考研概率论复习古典概型中几种研究模型
- 格式:doc
- 大小:206.50 KB
- 文档页数:10
古典概率模型分析例题和知识点总结在概率论的领域中,古典概率模型是一个重要的基础概念。
它为我们理解和解决许多概率问题提供了有力的工具。
接下来,我们将通过一些具体的例题来深入探讨古典概率模型,并对相关的知识点进行总结。
一、古典概率模型的定义和特点古典概率模型是指在一个试验中,所有可能的结果是有限的,并且每个结果出现的可能性相等。
例如,掷一枚均匀的骰子,其结果有 1、2、3、4、5、6 六种,且每种结果出现的概率都是 1/6。
古典概率模型具有以下特点:1、有限性:试验的可能结果是有限的。
2、等可能性:每个结果出现的可能性相等。
二、古典概率的计算公式若一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率 P(A) = m / n 。
三、例题分析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:总的取法有 C(5, 2) = 10 种(C 表示组合数)。
取出 2 个红球的取法有 C(3, 2) = 3 种。
所以取出 2 个球都是红球的概率为 3 / 10 。
例 2:一个盒子里有 5 个黑球和 3 个白球,从中任意取出 2 个球,求至少取出 1 个黑球的概率。
解:总的取法有 C(8, 2) = 28 种。
取出的 2 个球都是白球的取法有 C(3, 2) = 3 种。
所以至少取出 1 个黑球的概率为 1 3 / 28 = 25 / 28 。
例 3:在一次抽奖活动中,有 100 个号码,其中只有 10 个号码能中奖。
某人随机抽取一个号码,求他中奖的概率。
解:因为总共有 100 个号码,中奖号码有 10 个,所以中奖的概率为 10 / 100 = 1 / 10 。
四、常见的古典概率模型1、摸球问题:如上述的从口袋或盒子中摸球的问题。
2、抽奖问题:像上述的抽奖活动。
3、掷骰子问题:计算掷骰子出现特定点数或特定点数组合的概率。
第5讲 古典概型◆高考导航·顺风启程◆[知识梳理]1.基本事件的特点(1)任何两个基本事件是 互斥 的;(2)任何事件(除不可能事件)都可以表示成 基本事件 的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称为古典概型. (1)有限性:试验中所有可能出现的基本事件 只有有限个 ; (2)等可能性:每个基本事件出现的可能性 相等 . 3.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.[知识感悟]基本事件的求法(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x ,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)与(2,1)相同.[知识自测]1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( )(4)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( )(5)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为nm.( )[答案] (1)× (2)× (3)× (4)√ (5)√2.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120[解析] 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所求概率为110.故选C.[答案] C3.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.[解析] 两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.∴所求概率P =210=15.[答案] 15题型一基本事件与古典概型判断(基础拿分题、自主练透)袋中有大小相同的5个白球、3个黑球和3个红球,每个球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?[解](1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等.所以以颜色为划分基本事件的依据的概率模型不是古典概型.方法感悟一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.【针对补偿】1.下列试验中,是古典概型的个数为()①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0B.1C.2 D.3[解析]①中,硬币质地不均匀,不是等可能事件,所以不是古典概型.②④的基本事件都不是有限个,不是古典概型.③符合古典概型的特点,是古典概型问题.[答案] B2.有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件; ③事件“出现点数相等”包含的基本事件. [解] ①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). ②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). ③事件“出现点数相等”包含的基本事件为 (1,1),(2,2),(3,3),(4,4).题型二 简单地古典概型的求法(重点保分题、共同探讨)(1)(2016·全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130[解析] ∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.