类型三 奇偶性在数列求和中的应用 【例3】【福建省2019届高三模拟】已知数列满足,,且,,设数列的前项和为,则__________(用表示).【答案】【解析】 当是奇数时,,,所以,,,…,,…是首项为1,公差为6的等差数列,因此;当是偶数时,,,所以,,,…,,…是首项为4,公比为3的等比数列,因此.综上,,所以,即.【指点迷津】数列求和中遇到n)1(-,πn sin ,πn cos 都会用到奇偶性,进行分类讨论.再采用分组转化法求和或者并项求和的方法,即通过两个一组进行重新组合,将原数列转化为一个等差数列. 分组转化法求和的常见类型还有分段型(如,{2,n n n n a n =为奇数为偶数)及符号型(如()21nn a n =- )【举一反三】设数列{}n a 的前n 项和为n S ,已知22a =,()1211n n n a a -++-=,则40S =______【答案】240类型四 周期性在数列求和中的应用 【例4】数列{}n a 满足12sin122n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列{}n a 的前100项和为__________. 【答案】5100【指点迷津】本题主要考查数列的周期性,数列是定义域为正整数集或它的子集的函数,因此数列具有函数的部分性质,本题观察到条件中有sin2n π ,于是考虑到三角函数的周期性,构造()sin 2f n n π=⋅,周期为4,于是研究数列中依次4项和的之间的关系,发现规律,从而转化为熟悉的等差数列求和问题.解决此类问题要求具有观察、猜想、归纳能力,将抽象数列转化为等差或等比数列问题.【举一反三】已知数列2008,2009,1,,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和______.【答案】4018【解析】数列从第二项起,每一项都等于它的前后两项之和,可得2008,2009,1,,,,2008,2009,1,,即有数列的最小正周期为6,可得一个周期的和为0,由,可得.故答案为:4018.类型五数列求和的综合问题【例5】【上海市青浦区2019届高三二模】等差数列,满足,则()A.的最大值为50 B.的最小值为50C.的最大值为51 D.的最小值为51【答案】A【解析】时,满足条件,所以满足条件,即最小值为2,舍去B,D.要使得取最大值,则项数为偶数,设,等差数列的公差为,首项为,不妨设,则,且,由可得,所以,因为,所以,所以,而,所以,故.故选A【指点迷津】先根据题意可知中的项有正有负,不妨设,根据题意可求得,根据,去绝对值求和,即可求出结果.【举一反三】1.【新疆乌鲁木齐市2019届高三一模】已知数列和的前项和分别为和,且,,(),若对任意的,恒成立,则的最小值为_____. 【答案】【解析】,,可得,解得,当时,,化为,由,可得,即有,,即有,对任意的,恒成立,可得,即的最小值为.故答案为:.2.【湖北省宜昌市2019届高三年级元月调考】已知数列是各项均为正数的等比数列,其前项和为,点、均在函数的图象上,的横坐标为,的横坐标为,直线的斜率为.若,,则数列的前项和__________.【答案】【解析】由题意可知:,,,,∴,解得,∴∴∴①②①﹣②得,所以,整理得.故答案为:三.强化训练1.【山东省日照一中2019届高三11月统考模拟】已知函数的定义域为,,对任意R都有,则=A.B.C.D.【答案】B【解析】由,且,得,,,,故选B.2.【四川省凉山州2019届高三二诊】我们把叫“费马数”(费马是十七世纪法国数学家).设,,,,表示数列的前项之和,则使不等式成立的最小正整数的值是()A.B.C.D.【答案】B【解析】∵∴,∴,而∴,,即,当n=8时,左边=,右边=,显然不适合;当n=9时,左边=,右边=,显然适合,故最小正整数的值9故选:B3.【安徽省合肥市2019届高三第二次检测】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则的值为()A.7 B.8 C.9 D.10【答案】D【解析】由题意,第一层货物总价为1万元,第二层货物总价为万元,第三层货物总价为万元,…,第层货物总价为万元,设这堆货物总价为万元,则,,两式相减得,则,解得,故选D.4.己知数列满足,,,则数列的前2018项的和等于A.B.C.D.【答案】B【解析】由,即,当n为奇数时,可得,成等比,首项为1,公比为3.当n为偶数时,可得,成等比,首项为3,公比为3.那么:,前2018项中,奇数项和偶数项分别有1009项.故得.故选:B.5.已知等差数列{a n}的首项为,公差为d,其前n项和为,若直线y=x+m与圆(x-2)+y=1的两个交点关于直线x+y-d=0对称,则数列的前10项和为()A.B.C.D.2【答案】B【解析】因为直线y=x+m与圆(x﹣2)2+y2=1的两个交点关于直线x+y-d=0对称,所以直线x+y-d=0经过圆心,则有2+0-d=0,d=2,而直线y=x+m与直线x+y-d=0垂直,所以=1,=2,则Sn=2n+×2=n(n+1).=,所以数列的前10项和为1-+-+…+-=1-=.故选:B.6.【山东省济南市历城第二中学2019接高三11月月考】定义函数如下表,数列满足,. 若,则()A.7042 B.7058 C.7063 D.7262【答案】C【解析】由题意,∵a1=2,且对任意自然数均有a n+1=f(a n),∴a2=f(a1)=f(2)=5,即a2=5,a3=f(a2)=f(5)=1,即a3=1,a4=f(a3)=f(1)=3,即a4=3,a5=f(a4)=f(3)=4,即a5=4,a6=f(a5)=f(4)=6,即a6=6,a7=f(a6)=f(6)=2,即a7=2,可知数列{a n}:2,5,1,3,4,6,2,5,1…是一个周期性变化的数列,周期为:6.且a1+a2+a3+…+a6=21.故a1+a2+a3+…+a2018=336×(a1+a2+a3+…+a6)+a1+a2=7056+2+5=7063.故选C7.【吉林省长春市实验中学2019届高三期末】设数列中,若,则称数列为“凸数列”.已知数列为“凸数列”,且,则数列的前2019项和为()A.1 B.C.D.【答案】C【解析】∵数列{b n}为“凸数列”,∴b n+1=b n+b n+2,∵b1=1,b2=﹣2,∴﹣2=1+b3,解得b3=﹣3,同理可得:b4=﹣1,b5=2,b6=3,b7=1,b8=﹣2…,∴b n+6=b n.又b1+b2+…+b6=1﹣2﹣3﹣1+2+3=0,且2019=6+3,∴数列{b n}的前2019项的和=b1+b2+ b3+336=1-2-3=-4,故选:C.8.【河北省武邑中学2019届高三(上)期中】数列中的项按顺序可以排列成如图的形式,第一行1项,排;第二行2项,从左到右分别排,;第三行排3项,依此类推设数列的前项和为,则满足的最小正整数n的值为A.20 B.21 C.26 D.27【答案】B【解析】解:根据题意,第一行,为4,其和为4,可以变形为;第二行,为首项为4,公比为3的等比数列,共2项,其和为;第三行,为首项为4,公比为3的等比数列,共3项,其和为;依此类推:第n行的和;则前6行共个数,前6项和为:,满足,而第六行的第6个数为,则,故满足的最小正整数n的值21;故选:B.二、填空题9.【宁夏银川一中2019届高三一模】已知数列的前n项和为,数列的前n项和为,满足,且.若对任意恒成立,则实数的最小值为______.【答案】【解析】数列的前n项和为,满足,当时,,解得,所以当时,,化简得,所以当时,,当时上式也成立,所以,因为,,所以,若对于任意恒成立,则实数的最小值为.10.在如图所示数表中,已知每行、每列中的数都构成等差数列,设表中第n行第n列的数为,则数列的前100项的和为______.【答案】【解析】由题意可知,第一行的第n个数为;第二行的第n个数为;第三行的第n个数为;第n行的第n个数为;即,,前100项的和为,,故答案为:.11.【湖南省株洲市2019届高三统一检测(一)】数列的首项为1,其余各项为1或2,且在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则__________.(用数字作答)【答案】3993【解析】第个1为数列第项,当时;当时;所以前2019项有45个1和个2,因此12.【湖南省湘潭市2019届高三二模】已知函数的图像在点处的切线与直线垂直,若数列的前项和为,则__________.【答案】【解析】由题意知,则,,故,,故,.故答案为13.【安徽省宣城市2019届高三第二次调研】数列的前项和为,定义的“优值”为,现已知的“优值”,则_________.【答案】【解析】解:由=2n,得a1+2a2+…+2n﹣1a n=n•2n,①n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)•2n﹣1,②①﹣②得2n﹣1a n=n•2n﹣(n﹣1)•2n﹣1=(n+1)•2n﹣1,即a n=n+1,对n=1时,a1=2也成立,所以.14.【江苏省常州市2019届高三上期末】数列满足,且数列的前项和为,已知数列的前项和为1,那么数列的首项________.【答案】【解析】数列{a n﹣n}的前2018项和为1,即有(a1+a2+…+a2018)﹣(1+2+…+2018)=1,可得a1+a2+…+a2018=1+1009×2019,由数列{b n}的前n项和为n2,可得b n=2n﹣1,,a2=1+a1,a3=2﹣a1,a4=7﹣a1,a5=a1,a6=9+a1,a7=2﹣a1,a8=15﹣a1,a9=a1,…,可得a1+a2+…+a2018=(1+2+7)+(9+2+15)+(17+2+23)+…+(4025+2+4031)+(a1+4033+a1)=505+×505×504×8+2×504+504×7+×504×503×8+2a1=1+1009×2019,解得a1=.故答案为:.15.【广东省汕尾市普通高中2019年3月高三检测】已知数列的首项为数列的前项和若恒成立,则的最小值为______.【答案】【解析】数列的首项,则:常数故数列是以为首项,3为公差的等差数列.则:首项符合通项.故:,,,由于数列的前n项和恒成立,故:,则:t的最小值为,故答案为:.16.【上海交通大学附属中学2019届高三3月月考】对任意,函数满足:,,数列的前15项和为,数列满足,若数列的前项和的极限存在,则________.【答案】【解析】∵,,∴,展开为,,即0≤f(n)≤1,.即,∴,化为=.∴数列{}是周期为2的数列.∵数列{}的前15项和为,∴=7()+.又,解得,.∴=,=.由0,f(k+1),解得f(2k﹣1).0,f(n+1),解得f(2k),又,令数列的前n项和为,则当n为奇数时,,取极限得;则当n为偶数时,,取极限得;若数列的前项和的极限存在,则,,故答案为.。
