考研数学概率复习知识点32个
- 格式:docx
- 大小:12.73 KB
- 文档页数:3
考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。
而随机事件是指在一次试验中,不能事先确定出现的结果。
概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。
同时,P(Ω) = 1,其中Ω是样本空间。
二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。
三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。
条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。
四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。
考研数学概率论32个常考知识点1500字概率论是数学中的重要分支之一,也是考研数学中的重要部分。
在考研数学概率论中,有一些常考的知识点需要掌握。
以下是32个常考的概率论知识点:1. 概率的定义和基本性质:概率是指事件发生的可能性,介于0和1之间。
2. 事件之间的关系:包括事件的和、差和积等。
3. 随机事件的分类:包括必然事件、不可能事件、简单事件和复合事件等。
4. 古典概型:指的是由有限个等可能的基本事件组成的样本空间。
5. 频率的概念:频率是指某个事件出现的次数与试验次数的比。
6. 相对频率的概念:相对频率是指某个事件出现的次数与试验次数的比。
7. 随机变量的定义:随机变量是指将样本空间映射到实数的函数。
8. 离散型随机变量和连续型随机变量:根据随机变量的取值是否为有限个或可排多数的情况进行分类。
9. 随机变量的概率分布:指的是随机变量各取值的概率。
10. 随机变量的期望:期望是指随机变量取各值的加权平均值。
11. 随机变量的方差:方差是指随机变量与其期望之差的平方的期望。
12. 切比雪夫不等式:切比雪夫不等式是指随机变量距离其期望的距离小于等于标准差的k倍的概率不小于1-1/k^2。
13. 二维随机变量的联合分布:二维随机变量的联合分布指的是两个随机变量同时取某些值的概率。
14. 边缘分布:边缘分布是指从联合分布中得到的各个边缘概率分布。
15. 条件分布:条件分布是指在给定某个条件下的随机变量的概率分布。
16. 独立性:独立性是指两个随机变量的联合概率分布等于边缘概率分布的乘积。
17. 二项分布:二项分布是指n个相互独立的重复试验中成功次数的概率分布。
18. 泊松分布:泊松分布是指单位时间内随机事件发生次数的概率分布。
19. 几何分布:几何分布是指在独立重复试验中,第一次成功时进行的试验次数的概率分布。
20. 均匀分布:均匀分布是指一个区间内每个点的概率相等。
21. 指数分布:指数分布是一个连续型概率分布,描述时间的间隔。
考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
考研数学概率常考考点总结来源:文都图书概率与数理统计是考研数学的一大模块,一般常出现在填空题、选择题、计算题和证明题中,下面总结了这部分常考的30个知识点,希望大家在基础复习阶段就能记住,打好基础。
(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
考研数学概率论32个常考知识点考研数学概率论有哪些知识点是经常考的?为大家提供考研数学概率论32个常考知识点,希望大家能好好复习,争取掌握这些知识点!考研数学概率论32个常考知识点►第一部分:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视,►第二部分:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。
►第三部分:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量联合概率分布及其性质(3)二维连续型随机变量联合概率密度及其性质(4)二维随机变量联合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!►第四部分:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算►第五部分:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
►第六部分:数理统计的基本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下►第七部分:参数估计(1)点估计(2)估计量的优良性(3)区间估计其中:本章点估计是重点,是解答题的重灾区,一定要掌握点估计的两种解题步骤,至于(2)(3)两个可以了解下即可。
为⼤家整理的考研数学⾼分之概率必备知识点总结,供⼤家参考。
第⼀章1、交换律、结合律、分配率、的摩根律;(解题的基础)2、古典概型——有限等可能、⼏何模型——⽆限等可能;3、抽签原理——跟先后顺序⽆关;4、⼩概率原理——⼩概率事件在⼀次试验不可能发⽣,⼀旦发⽣就怀疑实现规律的正确性;5、条件概率:注意当条件的概率必须⼤于0;6、全概:原因>结果贝叶斯:结果>原因;7、相容通过事件定义,独⽴通过概率定义。