[答案] C(2)(2016·江苏卷)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是__________.[解析] 将先后两次点数记为(x ,y ),则共有6×6=36个等可能基本事件,其中点数之和大于等于10有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)六种,则点数之和小于10共有30种,概率为3036=56.[答案] 56方法感悟求古典概型概率的基本步骤(1)算出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件数m . (3)代入公式P (A )=mn ,求出P (A ).【针对补偿】3.(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56[解析] 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫)、(红白)),((红紫)、(黄白)),((黄白)、(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫)、(红白)),共4种,故所求概率为P =46=23,故选C.[答案] C4.(2018·西安地区八校联考)依次从标号为1,2,3,4,5的五个黑球和标号为6,7,8,9的四个白球中随机地各取一个球,用数对(x ,y )表示事件“抽到两个球标号分别为x ,y ”.(1)问共有多少个基本事件?并列举出来;(2)求所抽取的标号之和小于11但不小于9或标号之和大于12的概率.[解] (1)共有20个基本事件,列举如下:(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),共20个.(2)记事件“所抽取的标号之和小于11但不小于9”为事件A ,由(1)可知事件A 共含有7个基本事件,列举如下:(1,8),(1,9),(2,7),(2,8),(3,6),(3,7),(4,6),共7个.“抽取的标号之和大于12”记作事件B ,则事件B 包含:(4,9),(5,8),(5,9),共3个.故P (A )+P (B )=720+320=12,故抽取的标号之和小于11但不小于9或大于12的概率为12.题型三 较复杂古典概型的求法(重点保分题、共同探讨)(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.[解] 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16. (1)记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1). 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C , 则事件B 包含的基本事件数共6个, 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件共有5个. 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.方法感悟求较复杂事件的概率问题的方法(1)将所求事件转化成彼此互斥的事件的和事件,再利用互斥事件的概率加法公式求解. (2)先求其对立事件的概率,再利用对立事件的概率公式求解. 【针对补偿】5.2015年11月巴黎气候大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x ,y )表示事件“抽到的两名记者的编号分别为x ,y ,且x <y ”.(1)共有多少个基本事件?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率. [解] (1)共有36个基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x ,y ∈{1,2,3,4,5,6,7,8,9},且11≤x +y <17,其中x <y ”,由(1)可知事件A 共含有15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x <y ≤5”.包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P (A )+P (B )=1536+1036=2536. 题型四 古典概型的交汇命题(高频考点题、多角突破) 考向一 古典概型与平面向量相结合1.从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为______.[解析] 由题意可知m =(a ,b )所有基本事件有4×3=12种情况,m ⊥n ,即m ·n =0. 所以a ×1+b ×(-1)=0,即a =b ,满足条件的有(3,3),(5,5),共2种情况,所以所求概率为16.[答案] 16考向二 古典概型与直线、圆相结合2.(2018·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为______.[解析] 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2a a 2+b2≤2,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.[答案]712考向三 古典概型与函数相结合3.已知关于x 的一元二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)将一颗骰子抛掷两次,所得向上点数分别为m ,n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A.12 B.56 C.34D.23[解] (1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a . 