专题06 比较大小问题【高考真题】1.(2022·全国甲理) 已知3111, cos , 4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >> 2.(2022·全国甲文)已知910, 1011, 89m m m a b ==-=-,则( )A .0a b >>B .0a b >>C .0b a >>D .0b a >>3.(2022·新高考Ⅰ)设0.110.1e , ln 0.99a b c ===-,,则( ) A .a b c << B .c b a << C .c a b << D .a c b <<【同类问题】1.已知a =ln 22,b =1e ,c =ln 33,则a 、b 、c 的大小关系为( ) A .b <c <a B .c <a <b C .a <c <b D .c <b <a2.下列不等式成立的是( )A .2ln 32<32ln2 B .2ln 3<3ln 2 C .5ln4<4ln5 D .π>eln π 3.已知定义在R 上的函数f (x )的导函数为f ′(x ),且满足xf ′(x )<f (x ),若a =f (1),b =f (ln 4)ln 4,c =f (3)3,则a , b ,c 的大小关系为( )A .a >b >cB .c >a >bC .b >a >cD .a >c >b4.已知a =ln 33,b =e -1,c =3ln 28,则a ,b ,c 的大小关系为( ) A .b >c >a B .a >c >b C .a >b >c D .b >a >c5.已知a ,b ∈(0,3),且4ln a =a ln 4,4ln b =b ln 2,c =log 0.30.06,则( )A .c <b <aB .a <c <bC .b <a <cD .b <c <a6.(多选)已知e 是自然对数的底数,则下列不等关系中不正确的是( )A .ln 2>2eB .ln 3<3eC .ln π>πeD .ln 3ln π<3π7.(多选)若0<x 1<x 2<1,则下列不等式成立的是( )A .1221e e x x x x >B .1221e e x xx x < C .21e e x x ->ln x 2-ln x 1 D .12e e x x -<ln x 2-ln x 1 8.若e -2b +12(a -1)2=e -a +12(2b -1)2,则( ) A .a >2b B .a =2b C .a <2b D .a >b 29.(多选)已知a ,b ∈(0,e),且a <b ,则下列式子中可能成立的是( )A .a e b <b e aB .a e b >b e aC .a ln b <b ln aD .a ln b >b ln a10.已知a ,b ,c ∈(0,1),且a 2-2ln a +1=e ,b 2-2ln b +2=e 2,c 2-2ln c +3=e 3,其中e 是自然对数的底数,则a ,b ,c 的大小关系是________.11.已知a =12ln 2+14,b =2e ,c =ln π+1π,则a ,b ,c 之间的大小关系为( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a12.已知a >1,b >1,且满足a 2-3b =2ln a -ln 4b ,则( )A .a 2>2bB .a 2<2bC .a 2>b 2D .a 2<b 213.(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )A .a >2bB .a <2bC .a >b 2D .a <b 214.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x xD .12e x x <21e x x16.(2021·全国乙)设a =2ln1.01,b =ln1.02,c = 1.04-1,则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b17.设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z18.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c。
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小; (2)设向量,边长,当取最大值时,求边的长. 【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小; (2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 ,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()1f B <≤,综上, ()f B的取值范围为⎛ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin cos ba c B C A C --+=+(1)求A 的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(22b ca+<≤ 【解析】试题分析:(1)由()()()222sin cos b a c B C A C --+=+及余弦定理的变形可得2cos sin B A B -,因为cos 0B ≠,故得sin A =ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin cos b a c B C A C --+=+,∴()()2cos sin cos ac B B C A C -+=+ , ∴()()2cos sin ,B A B ππ--=-∴2cos sin B A B -=,∴23sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为2ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6 【解析】试题分析:(1)由//m n ,得62)0c c o s A a c o s B-+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得2sin 2a R A ===.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A.B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, AB =, 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】 【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯= 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值.试题解析:(1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos a C A =. (1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 1⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积S满足222a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(tan C =0C π<<, 23C π∴=.(2)()3cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(203A π⎛⎫+∈ ⎪⎝⎭ 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=- ⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A C πππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 24A π⎫⎛⎫∴-∈⎪ ⎪⎪⎝⎭⎝⎭(S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角A ;(2)若a =ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (3+(3.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦6B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(3+.。