第⼆章1、0——1分布,⼆项分布,泊松分布X的取值都是从0开始;2、分布函数是右连续的,在求分布函数也尽量写成右连续的;3、分布函数的性质、概率密度的性质;4、连续性随机变量任⼀指定值的概率为0;5、概率为0不⼀定是不可能事件,概率为1不⼀定是必然事件;6、正态分布的图形性质;7、求函数的分布尽量按定义法,按定义写出基本公式;8、分段单调时应该分段使⽤公式再相加。
第三章(这章⽐较容易出错)1、⼆维分布函数的性质;(不减函数⽽不是单增函数;右连续)2、求分布函数⼀定要按定义来,注意画对图形;3、求边缘分布的时候,注意不同变量的区间⽤在什么地⽅;求X的边缘分布的话,先对X的区间进⾏划分,再不同的区间对Y的全部区间进⾏积分(Y在不同的区间可能有不同的函数表达)4、负⽆穷到正⽆穷的E的负的⼆分之T平⽅的积分;(浙三P83)5、算条件概率也⼀样,注意相应的区间;(这种题细节丢分太可惜)6、max(x,y)与min(x,y)相互独⽴的情况是什么?独⽴同分布⼜是什么?(参见08选择题)7、边缘分布⼀般不能确定分布的,只有当变量相互独⽴才可以。
第四章1、级数绝对收敛,期望才存在;2、期望的和等于和的期望,xy之间不要求任何关系;期望的乘积等于乘积的期望,xy要相互独⽴;3、浙三P120:分解的思想,还有P126;4、⽅差的和在独⽴和不独⽴时公式不⼀样;5、独⽴推出不相关;不相关推不出独⽴;不相关只是线性不相关;题⽬中如果xy的关系能够表⽰出来的话(⼀般)都是不独⽴;6、⼆维正态分布、独⽴不相关等价;7、提⽰:求⼀些积分的时候有时候可以⽤到对称性;8、数⼀400题P140那个评注上⾯T(4)=3!(会⽤,那么做题会很⽅便)第五章1、切⽐雪夫⼤数定律条件:相互独⽴、⽅差存在⼀致有上界;2、⾟钦⼤数定律条件:独⽴同分布、期望存在;3、⼆项分布、泊松定理、拉普拉斯⼤数定理结合着看⼀下。
考研数学概率部分的核心知识点和易错知识点总结一、核心知识随机事件和概率、随机变量及其分布、二维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。
涉及到的概率论与数理统计的所有知识啦。
1、交换律、结合律、分配率、的摩根律;(解题的基础)2、古典概型——有限等可能、几何模型——无限等可能;3、抽签原理——跟先后顺序无关;4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;5、条件概率:注意当条件的概率必须大于0;6、全概:原因>结果贝叶斯:结果>原因;7、相容通过事件定义,独立通过概率定义。
第二章1、0——1分布,二项分布,泊松分布X的取值都是从0开始;2、分布函数是右连续的,在求分布函数也尽量写成右连续的;3、分布函数的性质、概率密度的性质;4、连续性随机变量任一指定值的概率为0;5、概率为0不一定是不可能事件,概率为1不一定是必然事件;6、正态分布的图形性质;7、求函数的分布尽量按定义法,按定义写出基本公式;8、分段单调时应该分段使用公式再相加。
二、易错知识点1、“非等可能”与“等可能”的区别如果一次随机实验中可能出现的结果有N个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/N;如果其中某个事件A包含的结果有M个,则事件A的概率为M/N。
2、互斥与对立对立一定互斥,但是互斥不一定对立。
不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P(A+B)=P(A)+P(B),必有一个发生的互斥事件叫做对立事件,如果A,B对立则满足两个条件(1)P(AB)=空集;(2)P(A+B)=1。
3、互斥与独立不可能同时发生的两个事件叫做互斥事件,如果A,B互斥则P (A+B)=P(A)+P(B),事件A(或者B)是否发生不影响事件B(或者A)发生的概率,则A和B独立。
此时P(AB)=P(A)p(B);概率为0或者1的事件与任何事件都独立,如果两个事件存在包含关系,则两个事件不独立;如果0〈P(A)〈1,0〈P(B)〈1,如果A,B互斥则不独立,如果A,B独立则不互斥(注意条件)。
考研数学概率复习知识点考研数学概率复习知识点汇总随着考研的时间越来越近,我们在学习数学概率的时候,需要掌握一些重要的知识点。
店铺为大家精心准备了考研数学概率复习指南攻略,欢迎大家前来阅读。
考研数学概率重点知识一、随机事件与概率重点难点:重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算常考题型:(1)事件关系与概率的性质(2)古典概型与几何概型(3)乘法公式和条件概率公式(4)全概率公式和Bayes公式(5)事件的独立性(6)贝努利概型二、随机变量及其分布重点难点重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型(1)分布函数的概念及其性质(2)求随机变量的分布律、分布函数(3)利用常见分布计算概率(4)常见分布的逆问题(5)随机变量函数的分布三、多维随机变量及其分布重点难点重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布难点:多维随机变量的描述方法、两个随机变量函数的分布的求解常考题型(1)二维离散型随机变量的联合分布、边缘分布和条件分布(2)二维离散型随机变量的联合分布、边缘分布和条件分布(3)二维随机变量函数的分布(4)二维随机变量取值的概率计算(5)随机变量的独立性四、随机变量的数字特征重点难点重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数难点:各种数字特征的概念及算法常考题型(1)数学期望与方差的计算(2)一维随机变量函数的期望与方差(3)二维随机变量函数的期望与方差(4)协方差与相关系数的计算(5)随机变量的独立性与不相关性五、大数定律和中心极限定理重点:中心极限定理难点:切比雪夫不等式、依概率收敛的概念。