若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.∴事件包含基本事件的个数是1+2+2=5, ∴所求事件的概率为515=13.(2)∵y =23mx 3-nx +1,∴y ′=2mx 2-n ,令y ′=0得x =±n2m,∴x 1=n 2m ,x 2=-n2m 是函数的两个极值点,∴函数在⎣⎡⎭⎫ n 2m ,+∞上是增函数, 则n2m≤1,即n ≤2m . 通过建立关于m ,n 的坐标系可得出满足n ≤2m 的点有30个,由古典概型公式可得函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是P =3036=56.[答案] (1)13(2)B考向四 古典概型与统计相结合4.(2018·潍坊模拟)济南天下第一泉风景区为了做好宣传工作,准备在A 和B 两所大学分别招募8名和12名志愿者,将这20名志愿者的身高(单位:cm)编成如图所示的茎叶图.若身高在175 cm 以上(包括175 cm)定义为“高精灵”,身高在175 cm 以下定义为“帅精灵”.已知A 大学志愿者的身高的平均数为176,B 大学志愿者的身高的中位数为168.(1)求x ,y 的值;(2)如果用分层抽样的方法从“高精灵”和“帅精灵”中随机抽取5人,再从这5人中选2人,求至少有1人为“高精灵”的概率.[解] (1)由茎叶图得,159+168+170+170+x +176+182+187+1918=176,160+y +1692=168.解得x =5,y =7. (2)由题意可得,“高精灵”有8人,“帅精灵”有12人,如果从“高精灵”和“帅精灵”中抽取5人,则抽取的“高精灵”和“帅精灵”的人数分别为8×520=2,12×520=3.记抽取的“高精灵”分别为b 1,b 2,“帅精灵”分别为c 1,c 2,c 3,从这5人中任选2人的所有可能情况为(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共10种,记“从这5人中选2人,至少有1人为‘高精灵’”为事件A ,则A 包含的情况为(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共7种,所以P (A )=710.故从这5人中选2人,至少有1人为“高精灵”的概率为710.◆牛刀小试·成功靠岸◆课堂达标(五十三)[A 基础巩固练]1.(2018·兰州模拟)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n ),q =(3,6).则向量p 与q 共线的概率为( )A.13 B.14 C.16D.112[解析] 由题意可得:基本事件(m ,n )(m ,n =1,2,…,6)的个数=6×6=36. 若p ∥q ,则6m -3n =0,得到n =2m .满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.因此向量p 与q 共线的概率为P =336=112.[答案] D2.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13 B.512 C.12D.712[解析] 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1 12种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2 4种情况,则发生的概率为P =412=13,故选A.[答案] A3.(2017·课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15 C.310D.25[解析]如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种所以所求概率为1025=25.[答案] D4.(2018·哈尔滨模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34[解析] 已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f (1)=1+a -b ≤0,f (2)=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种,故所求概率为1116.[答案] C5.在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧-1≤x ≤2,0≤y ≤2表示的平面区域为W ,从W 中随机取点M (x ,y ).若x ∈Z ,y ∈Z ,则点M 位于第二象限的概率为( )A.16 B.13 C .1-π12D .1-π6[解析] 画出平面区域,列出平面区域内的整数点如下:(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个,其中位于第二象限的有(-1,1),(-1,2),共2个,所以所求概率P =16.[答案] A6.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.13B.12C.23D.14[解析] 记a ,b 的取值为数对(a ,b ),由题意知a ,b 的所有可能取值有(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),(3,1),(3,2),…,(3,6),(4,1),(4,2),…,(4,6),(5,1),(5,2),…,(5,6),(6,1),(6,2),…,(6,6),共36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的a ,b 可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14. [答案] D7.