专题14 指、对、幂形数的大小比较问题【命题规律】指、对、幂形数的大小比较问题是高考重点考查的内容之一,也是高考的热点问题,命题形式主要以选择题为主.每年高考题都会出现,难度逐年上升.【核心考点目录】核心考点一:直接利用单调性 核心考点二:引入媒介值 核心考点三:含变量问题 核心考点四:构造函数 核心考点五:数形结合核心考点六:特殊值法、估算法 核心考点七:放缩法 核心考点八:不定方程【真题回归】1.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C 【解析】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.2.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A【解析】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022·全国·统考高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C【解析】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.方法二:比较法 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ① ln ln 0.1ln(10.1)a b -=+- , 令()ln(1),(0,0.1],f x x x x =+-∈则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1]上单调递减,可得(0.1)(0)0f f <=,即 ln ln 0a b -< ,所以 a b < ;② 0.10.1ln(10.1)a c e -=+- , 令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> , 所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >>,即 ()0g x '> ,所以 ()g x 在 (0,0.1]上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c >故 .c a b <<4.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c<a<b C .b<c<a D .a c b <<【答案】D【解析】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<, a c b ∴<<.故选:D.5.(2022·全国·统考高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>【答案】A【解析】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>,故选A [方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==1cos sin 4ϕ==故1cos4=11sin 4sin 44<=<,故b c < 所以b a >,所以c b a >>,故选A [方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+, 241sin10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x 得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法; 方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.【方法技巧与总结】(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小. (2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性; ②指数相同,底数不同,如1ax 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小;④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图象交点的横坐标 (4)特殊值法 (5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法【核心考点】核心考点一:直接利用单调性 【典型例题】例1.(2023·全国·高三专题练习)已知三个函数112()21,()e 1,()log (1)1x x f x x g x h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>【答案】D【解析】∵函数1()21x f x x -=+-为增函数,又11(0)210,(1)102f f -=-=-<=>,∴()0,1a ∈,由1()e 10x g x -=-=,得1x =,即1b =, ∵2()log (1)1h x x x =-+-在()1,+∞单调递增,又223331()log (1)10,(2)log (21)21102222h h =-+-=-<=-+-=>,∴322c <<, ∴c b a >>. 故选:D.例2.(2022春·辽宁大连·高三校联考期中)已知111m n>>,n a n =,m b n =,n c m =,则a ,b ,c 的大小关系正确的为( ) A .c >a >b B .b >a >c C .b >c >a D .a >b >c【答案】B 【解析】由题意111m n>>,故01m n <<<, 由指数函数的单调性,x y n =单调递减,故b a >, 由幂函数的单调性,n y x =在(0,)+∞单调递增,故a c >, 综上:b a c >>. 故选:B例3.(2022春·贵州黔东南·高二凯里一中阶段练习)设21log 3aa ⎛⎫= ⎪⎝⎭,132log bb =,154c⎛⎫= ⎪⎝⎭,则a 、b 、c的大小关系是( ) A .b a c << B .c b a << C .a b c << D .b<c<a【答案】B【解析】构造函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,因为函数2log y x =、13xy ⎛⎫=- ⎪⎝⎭在()0,∞+上均为增函数,所以,函数()f x 为()0,∞+上的增函数,且()1103f =-<,()8209f =>,因为()0f a =,由零点存在定理可知12a <<;构造函数()132log xg x x =-,因为函数2x y =、13log y x =-在()0,∞+上均为增函数, 所以,函数()g x 为()0,∞+上的增函数,且1912209g ⎛⎫=-< ⎪⎝⎭,1312103g ⎛⎫=-> ⎪⎝⎭,因为()0g b =,由零点存在定理可知1193b <<.因为154c⎛⎫= ⎪⎝⎭,则1144log 5log 10c =<=,因此,c b a <<.故选:B.例4.(2023·全国·高三专题练习)已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为( ) A .p m n >> B .m n p >>C .m p n >>D .p n m >>【答案】A【解析】由54m =,得125542m ==<89n =,得118493n ==, 因此,122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭m n >, 由0.90.8p =,得0.90.9log 0.8log 0.812p =>=,于是得p m n >>, 所以正数m ,n ,p 的大小关系为p m n >>. 故选:A核心考点二:引入媒介值 【典型例题】例5.(2023·全国·高三专题练习)已知3110π,53,log 2a bc ===-,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c<a<bD .a c b <<【答案】D【解析】由3110,53,log 2a bc π===-可得,lg πa =,5log 3b =,123c -=,由于1213,12c -⎛⎫==⎪⎝⎭,1lg π2a ==,551log 3log 2b =>=,而35c =<,3553<,所以35553log 3log 55b =>=,所以ac b <<. 故选:D .例6.