信号与系统课件第七章
- 格式:ppt
- 大小:1.30 MB
- 文档页数:55
六拉普拉斯反变换部分分式展开法计算拉普拉斯反变换方法 1 利用复变函数中的留数定理 2 采用部分分式展开法 [例] 采用部分分式展开法求下列的反变换解 Fs为有理真分式极点为一阶极点解解 Fs为有理假分式将Fs化为有理真分式归纳 1 Fs为有理真分式m n极点为一阶极点 2 Fs为有理真分式 m n极点为r重阶极点 3 Fs为有理假分式 m n 为真分式根据极点情况按1或2展开[例] 求下列Fs的反变换解解令s2q 解 k2 k3用待定系数法求信号的复频域分析小结信号的复频域分析实质是将信号分解为复指数信号的线性组合信号的复频域分析使用的数学工具是拉普拉斯变换利用基本信号的复频谱和拉普拉斯变换的性质可对任意信号进行复频域分析复频域分析主要用于线性系统的分析连续系统响应的复频域分析微分方程描述系统的S域分析电路的S域模型微分方程描述系统的S域分析时域微分方程时域响应yt S域响应Ys 拉氏变换拉氏反变换解微分方程解代数方程 S域代数方程二阶系统响应的S域求解已知 f ty0-y 0- 求yt 1 经拉氏变换将域微分方程变换为域代数方程 2 求解s域代数方程求出Yxs Yf s 3 拉氏反变换求出响应的时域表示式求解步骤 Yxs Yfs yt a1yt a2y t 系统的微分方程为 yt5yt6yt2ft8ft 激励fte-tut初始状态y0-3 y0-2求响应yt 例1 解对微分方程取拉氏变换可得电路的s域模型时域复频域 RLC串联形式的s域模型 [例2]图示电路初始状态为vc0--E 求电容两端电压 vct 解建立电路的s域模型由s域模型写回路方程求出回路电流电容电压为系统函数Hs与系统特性系统函数Hs 系统函数的定义Hs与ht的关系s域求零状态响应求Hs的方法零极点与系统时域特性零极点与系统频响特性连续系统的稳定性一系统函数Hs 1定义系统在零状态条件下输出的拉氏变换式与输入的拉式变换式之比记为Hs 2 Hs与ht的关系 ht t yft tht 一系统函数Hs 3求零状态响应 4求Hs的方法①由系统的冲激响应求解HsL[ht] ③由系统的微分方程写出Hs ht Hs ft yftftht Fs YfsFsHs ②由定义式第七章连续时间信号与系统的S域分析连续时间信号的复频域分析连续时间系统的复频域分析连续时间系统函数与系统特性连续时间系统的模拟 71 连续时间信号的复频域分析从付立叶变换到拉普拉斯变换单边拉普拉斯变换及其存在的条件常用信号的拉普拉斯变换拉普拉斯变换的性质拉普拉斯变换反变换一从傅里叶变换到拉普拉斯变换f teatut a 0的傅里叶变换不存在将ft乘以衰减因子推广到一般情况令s j 定义对 fte-t求傅里叶反变换可推出拉普拉斯正变换拉普拉斯反变换拉普拉斯变换符号表示及物理含义符号表示物理意义信号ft可分解成复指数est的线性组合 Fs为单位带宽内各谐波的合成振幅是密度函数 s是复数称为复频率Fs称复频谱关于积分下限的说明二单边拉普拉斯变换及其收敛条件积分下限定义为零的左极限目的在于分析和计算时可以直接利用起始给定的0-状态单边拉普拉斯变换单边拉普拉斯变换的收敛域对任意信号ft 若满足上式则 ft应满足 0 拉氏变换存在的充要条件为绝对可积 0称收敛条件收敛区 j 0 0称收敛坐标 S平面右半平面左半平面 [例] 计算下列信号拉普拉斯变换的收敛域分析求收敛域即找出满足的取值范围收敛域为全S平面不存在 1指数型函数e t ut 三常用信号的拉普拉斯变换同理正弦信号 2 阶跃函数ut 4 t的正幂函数t nn为正整数根据以上推理可得四拉普拉斯变换与傅里叶变换的关系 [例] 计算下列信号的拉普拉斯变换与傅里叶变换解时域信号傅里叶变换拉普拉斯变换不存在结论 1当收敛域包含纵轴时拉普拉斯变换和傅里叶变换均存在2当收敛域不包含纵轴时拉普拉斯变换存在而傅里叶变换不存在 3当收敛域的收敛边界位于纵轴时拉普拉斯变换和傅里叶变换均存在五拉普拉斯变换的性质 1线性特性若则 2展缩特性若则 3时移右移特性若则例题p241 4卷积特性 5乘积特性乘积性质两种特殊情况 1 指数加权性质s域平移特性若则 2线性加权性质s域微分特性 6微分特性 [证明] 重复应用微分性质求得若ft0 t 0则有 f r0 - 0r012 7积分特性若 f -10- 则有 [证明] 其中右边第一项第二项按部分分式得 8初值定理和终值定理若注意事项p247。
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。
分类:连续信号、离散信号、模拟信号、数字信号等。
1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。
图形方法:波形图、频谱图、相位图等。
第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
2.2 连续系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。
齐次运算:连续信号的常数倍仍然是连续信号。
第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
3.2 离散系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。
齐次运算:离散信号的常数倍仍然是离散信号。
第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。
特点:连续性、模拟性、无限可再生性。
4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。
模拟调制:将信息信号与载波信号进行合成。
第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。
特点:离散性、数字化、抗干扰性强。
5.2 数字系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。