将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为______.[解析] 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2a a 2+b 2≤2,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712.[答案]7128.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为______.[解析] 因为(m +n i)(n -m i)=2mn +(n 2-m 2)i ,所以要使其为实数,须n 2-m 2,即m =n .由已知得,事件的总数为36,m =n ,有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6个,所以所求概率为P =636=16.[答案] 169.(2018·宣武模拟)曲线C 的方程为x 2m 2+y 2n 2=1,其中m ,n 是将一枚骰子先后投掷两次所得点数,事件A =“方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆”,那么P (A )=__________.[解析] 试验中所含基本事件个数为36;若想表示椭圆,由m >n ,有(2,1),(3,1),…(6,5),共1+2+3+4+5=15种情况,因此P (A )=1536=512.[答案]51210.(2018·太原模拟)某工厂对一批共50件的机器零件进行分类检测,其重量(克)统计如下:2件.(1)从该批零件中任选1件,若选出的零件重量在[95,100]内的概率为0.26,求m 的值. (2)从重量在[80,85)的5件零件中,任选2件,求其中恰有1件为甲型的概率. [解] (1)由题意可得n =0.26×50=13, 则m =50-5-12-13=20.(2)设“从重量在[80,85)的5件零件中,任选2件,其中恰有1件为甲型”为事件A ,记这5件零件分别为a ,b ,c ,d ,e ,其中甲型为a ,b .从这5件零件中任选2件,所有可能的情况为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种.其中恰有1件为甲型的情况有ac ,ad ,ae ,bc ,bd ,be ,共6种.所以P (A )=610=35. 即从重量在[80,85)的5件零件中,任选2件,其中恰有1件为甲型的概率为35.[B 能力提升练]1.(2018·太原二模)记连续投掷两次骰子得到的点数分别为m ,n ,向量a =(m ,n ),与向量b =(1,0)的夹角为α,则α∈⎝⎛⎭⎫0,π4的概率为( ) A.518B.512C.12D.712[解析] 法一:依题意,向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎫0,π4,即n <m 的(m ,n )可根据n 的具体取值进行分类计数:第一类,当n =1时,m 有5个不同的取值;第二类,当n =2时,m 有4个不同的取值;第三类,当n =3时,m 有3个不同的取值;第四类,当n =4时,m 有2个不同的取值;第五类,当n =5时,m 有1个取值,因此满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎫0,π4的(m ,n )共有1+2+3+4+5=15(个),所以所求概率为1536=512.法二:依题意可得向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n ) 与向量b =(1,0)的夹角α∈⎝⎛⎭⎫0,π4,即n <m 的向量a =(m ,n )有36-62=15(个),所以所求概率为1536=512.[答案] B2.(2018·江南十校联考)已知集合M ={1,2,3},N ={1,2,3,4}.定义映射f :M →N ,则从中任取一个映射满足自由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的概率为( )A.332 B.532 C.316D.14 [解析] ∵集合M ={1,2,3},N ={1,2,3,4}, ∴映射f :M →N 有43=64种, ∵由点A (1,f (1)),B (2,f (2)), C (3,f (3))构成△ABC 且AB =BC , ∴f (1)=f (3)≠f (2),∵f (1)=f (3)有4种选择,f (2)有3种选择, ∴从中任取一个映射满足由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的事件有4×3=12种,∴所求概率为1264=316.[答案] C3.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是____,他属于不超过2个小组的概率是____.[解析] “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”. 故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315.[答案] 35;13154.现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为______.[解析] 从这7人中选出数学、物理、化学成绩优秀者各1名,所以可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N , 则其对立事件N 表示“A 1和B 1全被选中”, 由于N ={(A 1,B 1,C 1),(A 1,B 1,C 2)}, 所以P (N )=212=16, 由对立事件概率计算公式得P (N )=1-P (N )=1-16=56.