(2023·全国·高三专题练习)设0.124log 3,log 5,2a b c -===,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A【解析】依题意,24ln 3log 3ln 32ln 22ln 3ln 9ln 21,ln 5log 5ln 2ln 5ln 5ln 5ln 4a a b b ===⨯==>∴>, 0.14404121log 5log ,2b c ->==<==,所以1a b c >>> 故选:A例7.(2023·全国·高三专题练习)已知14sin 4,ln 4,4a b c -===,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .b<c<a【答案】C【解析】()sin4sin 40π==--<a , ln 4ln e 1=>=b , 14124210--==<=<c , 所以a c b <<. 故选:C .例8.(2022·云南昆明·昆明一中模拟预测)已知13e a =,ln 2b =,3log 2c =,则,,a b c 的大小关系为( ) A .a c b >> B .a b c >> C .b c a >> D .c b a >>【答案】B 【解析】103e e 1=>=a ,ln 2ln e 1b =<=,33log 2log 31c =<=∴a 最大,3lg 2lg 211ln 2log 2lg 20lge lg3lge lg3⎛⎫-=-=-=⋅-> ⎪⎝⎭b c ,∴b c >, ∴a b c >>,故选:B例9.(2023·广西南宁·南宁二中校考一模)已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .a c b << C .b<c<a D .c<a<b【答案】A【解析】因为0.20.20.21log 0.5log log 2a ==<=,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <. 又12225log 0.4log log 212c ==>>, 所以a b c <<, 故选:A.例10.(2023·全国·高三专题练习)三个数a =0.42,b =log 20.3,c =20.6之间的大小关系是( ) A .a <c <b B .a <b <cC .b <a <cD .b <c <a【答案】C【解析】∵0<0.42<0.40=1,∴0<a <1, ∵log 20.3<log 21=0,∴b <0, ∵20.6>20=1,∴c >1, ∴b <a <c , 故选:C .核心考点三:含变量问题 【典型例题】例11.(2022·广西·统考模拟预测)已知正数,,x y z 满足e ,x y =且,,x y z 成等比数列,则,,x y z 的大小关系为( ) A .x y z >> B .y x z >> C .x z y >> D .z y x >>【答案】D【解析】令()e ,0x f x y x x x =-=->,则()e 1xf x '=-,当0x >时,()e 10x f x '=->,()f x 单调递增,所以()0=e >e =1x f x x -,所以e x x >,故y x >,因为正数,,x y z 成等比数列,所以2y xz =即2e x xz =,故2e x z x=,所以2e e 1e x xx z y x x==>,故z y >, 综上所述,z y x >>, 故选:D例12.(2022春·湖南岳阳·高三统考阶段练习)已知正数,,a b c ,满足ln c a b b e c a =⋅=⋅,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .b c a << D .c b a <<【答案】D【解析】,,a b c 均为正数,因为ln a b c a =⋅,所以ln c b =,设()ln 0ca b b e c a t t =⋅=⋅=>,则,=,ln ln e c t t ta b c b b b===, 令()()ln 0f x x x x =->,则()111xf x x x-'=-=,当01x <<时0f x,()f x 单调递增,当1x >时()0f x '<,()f x 单调递减,所以()()110f x f ≤=-<,即ln x x <,所以ln b b <,可得a b >, 又ln c b =得c b <,综上,c b a <<. 故选:D.例13.(2022春·湖北·高三校联考开学考试)已知,,a b c 均为不等于1的正实数,且ln ln ,ln ln c a b a b c ==,则,,a b c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .a c b >>【答案】D【解析】ln ln ,ln ln c a b a b c ==且a 、b 、c 均为不等于1的正实数, 则ln c 与ln b 同号,ln c 与ln a 同号,从而ln a 、ln b 、ln c 同号. ①若a 、b 、()0,1c ∈,则ln a 、ln b 、ln c 均为负数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>;②若a 、b 、()1,c ∈+∞,则ln a 、ln b 、ln c 均为正数,ln ln ln a b c c =>,可得a c >,ln ln ln c a b b =>,可得c b >,此时a c b >>.综上所述,a c b >>. 故选:D.例14.(2023·全国·高三专题练习)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为( ) A .b a c << B .c b a <<C .a b c <<D .c<a<b【答案】C【解析】由题意知0,0,0a b c >>>,由ln ln ln 0a a b ce b c==-<,得01,01,1a b c <<<<>, 设ln ()(0)x f x x x =>,则21ln ()xf x x -'=, 当01x <<时,()0,()'>f x f x 单调递增,因1x e x ≥+, 当且仅当0x =时取等号,故(01)a e a a ><<, 又ln 0a <,所以ln ln a a ae a >,故ln ln b a b a>, ∴()()f b f a >,则b a >,即有01a b c <<<<,故a b c <<. 故选:C .例15.(2023·全国·高三专题练习)已知,42x ππ⎛⎫∈ ⎪⎝⎭且222sin 2sin 1exx a +=,cos cos 1e x x b +=,sin sin 1e x x c +=,则a ,b ,c 的大小关系为( ) A .a b c << B .b<c<a C .a c b << D .c<a<b【答案】C【解析】构造函数()()10e x x f x x +=>,则()2222sin 2sin 12sin exx a f x +==,()cos cos 1cos e x x b f x +==,()sin sin 1sin e xx c f x +==. 因为()()()2e 1e 0e e x xxx x xf x -+'==-<在()0,∞+上恒成立,所以函数()f x 在()0,∞+上单调递减. 又因为,42x ππ⎛⎫∈ ⎪⎝⎭,所以()22sin sin sin 2sin 10x x x x -=->,且sin cos x x >,故a c b <<.故选:C .例16.(2023·四川绵阳·四川省绵阳南山中学校考一模)已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c的大小关系是( ) A .a c b << B .a b c << C .c b a << D .b<c<a【答案】A【解析】因为()1e ,1x -∈,所以()()ln ln 1ln 1,0,,e 211,2,1e ⎛⎫=∈-== ⎪⎛⎫∈∈ ⎝⎝⎭⎪⎭xx a x b c ,所以a c b <<, 故选:A核心考点四:构造函数 【典型例题】例17.(2023·全国·高三专题练习)已知0.03e 1a =-,3103b =,ln1.03c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】记()()e 1,0xf x x x =--≥.因为,所以当0x >时,,所以()f x 在()0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为,所以()g x 在()0,+∞上单调递减函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以a c >.记()()()ln 1,01xh x x x x=+-≥+. 因为,所以当0x >时,,所以()h x 在()0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+. 所以c b >.综上所述:a c b >>. 故选:B例18.