在考研数学中,概率与数理统计这门课程相对其他两门课程来说得分率是比较低的。
由于概率学本身的学科特点,使同学们觉得概率复习起来比较吃力。
在此为大家整理了考研数学概率论各章节重点内容,方便同学们把握重点做有效复习。
第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:1.随机事件的关系运算﹔2.求随机事件的概率﹔3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数﹔2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3.反求或判定分布中的参数﹔4.求一维随机变量在某一区间的概率﹔5.求一维随机变量函的分布。
第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。
考研数学概率部分公式复习概率是数学中一个重要的分支,常以随机试验为基础进行研究,主要研究事件的概率和随机变量的分布。
而概率论的数学基础则包括概率公式、条件概率、独立性、随机变量的分布等等。
在考研中,数学概率部分是必考内容之一,理解和熟练掌握这些公式是非常重要的。
下面就对考研数学概率部分的公式进行复习。
一、基本公式:1.概率公式:对于一个随机试验E,事件A的概率P(A)定义为A发生的次数在试验总次数n中所占的比例。
P(A)=m/n2.互斥事件的概率公式:如果事件A和B互斥(即不能同时发生),则它们的概率满足如下关系:P(A∪B)=P(A)+P(B)3.和事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)-P(A∩B)4.减事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A-B)=P(A)-P(A∩B)5.互斥事件的概率和与减公式:对于两个互斥事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)P(A-B)=P(A)-P(A∩B)二、条件概率和乘法原理:1.条件概率公式:对于两个事件A和B,且P(A)>0,条件概率P(B,A)定义为在事件A发生的条件下事件B发生的概率。
P(B,A)=P(A∩B)/P(A)2.乘法原理:对于两个事件A和B,它们同时发生的概率等于事件A 发生的概率乘以在事件A发生的条件下事件B发生的概率。
P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)三、全概率公式和贝叶斯公式:1.全概率公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分(即互不相交且并起来就是全集),则对于任意事件A,它的概率满足如下关系:P(A)=P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)2.贝叶斯公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分,则对于任意事件A,它的概率满足如下关系:P(Bi,A)=P(Bi)P(A,Bi)/[P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)]四、随机变量和分布:1.随机变量:随机变量是定义在样本空间上的一个实值函数,它的取值是由随机试验的结果决定的。
2024考研数学概率论重要考点总结概率论是数学的一个分支,研究随机现象的规律性和统计属性。
在2024年的考研数学中,概率论是一个重要的考点。
下面将总结一些2024考研数学概率论的重要考点。
1. 概率基本概念:- 随机试验和随机事件:随机试验是在相同条件下重复进行的试验,随机事件是随机试验可能出现的结果。
- 样本空间和事件:样本空间是随机试验所有可能结果的集合,事件是样本空间的子集。
- 概率和概率公理:概率是事件发生的可能性大小的度量,满足非负性、规范性和可列可加性的概率公理。
- 概率的性质:互斥事件的概率、必然事件和不可能事件的概率。
2. 条件概率和乘法公式:- 条件概率:条件概率是在已知某些信息的条件下,某个事件发生的概率。
- 独立事件:两个事件A和B相互独立,就是指事件A的发生与否不会对事件B的发生产生影响。
- 乘法公式:乘法公式是计算多个事件同时发生的概率的方法。
3. 全概率公式和贝叶斯公式:- 全概率公式:全概率公式是用来计算一个事件发生的概率的方法,通过将事件拆分为一系列互斥事件的并集来计算。