[答案] 565.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{}1,2,3,4,就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.[解析] (1)因为是投掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0, 即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4). 所以方程为“漂亮方程”的概率为P =316.[C 尖子生专练](2018·郑州市第二次质量预测)最新高考改革方案已在上海和江苏开始实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:z =2y . (1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少有一名教师被选出的概率.[解] (1) 由题意知x500=0.3,∴x =150,所以y +z =60,因为z =2y ,所以y =20,z=40,则应抽取教师人数50500×20=2,应抽取学生人数50500×40=4.(2)所抽取的“不赞成改革”的2名教师记为a ,b,4名学生记为1,2,3,4,随机选出三人的不同选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2)(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种,至少有一名教师的选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2)(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4)共16种,至少有一名教师被选出的概率P =1620=45.。
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
古典概率模型
教学过程3
观察类比推导公式
例题分析推广应用(2)如图,某同学随机地向一靶心进行射击,这
一试验的结果只有有限个:命中10环、命中9
环……命中1环和不中环。
你认为这是古典概型
吗?为什么?
不是古典概型,因为试验的所有可能结果只有11
个,而命中10环、命中9环……命中1环和不中环
的出现不是等可能的,即不满足古典概型的第二个
条件。
思考:
试验1中正面向上的概率与反面向上的概率是多
少?
试验2中出现各点的概率各是多少?
出现偶数点的概率是多少?
古典概型计算公式
P(A)=
这一定义称为概率的古典定义
例1:试验3中出现两次正面向上的概率是多少?
例2:例5 某篮球爱好者,做投篮练习,假设其每
次投篮命中的概率是40%,那么在连续三次投篮中,
恰有两次投中的概率是多少?
引导学生利用互
斥事件概率的加
法公式计算
古典概型计算公
式的直接运用
强调规范的书写
过程
通过生活中的事
例引导学生用学
到的数学知识解
n
m
A
试验的基本事件总数
包含的基本事件数
事件
教学过程 6。
古典概型与几何概型【知识要点】一、古典概型1、基本事件(1)基本事件的定义一次试验中所有可能的结果都是随机事件,这类随机事件我们称为基本事件. (2)基本事件的特点①任意两个基本事件都是互斥的.②任何事件都可以表示成基本事件的和.2、古典概型(1)古典概型的定义我们将具有上述这两个特点的概率模型称为古典概率模型,简称古典概型. (2)古典概型的特征古典概型是一种特殊的概率模型,其特征有以下两个:①有限性. 即在一次试验中,所有可能出现的结果只有有限个,或者说在一次试验中,只有有限个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】古典概型必须满足两个条件:①有限性;②等可能性,只有这两个条件都满足时才是古典概型.3、基本事件数的探求方法(1)列举法:此法适合于较简单的试验.(2)树状图法:此法是一种常用方法,适合于较复杂问题中基本事件的探求. 4、有放回的抽样与无放回的抽样在古典概型的概率计算中,将涉及两种不同的抽样方法,下面举例来说明. 设一个口袋内有n 个不同的球,现从袋内依次摸球,且每次只摸一只,则有如下两种摸球的方法: (1)有放回的抽样每次摸出一只后,放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样. 显然,对于有放回的抽样,每次摸出的球可以重复出现,且摸球可以无限次地进行下去. (2)无放回的抽样每次摸出一只后,不放回袋中,在剩下的球中再摸一只,这种摸球的方法称为无放回的抽样. 显然,对于无放回的抽样,每次摸出的球不会重复出现,且摸球只能进行有限次.5、古典概型的概率计算公式在古典概型中,事件A 的概率的计算公式如下:()A mP A n=事件所包含的基本事件的个数试验的基本事件的总数.【注1】()mP A n=既是概率的古典定义,又是求古典概型的概率的基本方法. 求()P A 时,要首先判断是否是古典概型,具体计算步骤如下: Step 1:仔细阅读题目,弄清题目的背景材料,加深理解题意; Step 2:判断本试验的结果是否为等可能事件,设出所求事件A ;Step 3:分别求出“试验的基本事件的总数n”与“事件A所包含的基本事件的个数m”;Step 4:利用公式()mP An=,求出事件A的概率.【注2】在公式()()()P A B P A P B⋃=+中,事件A与事件B是互斥事件;而在公式()()()()P A B P A P B P A B⋃=+-⋂中,事件A与事件B可以是互斥事件,也可以不是互斥事件. 因此,在使用这两个公式时,首先要根据题意判断事件A与事件B是否为互斥事件,然后选择正确的公式进行计算.