(四川省眉山市2023届高三第一次诊断性考试数学(文)试题)设 1.02a =,0025.e b =,0.92sin 0.06c =+,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b<c<a D .c<a<b【答案】D【解析】令()e x f x x =-,则()e 1xf x '=-,当0x >,()0f x >′,此时()f x 单调递增, 当0x <,()0f x <′,此时()f x 单调递减, 所以()()00e 01f x f >=-=,所以()0.020.02e 0.021f =->,即0.02e 1.02>,所以0.0250.02e e 1.02b a =>>=;又设()sin g x x x =-,()cos 10g x x '=-≤恒成立, ∴当0x >, ()g x 单调递减,()sin (0)0g x x x g =-<= 当0x >时,有sin x x <,则sin0.060.06<, 所以0.92sin0.060.920.06 1.02c a =+<+⨯==, 综上可得c a b <<. 故选:D .例19.(2023春·广东广州·高三统考阶段练习)设0.1a =,sin0.1b =, 1.1ln1.1c =,则,,a b c 的大小关系正确的是( ) A .b c a << B .b a c <<C .a b c <<D .a c b <<【答案】B【解析】令函数()sin f x x x =-,[0,)2x π∈,当02x π<<时,()cos 10f x x '=-<,即()f x 在(0,)2π上递减,则当02x π<<时,()(0)<f x f ,即sin x x <,因此sin 0.10.1<,即b a <;令函数()(1)ln(1)g x x x x =++-,01x ≤<,当01x <<时,()ln(1)0g x x '=+>,则()g x 在(0,1)上单调递增, 则当01x <<时,()(0)0g x g >=,即(1)ln(1)x x x ++>,因此0.1 1.1ln1.1<,即a c <,所以,,a b c 的大小关系正确的是b a c <<. 故选:B例20.(2023·全国·高三专题练习)设150a =,()ln 1sin0.02b =+,5121n 50c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】设()sin ,0,2f x x x x π⎛⎫=-∈ ⎪⎝⎭,则()cos 10f x x '=-≤,所以()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上递减,所以()()00f x f <=,即sin x x <,设()()ln 1,0,1g x x x x =-+∈,则()110g x x'=->,()g x 递增, 则()()10g x g <=,即ln 1x x <-,所以()ln 1sin0.02sin0.020.02b a =+<<=,令()()2e 1x h x x =-+,则()()e 21x h x x '=-+,()e 2xh x ''=-,当ln 2x <时,()0h x ''<,则()h x '递减,又()()ln 22ln 20,010h h ''=-<=-<, 所以当()0,ln 2x ∈时,()0h x '<,()h x 递减, 则()()00h x h <=,即()2e 1x x <+,因为()0.020,ln 2∈,则()0.020h <, 所以512ln 0.02250e 1.02e <=,即150a =<5121n 50c =, 故b a c <<, 故选:D例21.(2023·全国·高三专题练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【解析】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<.例22.(2023·四川南充·四川省南充高级中学校考模拟预测)设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b<c<a D .b a c <<【答案】D【解析】因为10.0250ln e ln e a ==,211ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,6551ln 50c ⎛⎫= ⎪⎝⎭,所以只要比较6250.02 1.211151e ,sin cos 1sin 1sin 0.02,(10.02)1001005050x y z ⎛⎫⎛⎫==+=+=+==+ ⎪ ⎪⎝⎭⎝⎭的大小即可,令()e (1sin )(0)x f x x x =-+>,则()e cos 0x f x x '=->,所以()f x 在 (0,)+∞上递增, 所以()(0)f x f >,所以e 1sin x x >+, 所以0.02e 1sin 0.02>+,即1x y >>,令 1.2()(1)e x g x x =+-,则0.2() 1.2(1)e x g x x '=+-,0.8()0.24(1)e x g x x -''=+- 因为()g x ''在(0.)+∞上为减函数,且(0)0.2410g ''=-<, 所以当0x >时,()0g x ''<, 所以()g x '在(0.)+∞上为减函数,因为(0) 1.210g '=->,0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e g '=⨯-=-,要比较 1.21.2与0.2e 的大小,只要比较 1.2ln1.2 1.2ln1.2=与0.2lne 0.2=的大小, 令()(1)ln(1)(0)h x x x x x =++->,则()ln(1)11ln(1)0h x x x '=++-=+>,所以()h x 在上递增,所以()(0)0h x h >=,所以当,()0x ∈+∞时,(1)ln(1)x x x ++>,所以1.2ln1.20.2>, 所以 1.21.2>0.2e ,所以0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e 0g '=⨯-=->, 所以当(0,0.2)x ∈时,()0g x '>, 所以()g x 在(0,0.2)上递增,所以()(0)0g x g >=,所以 1.2(1)e x x +>,所以 1.20.02(10.02)e +>,所以z x >,所以z x y >>, 所以c a b >>, 故选:D例23.(2022春·湖南长沙·高三长沙一中校考阶段练习)已知πln ,2,2tan 13a b c ⎫===⎪⎪⎭,则,,a b c 的大小关系是( ) A .c b a >> B .a b c >> C .b a c >> D .a c b >>【答案】A【解析】设()ln (1)f x x x =--,则1()1f x x'=-,当01x <<时,()0f x '>, 当1x <时,()0f x '<,所以函数()f x 在(0,1)上单调递增,在(1,)+∞单调递减, 所以1x =时,max ()(1)0f x f ==,所以()0f x <,即ln 1x x <-,所以πln213a b ⎫==<=⎪⎪⎭,又(2tan 121tan c b x x ⎫⎫=>=>⎪⎪⎪⎪⎭⎭,对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立). 因此c b a >>, 故选:A .例24.(2023·全国·高三专题练习)设23a =ln 2)b =-,3c =,则,,a b c 的大小关系是( ) A .b<c<a B .c b a << C .b a c << D .a b c <<【答案】A【解析】①先比较,a c:2332a ==,3c =,设函数2e ()x f x x =, 则'3e (2)()0x x f x x -=<,得函数()f x 在(0,2)单调递减,'3e (2)()0x xf x x-=>得函数()f x 在(2,)+∞单调递增 所以f f<即c a<;②再比较,b c:由①知2mine()(2)4f x f f c==<=,而1ln2)2b=-=,设2(ln2)3()xh xx+=,'22(ln1)3()xh xx+=-当1ex<<,'()0h x>,()h x单调递增,当1ex>,'()0h x<,()h x单调递减,所以max12()()ee3b h h x h=<==,而22e ee.e344f c<=<=,所以b c<,故选:A核心考点五:数形结合【典型例题】例25.(2023·全国·高三专题练习)已知函数()2xf x x=+,2()logg x x x=+,()2sinh x x x=+的零点分别为a,b,c则a,b,c的大小顺序为()A.a b c>>B.b a c>>C.c a b>>D.b c a>>【答案】D【解析】由()2sin0h x x x=+=得0x=,0c∴=,由()0f x=得2x x=-,由()0g x=得2log x x=-.在同一平面直角坐标系中画出2xy=、2logy x=、y x=-的图象,由图象知a<0,0b>,a c b∴<<.故选:D例26.(2023·江苏·高三专题练习)已知正实数a,b,c满足2e e e ec a a c--+=+,28log3log6b=+,2log2c c+=,则a,b,c的大小关系为()A.a b c<<B.a c b<<C.c a b<<D.c b a<<【答案】B【解析】22e e e e e e e e c a a c c c a a ----⇒+=+-=-,故令()e e x x f x -=-,则()e e c c f c -=-,()e e a af a -=-.