- 贝叶斯公式:贝叶斯公式是由全概率公式推导而来的,它可以根据已知的条件概率来计算逆条件概率。
4. 随机变量和概率分布:- 随机变量:随机变量是描述随机试验结果的数值函数。
- 离散随机变量和连续随机变量:离散随机变量的取值是有限的或可列的,连续随机变量的取值是无限的。
- 概率质量函数和概率密度函数:概率质量函数是描述离散随机变量概率分布的函数,概率密度函数是描述连续随机变量概率分布的函数。
- 期望和方差:期望是描述随机变量平均取值的指标,方差是描述随机变量取值的离散程度的指标。
5. 常见概率分布:- 二项分布:描述n次独立重复试验中成功次数的概率分布。
- 泊松分布:描述单位时间或单位空间内随机事件发生次数的概率分布。
- 正态分布:具有钟形曲线的概率分布,应用广泛。
6. 大数定律和中心极限定理:- 大数定律:大数定律指出,随着随机试验次数的增加,其结果的平均值趋近于数学期望。
概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质bP=≤)FX(b)()P-aX≤b<=)F(()bF(a2、离散型随机变量3..连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布Λ2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j iΛ2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E ΛΛ+=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X Λ1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X Λ1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X Λ1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n Λ=η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X Λ的联合分布为)(),(121k nk n x F x x x F =∏=Λ2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距:Λ2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1Λ(6)次序统计量:设样本),(21n X X X Λ的观察值),(21n x x x Λ,将n x x x Λ21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤Λ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤Λ为样本),(21n X X X Λ的次序统计量。
考研概率统计必须掌握核心知识点●离散分布●二项分布●E(X)=np●D(X)=np(1-p)●泊松分布●E(X)=\lambda●D(X)=\lambda●几何分布●E(X)=\frac{1}{p}●D(X)=\frac{1-p}{p^2}●超几何分布●E(X)=\frac{nM}{N}●连续分布●均匀分布●E(X)=\cfrac{b+a}{2}●D(X)=\cfrac{(b-a)^2}{12}●指数分布●E(X)=\cfrac{1}{\lambda}●D(X)=\cfrac{1}{\lambda ^2}●正态分布●E(X)=\mu●D(X)=\sigma ^2●二维●联合分布函数●边缘分布函数●条件分布函数●随机变量函数分布●公式法(绝对单调)●分布函数法●数字特征●期望的性质●E(X)=\int_{-\infty}^{+\infty} xf(x)dx 绝对收敛●E(c)=c●E(cX)=cE(X)●E(X+Y)=E(X)+E(Y)●若XY独立,E(XY)=E(X)E(Y)●方差的性质●D(X)=E(X^2)-E^2(X)●D(c)=0●D(cX)=c^2D(X)●D(aX+bY)=a^2D(X)+b^2D(Y)+2abCov(X,Y)●若XY独立,D(XY)=D(X)D(Y)+D(X)E^2(Y)+D(Y)E^2(X) \geqslantD(X)D(Y)●若 D(X) 存在,D(X)=E[(X-E^2(X))^2] \leqslant E((X-c)^2)●协方差●Cov(X,Y)=E(XY)-E(X)E(Y)●Cov(X,X)=D(X)●Cov(aX+b,cY+d)=acCov(X,Y)●Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)●XY独立时,协方差=0●Cov(X,c)=0●相关系数●\rho _{x,y} =\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}●\rho _{x,y}=0 \iff Cov(X,Y)=0 ,XY不相关●规范性:| \rho _{x,y} | =1的充要条件为存在线性关系●Y=aX+b 且 a>0 , \rho _{x,y} =1●Y=aX+b 且 a<0 , \rho _{x,y} =-1●独立与不相关●XY独立,则一定不相关:反之,不成立●XY的联合分布是二维正态分布,XY独立的充要条件是XY不相关●XY都服从0-1分布,XY独立的充要条件是XY不相关●XY不相关 \iff Cov(X,Y)=0 \iff E(XY)=E(X)E(Y) \iff D(X\pmY)=D(X)+D(Y)●大数定律●切比雪夫不等式●P\{ | X - \mu |\geqslant \epsilon \} \leqslant\ \frac{\sigma ^2}{\epsilon^2}●P\{ | X - \mu | < \epsilon \} \leqslant\ 1-\frac{\sigma ^2}{\epsilon ^2}●伯努利大数定律n_A是n重伯努力实验中A事件的发生次数,P(A)=p●\lim\limits_{n \to \infty} P\{ | \frac{n_A}{n}-p| < \epsilon \} =1●切比雪夫大数定律独立,存在期望和方差,且方差有界●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\frac{1}{n}\sum\limits_{k=1}^{n}E(X_k)| < \epsilon \} =1●辛勤大数定律独立且同分布,期望存在E(X_i)=\mu●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\mu| < \epsilon \} =1●中心极限定律●列维-林德伯格中心极限定理独立,同分布,期望方差存在●\lim\limits_{n \to \infty} P\{ \frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n} \sigma} \leqslant x \} = \phi(x)●棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为其极限分布定理)Y_n \sim B(n,p)●\lim\limits_{n \to \infty} P\{ \frac{Y_n-np}{\sqrt{npq} } \leqslant x \} =\phi(x)●抽样分布●卡方分布●\chi^2 = X_1^2+X_2^2+……+X_n^2服从自由度为n●可加性:●\chi_1^2 \sim \chi^2(n_1),\chi_2^2 \sim \chi^2(n_2),相互独立●\chi_1^2 + \chi_2^2 \sim \chi^2(n_1+n_2)●E(\chi^2)=n,D(\chi^2)=2n●t分布●X \sim N(0,1) ,Y\sim\chi^2(n),独立●t=\frac{X}{\sqrt{Y/n}}服从自由度为n的t分布●X \sim t(n),f(x) 为偶函数●X \sim t(n) ,n充分大时,X近似服从N(0,1)●X \sim t(n),E(X)=0,D(X)=\frac{n}{n-2}●F分布●U\sim\chi^2(m),V\sim\chi^2(n)且UV独立●F=\frac{U/m}{V/n} ,F \sim F(m,n)●X \sim F(m,n) ,\frac{1}{X} \sim F(n,m)●X\sim t(n), X^2 \sim F(1,n)●●参数估计●点估计●矩估计法●E(X)=\overline{X}●最大似然估\sum\limits_{i=1}^{n}●写似然函数L( \theta ) = \prod\limits _{i=1}^{n}f(x_i;\theta)●取对数●求导●最大似然估计量用大写,最大似然估计值用小写●无偏性 E(\hat{\theta})= \theta●有效性 D(\theta_1)<D(\theta_2)●一致性 \lim\limits_{n \to \infty} P\{ | \hat{\theta}-\theta | \leqslant\epsilon \} = 1●区间估计●\mu构造统计量●\sigma^2 未知,Z=\cfrac {\overline{X}-\mu}{\sigma/ \sqrt{n}} \simN(0,1)●\sigma^2已知,Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)@\sigma^@Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)●\sigma^2构造统计量●\mu未知,\cfrac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)●\mu已知,\cfrac{1}{\sigma^2} \sum\limits_{i=1}^{n}(X_i-\mu)^2\sim \chi^2(n)●置信区间●假设检验●过程●提出假设H_0和备择假设H_1●构建检验统计量●写出拒绝域●双边检验●单边检验●判断●= 必须在H_0中●双正态总体均值之差的检验●\sigma_1^2,\sigma_2^2已知●Z=\cfrac{ \overline{X} -\overline{Y} }{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1)●未知,但相等●t=\cfrac{ \overline{X} - \overline{Y} }{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2)●S_W=\sqrt{\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}。