二、几何概型1、几何概型的定义如果每个事件发生的概率只与构成该事件的区域的面积(体积或长度)成比例,则我们把这样的概率模型称为几何概率模型,简称几何概型.2、几何概型的特征几何概型是另一种特殊的概率模型,其特征有以下两个:①无限性. 即在一次试验中,所有可能出现的结果有无限多个,或者说在一次试验中,有无限多个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】由古典概型与几何概型的特征可见,用几何概型求解概率问题的思路与古典概型是相同的,同属于“比例解法”,即随机事件A的概率可以用“事件A所包含的基本事件所占的图形面积(体积或长度)”与“基本事件所占的总面积(体积或长度)”之比来表示.3、几何概型的概率计算公式在几何概型中,事件A 的概率的计算公式如下:()AA S P A =Ω构成事件的区域的面积(体积或长度)试验的全部结果所构成的区域的面积(体积或长度).4、古典概型与几何概型的异同 (1)相同点古典概型与几何概型中,每个基本事件发生的可能性都是相等的. (2)不同点古典概型要求:试验的基本事件只有有限个;而几何概型要求:试验的基本事件有无限多个.【例题选讲】题型一、求古典概型的概率例1、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A. 13B. 12C. 23D. 34【解析】甲、乙两位同学参加3个兴趣小组的所有可能有33=9⨯(种) 甲、乙两位同学参加同一个兴趣小组的情况有3(种)则甲、乙两位同学参加同一个兴趣小组的概率31=93P =故选A例2、在30瓶饮料中,有3瓶已过了保质期. 现从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示)【解析】设所取2瓶饮料都未过保质期为事件A则2272302726272611721()3029302914521CP AC⨯⨯⨯====⨯⨯⨯故至少取到1瓶已过保质期饮料的概率为11728 1()1145145 P A-=-=例3、考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于__________.【解析】如图所示,设点A,B,C,D,E,F分别是正方体下底面、上底面、左侧面、右侧面、前侧面、后侧面的中心甲从这6个点中任选两个点连成直线,有2615C=种不同的取法乙从这6个点中任选两个点连成直线,也有2615C=种不同的取法于是甲、乙从这6个点中任选两个点连成直线,共有22661515225C C⋅=⨯=种不同的取法又∵所得的两条直线相互平行但不重合的有AC DB,AD CB,AE BF,AF BE,CE DF,CF DE∴甲、乙连得的两条直线相互平行但不重合的,有12种不同的取法故所得的两条直线相互平行但不重合的概率12422575 P==题型二、求几何概型的概率例4、如图所示,在矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( )A.14 B. 13 C. 12 D. 23【解析】设点Q 取自ABE ∆内部为事件A则点Q 取自ABE ∆内部的概率为112()2ABE ABCDAB ADS P A S AB AD ∆⋅===⋅矩形 故选C例5、在区间[1,1]-上随机取一个数x ,则cos 2x π的值介于0到12之间的概率为__________. 【解析】要使10cos22xπ≤≤,[1,1]x ∀∈- 由余弦函数的图像可知,223xπππ-≤≤-或322xπππ≤≤⇒ 213x -≤≤-或213x ≤≤于是满足题意的x 的区间长度为23而区间[1,1]-的总长度为2故对于区间[1,1]-上的数x ,使cos 2x π的值介于0到12之间的概率为21323P ==ABD例6、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则周末去打篮球;否则,在家看书. 则小波周末不在家看书的概率为__________.【解析】“周末不在家看书”包括“周末去看电影”和“周末去打篮球”两种情况,且这两种情况是互斥事件设小波周末去看电影为事件A,周末去打篮球为事件B则222131()324()14P Aπππππ⨯-⨯===⨯,2211()1164()116P Bππππ⨯===⨯故小波周末不在家看书的概率为3113 ()()41616 P P A P B=+=+=。
古典概型知识点总结古典概型是概率论中最基础、最简单的一种模型。
它是指在所有可能的结果中,每个结果的概率相等的模型。
本文将总结古典概型的相关知识点,并探讨其应用场景和注意事项。
一、基础定义1. 古典概型的定义古典概型是指在所有可能的结果中,每个结果的概率相等的模型。
例如,掷一次骰子,每个点数出现的概率都是1/6。
2. 样本空间样本空间是指古典概型中所有可能结果的集合。
例如,掷一枚硬币的样本空间为{正面,反面}。
3. 事件事件是样本空间的子集,表示发生某种结果的可能性。
例如,掷一枚硬币出现正面的事件为{正面}。
4. 概率概率是指某个事件发生的可能性大小,通常用小数表示,取值范围在0到1之间。
在古典概型中,概率可以用公式“事件发生的次数÷样本空间中总的可能结果数”来计算。
二、应用场景古典概型主要应用于以下场景:1. 骰子、硬币等随机游戏例如,掷骰子、抛硬币等游戏中,每个结果的概率都相等,符合古典概型的条件。
2. 假设检验在做假设检验时,常常需要确定某种情况下出现某种结果的概率。
如果符合古典概型条件,可以直接根据概率公式计算概率。
3. 统计学在统计学中,古典概型被广泛应用于概率分布的研究与推导。
三、注意事项在使用古典概型时,需要注意以下事项:1. 每个结果的概率相等古典概型中的最重要条件是每个结果的概率相等。
如果存在某些结果概率不等的情况,就不能使用古典概型进行概率计算了。
2. 互斥事件在计算概率时,需要注意事件之间是否互斥。
如果两个事件不互斥,那么它们的概率应该加在一起。
3. 独立事件在计算概率时,需要注意事件之间是否独立。
如果两个事件是独立的,那么它们的概率应该相乘。