易知1e exx y -=-=-和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a --<,故由题可知,2e e e e e e c c a a a a ----=->-,即()()f c f a >,则0c a >>.易知22log 3log log 2b =+>,2log 2c c =-, 作出函数2log y x =与函数2y x =-的图象,如图所示,则两图象交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例27.(2023·全国·高三专题练习)已知e ππee ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A 【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<, 所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有xx >,又2π4<<,所以ππ>,又e y x =在()0,∞+上单调递增,且ππ>所以eπe πeπ=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A例28.(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()ln g x x =,()31h x x =-的“躺平点”分别为α,β,则α,β的大小关系为( ) A .αβ≥ B .αβ> C .αβ≤ D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln aα=, 令()1ln G x x x=-,则α为()G x 的零点,可知()G x 在定义域()0,∞+内单调递增,且1110,e 10eG G ,∴()1,e α∈;又∵()31h x x =-,则()23h x x '=,由题意可得:3213ββ-=,令()3231H x x x =--,则β为()H x 的零点,()()23632H x x x x x '=-=-,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞-,()2,+∞内单调递增,在()0,2内单调递减, 当(),2x ∈-∞时,()()010H x H ≤=-<,则()H x 在(),2-∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =-<=>,则()3,4β∈, 综上所述:()3,4β∈; 故αβ<. 故选:D.核心考点六:特殊值法、估算法 【典型例题】例29.(2022·全国·高三专题练习)已知3142342,3,log 4,log 5a b c d ====,则a b c d ,,,的大小关系为( )A .b a d c >>>B .b c a d >>>C .b a c d >>>D .a b d c >>>【答案】C 【解析】 依题意,314222)a ==,函数y =[0,)+∞上单调递增,而934<<,于是得112232)32<<,即32b a >>, 函数4log y x =在(0,)+∞单调递增,并且有44log 30,log 50>>, 则44442log 16log 15log 3log 5=>=+=2+>于是得44log 3log 51⨯<,即4341log 5log 4log 3<=,则c d >, 又函数3log y x =在(0,)+∞单调递增,且4<333log 4log 2<=, 所以32b acd >>>>. 故选:C例30.(2022·全国·高三专题练习)已知a =142b =,2e log c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】B 【解析】由49a =,42b =,可知1a b >>,又由2e 8<,从而32e 2<=,可得23log e 2c a =<<,因为4461296()205625b -=-<,所以615b <<; 因为565e 2 2.7640->->,从而56e 2>,即65e 2>, 由对数函数单调性可知,65226log e >log 25c ==, 综上所述,a c b >>. 故选:B.例31.(2023·全国·高三专题练习)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为( ) A .m n p >> B .n p m >> C .n m p >> D .m p n >>【答案】C【解析】因为e b a >>> 所以取52,2a b ==,则()5225,6bm a ===,25256.2524a n b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.核心考点七:放缩法 【典型例题】例32.(2022·全国·模拟预测)已知2022a =,2223b =,c a b =,则a ,b ,c 的大小关系为( ) A .c a b >> B .b a c >> C .a c b >> D .a b c >>【答案】D【解析】分别对2022a =,2223b =,c a b =两边取对数,得20log 22a =,22log 23b =,log a c b =.()22022lg 22lg 20lg 23lg 22lg 23log 22log 23lg 20lg 22lg 20lg 22a b -⋅-=-=-=⋅. 由基本不等式,得:()222222lg 20lg 23lg 460lg 484lg 22lg 20lg 23lg 222222⎛⎫+⎛⎫⎛⎫⎛⎫⋅<=<== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以()2lg 22lg 20lg 230-⋅>, 即0a b ->,所以1a b >>.又log log 1a a c b a =<=,所以a b c >>. 故选:D .例33.(2023·全国·高三专题练习)已知:0.42e a =,0.52b =,4log 5c =,则a 、b 、c 大小关系为( ) A .b a c >> B .a b c >> C .c a b >> D .b c a >>【答案】B【解析】令()e 1x f x x =--,则()e 1xf x '=-,当0x >时,0fx,所以函数()f x 在()0,∞+上递增, 所以()()0.4200f f >=, 即0.42e 0.421>+, 又21.42 2.01642=>, 所以0.420.5e 0.4212>+>, 所以a b >,又25252416⎛⎫=< ⎪⎝⎭,所以0.5524>,54444441024log 54log 5log 4log 55625log 504444---===>, 所以0.5452log 54>>, 所以a b c >>. 故选:B.例34.(2023·全国·高三校联考阶段练习)已知实数,,a b c 满足12330a b +⨯-=1=()()25log 3a c x x x =+-+∈R ,则,,a b c 的大小关系是( )A .a b c >>B .b c a >>C .c b a >>D .a c b >>【答案】D【解析】由12330a b +⨯-=得:2333a b ⨯=⨯,3312a b-∴=>,0a b ∴->,即a b >;31b +=>c b >;由()()25log 3a c x x x =+-+∈R 得:()25log 3a c x x -=-+,221553222y x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,()25555log 3log log 102x x ∴-+≥>=,即a c >;综上所述:a c b >>. 故选:D.例35.(2022·全国·高三专题练习)己知544567,117<<,设6711log 5,log 6,log 7a b c ===,则a ,b ,c 的大小关系为_______.(用“<”连接) 【答案】a b c <<【解析】由544567,117<<得 7115log 645log 7<<,即7114log 6log 75<<, b c ∴<,又267lg 5lg 6lg 5lg 7lg 6log 5log 6lg 6lg 7lg 6lg 7a b ⋅--=-=-=⋅22lg5lg 7lg 62lg 6lg 7+⎛⎫- ⎪⎝⎭⋅<, lg5lg7lg35lg36+=<,lg5lg 7lg 62+∴<, 22lg5lg 7lg 62+⎛⎫∴ ⎪⎝⎭<,a b ∴<,综上:a b c <<. 故答案为:a b c <<.核心考点八:不定方程 【典型例题】例36.(2022·宁夏·银川一中一模(文))已知实数a ,b ,c ,满足ln e a b c ==,则a ,b ,c 的大小关系为( ) A .a b c >> B .c b a >> C .b c a >> D .a c b >>【答案】C解:设e ()x x f x =-,则()e 1x f x '=-,当0x <时,()0f x '<,当0x >时,()0f x '>, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min ()(0)10f x f ==>,故e x x >, 所以e a c a =>,又ln b c =, 所以e c b c =>, 所以b c a >>. 