2024考研数学概率论重要考点总结2024考研数学考试中的概率论部分是一个非常重要的考点,对于考生来说,掌握好概率论的相关知识点是非常关键的。
下面是2024考研数学概率论重要考点的总结,希望能够帮助到考生。
一、概率基本概念:1. 随机试验、样本空间、随机事件;2. 古典概型、几何概型、随机变量概型;3. 定义域、值域、事件域;4. 频率与概率的关系。
二、概率公理与概率的性质:1. 概率公理;2. 概率的性质(非负性、规范性、可列可加性);3. 条件概率、乘法公式;4. 全概率公式、贝叶斯公式。
三、随机变量的概念:1. 随机变量的定义;2. 离散型随机变量与连续型随机变量;3. 离散型随机变量的概率分布律、累积分布函数;4. 连续型随机变量的概率密度函数、累积分布函数;5. 随机变量的数学期望、方差、标准差。
四、常见概率分布:1. 二项分布;2. 泊松分布;3. 均匀分布;4. 正态分布。
五、多维随机变量与联合分布:1. 二维随机变量的联合分布律、联合分布函数;2. 边缘分布;3. 条件分布。
六、独立性与随机变量的函数的分布:1. 独立性的概念;2. 独立随机变量的数学期望、方差;3. 独立连续型随机变量的函数的分布;4. 独立离散型随机变量的函数的分布。
七、大数定律与中心极限定理:1. 大数定律的概念与几种形式;2. 切比雪夫不等式;3. 中心极限定理的概念;4. 利用中心极限定理进行概率近似计算。
八、随机过程:1. 随机过程的概念;2. 马尔可夫性;3. 随机过程的平稳性。
九、统计量与抽样分布:1. 统计量的概念;2. 抽样分布与大样本正态分布近似;3. 正态总体均值与方差的推断。
以上就是2024考研数学概率论部分的重要考点总结,希望对考生有所帮助。
考生要多进行习题的练习和考点的整理与总结,提高自己的概率论水平,为考试做好准备。
祝考生取得好成绩!。
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
2025考研概率论重点知识总结概率论是考研数学中的重要组成部分,对于考生来说,掌握好概率论的重点知识至关重要。
以下是对 2025 考研概率论重点知识的详细总结。
一、随机事件与概率1、随机事件及其运算随机事件的定义:在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
事件的关系:包含、相等、互斥、对立。
事件的运算:并、交、差。
2、概率的定义与性质概率的古典定义:若某试验的样本空间中样本点总数为 n,事件 A 包含的样本点个数为 m,则事件 A 发生的概率为 P(A) = m / n。
概率的公理化定义:满足非负性、规范性、可列可加性。
概率的性质:包括0 ≤ P(A) ≤ 1、P(Ω) = 1、P(∅)= 0、P(A∪B) = P(A) + P(B) P(AB) 等。
3、条件概率与乘法公式条件概率的定义:P(B|A) = P(AB) / P(A),其中 P(A) > 0。
乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。
4、全概率公式与贝叶斯公式全概率公式:设 B1, B2,, Bn 是样本空间Ω 的一个划分,且 P(Bi) > 0 (i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)。
贝叶斯公式:在全概率公式的基础上,已知事件 A 已经发生,求事件 Bi 发生的概率,即 P(Bi|A) = P(Bi)P(A|Bi) /ΣP(Bj)P(A|Bj)。
二、随机变量及其分布1、随机变量的概念定义:设随机试验的样本空间为Ω,对于Ω 中的每个样本点ω,都有唯一的实数X(ω)与之对应,则称X(ω)为随机变量。
2、离散型随机变量概率分布列:P(X = xi) = pi (i = 1, 2,),且Σpi = 1。
常见的离散型随机变量:0 1 分布、二项分布、泊松分布。
3、连续型随机变量概率密度函数:f(x),满足f(x) ≥ 0 且∫f(x)dx = 1。
考研数学概率论32个常考知识点1500字概率论是数学中的一个重要分支,它研究的是随机事件发生的规律和概率的计算方法。
在考研数学中,概率论也是一个重要的考点。
下面列举了32个常考的概率论知识点。
1. 随机事件和对立事件随机事件是指在一次试验中可能发生也可能不发生的事件,而对立事件是指与某一事件互为补事件的事件。
2. 必然事件和不可能事件必然事件是指在一次试验中一定发生的事件,而不可能事件是指在一次试验中不可能发生的事件。
3. 事件的运算事件的运算包括并、交、差、互斥等操作,它们对应的概率运算是求和、乘积、差、互补等。
4. 事件的等价关系事件的等价关系是指两个事件发生的可能性相同,即它们的概率相等。
5. 随机变量的概念随机变量是指根据实验结果的不同而可能取得不同值的变量。
它可以是离散型的,也可以是连续型的。