四、结论古典概型是概率论中最基础、最简单的一种模型,应用范围广泛。
在使用古典概型进行概率计算时,需要注意每个结果的概率相等、事件之间是否互斥、事件之间是否独立等问题,才能准确计算概率,避免出现错误的结果。
古典概型中研究的几类基本问题: 抛硬币、掷骰(tóu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义.一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律.另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型.因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力. 本部分主要讨论古典概率中的四类基本问题(摸球问题、分球入盒问题、随机取数问题和选票问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用. 一、摸球问题 [例1]袋中有α个白球,β个黑球: (1)从中任取出a+b个(a,b∈N,α≤a,b≤β,试求所取出的球恰有a个白球和b个黑球的概率; (2)从中陆续取出3个球(不返回),求3个球依次为“黑白黑”概率; (3)逐一把球取出(不返回),直至留在袋中的球都是同一种颜色为止,求最后是白球留在袋中的概率. 思考方法 这里的三个小题,摸球的方式各不相同,必须在各自的样本空间中分别进行处理.(1)中的每一个样本点,对应着从α+β个球中任取a+b个球的一种取法,无需考虑顺序,属于组合问题.(2)中的每一个样本点,对应着从α+β个球中依次取出三个球的一种取法,需要考虑先后次序,属于排列问题.(3)中事件的有利场合(摸剩白球)包含了α种不同情形:摸
剩α个白球,α-1个白球,…,1个白球.因此,必须对各种情形分别加以考虑. [解](1)设A1表示事件“所取的a+b个球中恰有a个白球和b个黑球”.从α+β个球中
任意摸出a+b个,有baCba种不同取法,此即样本空间所包含的样本点总数.而事件A1所包含的样本点数,相当于从α个白球中任取a个,从β个黑球中任取b个的取法种数,共baCCba种.所以
P(A1)=babaCCCbaba (2)设A2表示事件“取出的3个球依次为黑白黑”.从α+β个球中依次任取3个,有3
A种取法,此即样本点总数.对于有利场合,第一个和第三个黑球可在β个黑球中依次取
得,有2A种取法,第二个白球可在α个白球中任取,有1A种取法.因此,A2所包含的样本点数为21AA.于是 P(A2)=)2)(1)(()1( (3)袋中只剩白球时(设此事件为A3),取出的球必为β个黑球,i个白球(i=0,1,…,α-1).用Bi表示事件“取出β个黑球,i个白球,袋中留下的全是白球”(i=0,1,…,α-1),则事件B0,B1,…,Bα-1,β必两两互不相容,且A3=B0+B1+…+Bα-1. 依概率的有限可加性,有
P(A3)=P(B0)+P(B1)+P(B2)+ …+P(Bα-1) 依事件Bi的含义,对于确定的i,它的样本空间就是从α+β个球中任取i+β个球的排列.所以,样本点总数为iA.注意到i+β个球取出后,留在袋中的全是白球,因而在这i+β个球中,最后取出的一个应是黑球.这样,事件Bi的有利场合,就是i+β-1个球的全排列(β个黑球中扣除1个,以保证最后取出的一个必为黑球).显然,i个白球可从α个白球中取得,有iC
种取法;β-1个黑球可从β个黑球中取得,有1C种取法,.从而事件Bi所包含的样本点数
为11iiACC.于是
P(Bi)=iiiiAACC111 =iiC1)(!! 把诸P(Bi)的值代入(1)式,并注意到 22110mmmCCC+…111nnmnnmCC
即得
P(A3)=21101[)!(!!CCC …]12C=11)!(!!C= 评注 如果把题中的“白球”、“黑球”换为“正品”、“次品”或“甲物”、“乙物”等等,我们就可以得到各种各样的“摸球问题”.为了让读者对此有深切的体会,我们再来看下面的例子:
(1)一批灯泡40只,其中3只是坏的,从中任取5只检查.问:① 5只都是好的概率为多少?② 5只中有2只坏的概率为多少?
(答案:①540537CC;②54023337CCC) (2)在相应地写有2,4,6,7,8,11,12及13的8张相同的卡片中,任意取出2张,求由所取得的两个数构成的分数为可约的概率.
(答案:2825CC) (3)从一副扑克牌(52张)中任取6张,求得3张红色的牌和三张黑色的牌的概率. (答案:652326326CCC) (4)用火车运载两类产品,甲类n件,乙类m件.有消息证实,在路途中有2件产品损坏.求损坏的是不同产品的概率.
(答案:211mnmnCCC) (5)一个班级有2n个男生和2n个女生,把全班学生任意地分成人数相等的两组,求每组中男女生人数相等的概率.
(答案:nnnnnCCC24222) (6)从数1,2,…,n中任取两数,求所取两数之和和偶数的概率. (答案:当n为偶数时,p=222/2nnCC;当n为奇数时,p=222/)1(22/)1(nnnCCC) 不难发现,上述各个问题的解决,都可以归结为摸球问题(例1(1)).我们说摸球问题具有典型意义,原因也正在于此., 二、分球入盒问题 [例2]把n个球以同样的概率分配到N(n≤N)个盒子中的每一个中去,试求下列各事件的概率: (1)A:某指定n个盒子中各有一球; (2)B:恰有n个盒子,其中各有一球; (3)C:某指定盒子中恰有m(m≤n)个球. 思考方法 解答本题时,要发掘“n个球以同样的概率分配到N个盒子中的每一个中去”一语的含义.这句话意思是说,每一个球,被分配到任意一个盒子中去是等可能的;也就是说每一个球各有N种不同的去向. [解] 因为n个球中的每一个球,都以同样的概率进入N个盒子中的任意一个,所以样本点总数为Nn. (1)n个球分别分配到N个预先指定的盒子中去,相当于n个球的全排列,因此事件A所包含的样本点数为An,于是
P(A)=nnnNnNA!.