故选:C .例37.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c << B .a b c << C .a c d << D .b<c<a【答案】A【解析】22a a -+=,即220a a -+-=,即22a a -=-,2xy -=与2y x =-的图象在()0,∞+只有一个交点,则220x x -+-=在()0,∞+只有一个根a ,令()22xf x x -=+-,()21222204f -=+-=>,()11112202f -=+-=-<,()()120f f <,则12a <<; 33b b +=,即330b b +-=,即33b b =-,由3xy =与3y x =-的图象在()0,∞+只有一个交点,则330x x +-=在()0,∞+只有一个根b ,令()33xg x x =+-,()113310g =+-=>, 12115330222g ⎛⎫=+-=< ⎪⎝⎭,()1102g g ⎛⎫< ⎪⎝⎭,故112b <<;4log 4c c +=,即4log 4c c =-,即4log 40c c +-=,由4log y x =与4y x =-的图象在()0,∞+只有一个交点,则4log 40x x +-=在()0,∞+只有一个根c ,令()4log 4h x x x =+-,()444log 4410h =+-=>,()4433log 34log 310h =+-=-<,()()340h h <,则34c <<;b ac ∴<<故选:A.【新题速递】一、单选题1.(2022春·天津和平·高三耀华中学阶段练习)已知0.5x x =,0.5log y y x =,log 0.5zx z =,则( ) A .y x z <<B .z x y <<C .x z y <<D .z y x <<【解析】要比较0.5x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小, 等价于比较0.5log x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小,∵0.5log x x =,由定义域可知0x >, 故0.50.51log 0log x >=,∵0.5log y x =在定义域上单调递减, 0.501,0log 1x x ∴<<<<,0.51x ∴<<,∵0.50z >, ∴1log 0log x x z >=, ∵0.51x <<, ∴01z <<,故()0.50,1z∈,则()log 0,1x z ∈,1x z ∴<<,0.5log y y x =,由定义域可知:0y >,又∵0.51x <<,∴()0,1yx ∈,则()0.5log 0,1y ∈,()0.5,1y ∴∈,故y x x <,∵0.5log x x =,0.5log yy x =, ∴0.50.5log log x y <,x y ∴>,y x z ∴<<. 故选:A.2.(2022·浙江·模拟预测)已知正数a ,b ,c 满足3e 1.1a =,251030b b +-=,e 1.3c =,则( ) A .a c b << B .b a c << C .c<a<b D .c b a <<【答案】D【解析】由251030b b +-=解得1b =-,构造函数21()ln(1)2f x x x x =--+,(1)x >-,显然2()01x f x x -'=<+, 故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,。
三个数比较大小的方法比较三个数大小是数学中一个重要的操作。
在解决实际问题时,我们经常需要使用比较运算来确定三个数的大小顺序。
本文将简要介绍比较三个数大小的常用方法。
首先,我们可以使用比较运算来比较三个数大小。
这是最常用的比较方法,我们分别将三个数与其他两个数进行比较,即可找出最大数和最小数。
例如,我们要比较a、b、c三个数的大小,我们可以先将a与b比较,若a>b,则表明a是三个数中最大的;再将a与c比较,若a>c,则表明c是三个数中最小的;最后将b与c比较,若b>c,则表明b是三个数中最大的,否则,b是三个数中最小的。
其次,我们可以使用三路比较的方法。
这种方法的主要思想是将三个数分成三组,分别比较每组中的最大值,最后将三组中的最大值进行比较,就可以找出最大值和最小值。
例如,我们要比较a、b、c三个数的大小,可以先将a、b、c分别分为三组,即a与b一组,b与c一组,a与c一组;然后比较每组中的最大值,最后将三组中的最大值进行比较,就可以找出三个数中的最大值和最小值。
另外,我们还可以使用最小值法来比较三个数的大小。
这种方法的主要思想是,先找出三个数中的最小值,然后将最小值与另外两个数分别进行比较,即可完成比较。
例如,我们要比较a、b、c三个数的大小,可以先将a、b、c三个数进行比较,找出三个数中最小的数,假设为a;然后再将a与b比较,若a<b,则表明a是三个数中最小的;最后将a与c比较,若a<c,则表明c是三个数中最大的。
总之,比较三个数大小有很多种方法,主要有比较运算、三路比较和最小值法。
它们各有优劣,可以根据实际情况选择适合的方法进行比较。
无论使用何种方法,都可以在有限的时间内得出三个数的大小顺序,从而解决实际问题。
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
二次函数y1y2y3比较大小例题在数学中,二次函数是一种非常重要且常见的函数类型,其表达式通常为y=ax^2+bx+c,其中a、b、c为常数且a不等于0。
在二次函数中,我们常常需要比较不同的二次函数的大小关系,这涉及到对二次函数的深入理解和灵活运用。
为了更好地掌握二次函数y1y2y3比较大小的方法,我们可以通过以下例题进行深入探讨和分析。
例题1:已知y1=2x^2+3x+1,y2=-3x^2+5x-2,y3=x^2-4x+3,比较y1、y2、y3的大小关系。
解析:我们可以对y1、y2、y3分别求出它们的二次项系数a、一次项系数b 和常数项c,以便更好地比较它们的大小关系。
y1中a=2,b=3,c=1;y2中a=-3,b=5,c=-2;y3中a=1,b=-4,c=3。
接下来,我们可以利用“二次函数顶点法”来判断二次函数的大小关系。
对于二次函数y=ax^2+bx+c,其顶点横坐标为x=-b/2a,纵坐标为-(b^2-4ac)/4a。
根据顶点法,我们可以求出y1的顶点为(-3/4,-17/8),y2的顶点为(-5/6,29/12),y3的顶点为(2,-1)。
通过比较三个二次函数的顶点,可以得出y1<y3<y2的结论,即y1最小,y3次之,y2最大。
总结回顾:通过以上例题分析,我们学会了如何对二次函数进行比较大小的操作。
我们需要求出二次函数的系数a、b、c,然后利用顶点法来判断其大小关系。
在具体操作时,需要注意二次函数顶点的横纵坐标,从而得出正确的比较结论。
个人观点和理解:二次函数的比较并不是一件难事,但需要我们熟练掌握二次函数的相关知识和技巧。
通过多做类似的例题分析和练习,我们可以更加灵活地运用顶点法来比较不同二次函数的大小关系,从而提高自己的数学能力和解题水平。
结语:二次函数y1y2y3的比较大小,需要我们积极探索和思考,才能真正理解其内涵和运用方法。
希望通过对比赛例题的讲解,能够帮助大家更好地掌握二次函数的比较方法,提高数学解题能力。
热点三 函数、数列、三角函数中大小比较问题 纵观近几年高考对于大小比较问题的考查,重点放在与函数、数列、三角函数的大小比较问题上,要求学生有较强的推理能力和准确的计算能力,才能顺利解答,从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨. 1 函数中的大小比较问题
函数是高中数学必修教材中重要的部分,应用广泛,教材中重点介绍了利用判断单调性、最值、单调性、奇偶性、周期性等基础知识,但是高考数学是以能力立意,所以往往以数列、方程、不等式为背景,综合考察学生转化和化归、分类讨论、数形结合等数学思想的应用能力,面对这种类型的题目,考生会有茫然,无所适从的感觉,究其原因是没有认真分析总结这种题目的特点和解题思路. 1.1 指数函数中的大小比较问题 比较指数幂值的大小时,要注意区分底数相同还是指数相等,是用指数函数的单调性,还是用幂函数的单调性,要注意指数函数图象和幂函数的图象的应用,指数函数的图象在第一象限内“底大图高(逆时针方向底数依次变大)”,还应注意中间量0,1等的运用. 例1设0.20.50.10.4,0.4,2abc,则 A. cab B. bac C. abc D. acb 【答案】A 【解析】∵0.20.50.10.4,0.4,2abc ∴0.50.200.40.40.41, 0.10221 ∴cab 故选A . 1.2 对数函数中的大小比较问题 比较对数值的大小时,要注意区分对数底数是否相等,是用对数函数的单调性,还是用对数函数的单调性,要注意对数函数图象的应用,还应注意中间量0,1等的运用. 例2设1a,且2log1,log1,log2aaamanapa,则,,mnp的大小关系为( ) A. nmp B. mpn C. mnp D. pmn 【答案】B 1.3 幂函数、指数函数、对数函数值的综合比较 基本初等函数是高中数学必修教材中重要内容,应用广泛,从近几年高考命题看,涉及函数性质的应用比较大小问题,往往将幂函数、指数函数、对数函数等综合在一起,考查考生的综合应用知识解决问题的能力.