6. 离散型随机变量的分布律离散型随机变量的分布律是指随机变量取各个值的概率。
7. 离散型随机变量的数学期望离散型随机变量的数学期望是指随机变量的取值与其对应的概率乘积的总和。
8. 离散型随机变量的方差离散型随机变量的方差是指随机变量与其数学期望之差的平方的期望值。
9. 连续型随机变量的概率密度函数连续型随机变量的概率密度函数是指随机变量在某个区间内取值的概率密度。
10. 连续型随机变量的数学期望、方差与标准差连续型随机变量的数学期望是指随机变量乘以概率密度函数后的积分。
方差和标准差的计算方法与离散型随机变量相似。
11. 两个随机变量的联合概率分布两个随机变量的联合概率分布是指两个随机变量同时取某种取值时的概率。
12. 两个随机变量的独立性两个随机变量的独立性是指它们的联合概率分布可以分解成各自的边缘概率分布的乘积形式。
13. 随机变量函数的分布如果一个随机变量是另一个随机变量的函数,那么它们的分布是相关联的。
14. 大数定律大数定律是指在独立重复试验中,样本数量足够大时,样本平均值趋近于总体均值的概率越来越大。
新考研数学概率论重要考点总结概率论是考研数学中的重要组成部分,对于广大考生来说,掌握概率论的考点是取得高分的关键。
本文将对新考研数学概率论的重要考点进行总结,帮助大家系统地梳理和掌握这部分知识。
一、随机事件及其概率1.随机事件的定义及分类:必然事件、不可能事件、随机事件。
2.事件的运算:并、交、补运算。
3.概率的基本性质:概率非负性、概率规范性、概率公理。
4.条件概率与独立事件的概率:条件概率的定义与计算、独立事件的概率计算。
二、离散型随机变量及其分布1.离散型随机变量的定义及其性质。
2.概率质量函数(概率分布列):概率质量函数的定义、性质、计算。
3.期望值、方差与标准差:期望值的定义与计算、方差与标准差的定义与计算。
4.离散型随机变量的分布函数:分布函数的定义、性质、计算。
三、连续型随机变量及其分布1.连续型随机变量的定义及其性质。
2.概率密度函数(概率分布):概率密度函数的定义、性质、计算。
3.期望值、方差与标准差:期望值的定义与计算、方差与标准差的定义与计算。
4.连续型随机变量的分布函数:分布函数的定义、性质、计算。
四、大数定律与中心极限定理1.大数定律:弱大数定律、强大数定律。
2.中心极限定理:中心极限定理的假设、及其应用。
五、随机变量的数字特征1.随机变量的数字特征:期望值、方差、协方差、相关系数。
2.期望值与方差的性质:线性性质、转置性质、共轭性质。
3.协方差与相关系数:协方差的定义与计算、相关系数的定义与计算。
通过对以上考点的总结,相信大家对新考研数学概率论的重要考点有了更加清晰的认识。
在复习过程中,希望大家能够系统地掌握这些知识点,不断提高自己的解题能力,为考研数学取得高分奠定坚实的基础。
《篇二》在过去的工作中,我们的重点主要集中在以下几个方面:1.提升工作效率:通过优化工作流程和引入新技术,提高团队的整体工作效率。
2.加强团队协作:通过定期的团队活动和沟通,增强团队成员之间的协作能力和团队凝聚力。
考研数学概率复习知识点32个2018考研数学概率复习必备知识点32个
第一部分:随机事件和概率
(1)样本空间与随机事件
(2)概率的定义与性质(含古典概型、几何概型、加法公式)
(3)条件概率与概率的乘法公式
(4)事件之间的关系与运算(含事件的独立性)
(5)全概公式与贝叶斯公式
(6)伯努利概型
其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,大家一定要引起重视
第二部分:随机变量及其概率分布
(1)随机变量的概念及分类
(2)离散型随机变量概率分布及其性质
(3)连续型随机变量概率密度及其性质
(4)随机变量分布函数及其性质
(5)常见分布
(6)随机变量函数的分布
其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。
第三部分:二维随机变量及其概率分布
(1)多维随机变量的.概念及分类
(2)二维离散型随机变量联合概率分布及其性质
(3)二维连续型随机变量联合概率密度及其性质
(4)二维随机变量联合分布函数及其性质
(5)二维随机变量的边缘分布和条件分布
(6)随机变量的独立性
(7)两个随机变量的简单函数的分布
其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,一定要重视!
第四部分:随机变量的数字特征
(1)随机变量的数字期望的概念与性质
(2)随机变量的方差的概念与性质
(3)常见分布的数字期望与方差
(4)随机变量矩、协方差和相关系数
其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算
第五部分:大数定律和中心极限定理
(1)切比雪夫不等式
(2)大数定律
(3)中心极限定理
其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
第六部分:数理统计的基本概念
(1)总体与样本
(2)样本函数与统计量
(3)样本分布函数和样本矩
其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下
第七部分:参数估计
(1)点估计
(2)估计量的优良性
(3)区间估计。