(2)对于事件B,n个盒子可自N个盒子中任意选取,有nNC种选法,因而事件B包含!nCnN个样本点,于是
P(B)=)!(!!nNNNNnCnnnN. (8)事件C中的m个球,可以从n个球中任意选取有mnC种选法,其余的n-m个球可以任意分配到另外N-1个盒子中去,有(N-1)n-m种分配法.因而事件C包含mnmnNC)1(个样本点.这样
P(C)=mnmmnnmnmnNNCNNC)11()1()1(. 评注 不难发现当n和N确定时P(C)只依赖于m.如果把P(C)记作Pm,依二项式定理有 1)111()11()1(00nmnmnmmnnmmNNNNCP.
上述等式的概率意义是十分明显的.就是对于某个指定的盒子来说,进入盒子中的球数不外是0,1,...,n;从而这n+1种情形的和事件为必然事件,其概率必为1.这个问题实质上就是贝努利(Bernoulli)概型. n个球在N个盒子中的分布,是一种理想化的概率模型,可用以描述许多直观背景很不相同的随机试验.为了阐明这一点,我们列举一些貌异质同的试验: (1)生日.n个人的生日的可能情形,相当于n个球放入N=365个盒子中的不同排列(假定一年有365天). (2)性别.n个人的性别分布,相当于把n个球放入N=2个盒子中. (3)意外事件.如果把n个意外事件按其发生在星期几来分类,相当于n个球放入N=7个盒子中. (4)掷骰子.掷n颗骰子的可能结果,相当于把n个球放入N=6个盒子中. (5)质点入格.n个质点落于N个格子中的可能情形,相当于n个球分入N个盒子中. (6)旅客下站.一列火车中有n名旅客,它在N个站上都停.旅客下站的各种能情形,相当于n个球分到N个盒子中的各种情形. (7)住房分配.n个人被分配到N个房间中去住,则人相当于球,房间相当于盒子. (8)印刷错误.n个印刷错误在一本具有N页的书中的一切可能的分布,相当于n个球放入N个盒子中的一切可能分布(n必须小于每一页的字数). 从上面所列举的部分试验,我们不难体会分球入盒的模型的意义.因而使例2成为古典概率中的典型问题之一,为一类实际问题的求解,提供了有效的途径.作为练习,读者可利用本题的思想方法,解答下列各题: (1)同时掷4颗质量均匀的骰子,求出现完全不相同的点数的概率.
(答案:4466A ) (2)设一个人的生日在星期几是等可能的,求6个人的生日都集中在一星期中任意两天但不是都在同一天的概率.
(答案:66277)22(C) (3)有n个质点,每个质点都等可能地落于N(n≤N)个格子中的每一个.试求每一格子至多含一点的概率.
(答案:nnnNNAC) (4)设有n个人,每个人都等可能地被分配到n个房间中的任一间去住.求恰有一个空房间的概率.
(答案:nnnnnACC121.) 三、随机取数问题 [例3]从1,2,…,10这十个数中任取一个,假定各个数都以同样的概率被取中,取后还原,先后取出7个数,试求下列各事件的概率: (1)A1:7个数全不相同; (2)A2:不含10与1; (3)A3:10恰好出现两次; (4)A4:10至少出现两次; (5)A5:取到的最大数恰好为6. 思考方法 本题所及的随机试验,就取样方法来说,属于返回取样.也就是说,把某数取出后还原,下次仍有同样的可能再取到这个数.注意到这一特点,运用上节介绍的思想方法,原题就不难得解. [解] 依题设样本空间就是10个相异元素允许重复的7元排列.所以样本点总数为107. (1)事件A1,要求所取的7个数是互不相同的,考虑到各个数取出时有先后顺序之分,所以有利场合相当于从10个相异元素里每次取出7个相异元素的排列.因此,A1所包含的样本
点数为710A.于是
P(A1)=06048.0107710A. (2)事件A2:先后取出的7个数中不含10与1,所以,这7个数只能从2,3,4,5,6,7,8,9这8个数中取得.注意到实验属于有返回取样,则A2的有利场合,相当于8个相异元素允许重复的7元排列.于是,A2所包含的样本点数为87,有
P(A2)=2097.010877. (3)事件A3中出现的两次10,可以是7次取数中的任意两次,有27C种取法,其余的5次,每次可以取剩下的9个数中的任一个,共有95种取法.于是A3的有利场合为5279C.由此