例3【2018届安徽省淮南市第二中学、宿城第一中学高三第四次考】设0.60.3a, 0.60.5b, 3log4c,则( ) A. bac B. abc C. cba D. cba 【答案】A
【解析】由幂函数的性质可得, 0.60.60.50.31,由对数函数的性质可得, 3log14,所以bac,故选C. 1.4 通过求函数的最值证明不等式
在对不等式的证明过程中,可以依此不等式的特点构造函数,进而求函数的最值,当该函数的最大值或最小值对不等式成立时,则不等式是永远是成立的,从而可将不等式的证明转化到求函数的最值上来. 例4.已知函数2()xfxkex(其中kR,e是自然对数的底数) (1)若2k,判断函数()fx在区间(0,)上的单调性; (2)若函数()fx有两个极值点1x,212()xxx,求k的取值范围; (3)在(2)的条件下,试证明:10()1fx.
【答案】(1)()fx在(0,)上单调递减;(2)实数k的取值范围是2(0,)e;(3)见解析. 【解析】(1)若2k,2()2xfxex,则'()22xfxex,当(0,)x时,'()220xfxex, 故函数()fx在区间(0,)上是单调递减函数; (2)函数()fx有两个极值点1x,2x,则1x,2x是 '()20xfxkex的两个根,即方程2xxke有两个根, 设2()xxxe,则22'()xxxe,∴()x
在(,1)上单调递增,在(1,)上单调递减,∴max2()(1)xe,又∵当x时, ()x,(0)0,当x时,()0x,∴实数k的取值范围是2(0,)e;
(3)由(2)可知,函数()fx的两个极值点1x,2x满足1201xx,由111'()20xfxkex, 得112xkex,∴122211111()2(1)1xfxkexxxx,又∵1(0,1)x,∴ 210(1)11x
,即10()1fx.
2 数列与不等式相结合 数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.预计在高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题. 2.1 数列中的不等问题 例5【2018届河南省南阳市第一中学高三第六次考】已知单调递增的等差数列na,其前n项和为
45,10,15nSSS,则5a的取值范围是__________.
【答案】5,52 【解析】设等差数列na的公差为(0)dd, 由题意可得41514610{ 51015SadSad,即11235{ 23adad,且514aad. 令15,,axdyaz,则235{23 0xyxyy①,4zxy. 画出不等式组①表示的可行域(如图所示),
由4zxy得14yxz,平移直线14yxz. 设直线14yxz经过可行域内的点A时, z的值为2z;经过可行域内的点B时, z的值为1z,则12zzz.
由条件可得51,1,,02AB,所以125,1452zz. ∴552z. ∴5a的取值范围是5,52.
答案: 5,52 2.2 数列参与的不等式证明 此类不等式的证明常用的方法:(1)比较法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.
例6【2018届吉林省长春市普通高中高三一模】已知数列的前项和. (Ⅰ)求数列的通项公式;
(Ⅱ)设,求证:. 【答案】(Ⅰ);(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列的通项公式 ;(Ⅱ)化简 ,则,利用裂项相消法和,再根据放缩法即可证明结果.
3 三角函数的最值与综合运用 1. 掌握求三角函数最值的常用方法:①配方法(主要利用二次函数理论及三角函数的有界性);②化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);③数形结合法(常用到直线的斜率关系);④换元法(如万能公式,将三角问题转化为代数问题);⑤基本不等式法等. 2. 三角函数最值都是在给定区间上取得的,因而特别要注意题设中所给出的区间. (1)求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件及弦函数的有界性; (2)含参数函数的最值问题,要注意参数的作用和影响.
3.1 解三角形中的最值问题 例7在ABC中,角A、B、C的对边分别为a、b、c,且满足24coscos24coscos2CCCC. (1)求角C的大小;
(2)若122CACB,求ABC面积的最大值. 【答案】(1)C3(2)23 【解析】试题分析:(1)利用二倍角公式对原等式化简可求得cosC 的值,进而求得C . (2)对原等式平方,利用向量的数量积的运算公式求得关于a 和b 的关系式,进而利用基本不等式求得ab 的范围,进而求得三角形面积的最大值. 试题解析: (1)由2C4cosCcos2C4cosCcos2得 24cosC2cosC12cosC1cosC
解得1cosC2, 由0C,所以C3
3.2 与三角函数有关的最值问题 例8【2018届江苏省泰州中学高三10月】已知函数4sincos33fxxx. (1)将fx化简为sinfxAx的形式,并求fx最小正周期; (2)求fx在区间,46上的最大值和最小值及取得最值时x的值.
【答案】(1)fx 2sin23x, T;(2)4x时, min1fx, 12x时, max2fx. 【解析】试题分析:(1)由三角函数的公式化简可得2sin23fxx,由周期公式可得答案;(2)由x的范围可得22633x的范围,可得f(x)的范围,结合三角函数在该区间的单调性,可得最值及对应的x值. 试题解析:
(1)24sincoscossinsin32sincos23sin333fxxxxxxx
sin23cos22sin23xxx
所以22T.
【反思提升】综合上面的三种类型,解决函数、数列、三角函数中的大小比较问题,解答时首先要找准模型,通过转化来解决,一般情况下,此类问题是几个知识点的交汇,需综合不等式、函数等性质解题.大小比较问题是函数、数列、三角函数的综合应用,在近几年的高考试题中经常出现,成为高考中的一个命题热点,同时也是高中数学必修课中的几大内容之一,解决大小问题不仅会用到函数的基本定义、单调性、奇偶性、周期性、有界性和图象,同时,常常涉及到初等函数、不等式、方程、几何等方面问题;而且在解决一些不等式、数列等问题中也会用最值来求解.