电源电路设计分析实例(经典分析)
- 格式:doc
- 大小:984.50 KB
- 文档页数:19
开关电源电路设计实例分析开关电源电路是一种常用的电源供电方式,其优点包括高效能、体积小、重量轻等特点,因此在电子设备中得到广泛应用。
本文将介绍开关电源电路设计的一般流程,并以设计一个12VDC输出的开关电源电路为例进行分析。
1.确定需求和规格在设计开关电源电路之前,首先要确定需求和规格。
例如,我们要设计一个12VDC输出电源,输出电流为1A,并且需要输入电压范围为220VAC。
此外,我们还需要确定开关电源的效率、功率因数等要求。
2.选取开关电源拓扑结构根据需求和规格,选择适合的开关电源拓扑结构。
常见的开关电源拓扑包括反激式、半桥或全桥式等。
根据需求,我们选择反激式开关电源。
3.选择主要元件根据选取的拓扑结构,选择适当的主要元件,包括主变压器、开关管、输出电容和滤波电感等。
选取主变压器时需要考虑输入输出电压比例、功率等因素;选择开关管时需要考虑导通电阻、开通速度等因素。
4.电路图设计根据所选的开关电源拓扑结构和主要元件,设计电路图。
包括输入滤波电路、整流电路、开关电路和输出滤波电路。
同时,需要设计开关电源的保护电路,如过流保护、过压保护等。
5.计算关键参数根据设计的电路图,计算关键参数。
例如,计算输入电流、输出电流、开关频率等。
这些参数可以通过电路图中的公式和关系计算得出。
6.仿真和优化通过电路仿真软件,对设计的电路进行仿真和优化。
可以通过调整元件参数和拓扑结构来优化电路性能,如提高效率或降低成本。
7.PCB布局设计在完成电路图设计和仿真优化后,需要进行PCB布局设计。
将电路图转化为实际的PCB布局,并考虑元件之间的布置、走线、散热等因素。
8.元件选型和采购根据PCB布局设计,选择合适的元件,并进行采购。
需要考虑元件的性能、价格、可靠性等因素。
9.确定元件焊接方式根据元件选型和PCB布局,确定元件的焊接方式。
根据焊接方式,可以选择手工焊接或波峰焊接等。
10.制作和调试样机根据设计和选型的元件,制作和调试样机。
两例变频器开关电源电路实例——兼论电容C23在电路中的重要作用先看以下电路实例:图1 东元7200PA 37kW变频器开关电源电路CN4图2 海利普HLPP001543B型15kW变频器开关电源电路图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。
开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。
电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。
以上电路为振荡电路。
D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。
5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。
稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。
5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。
以此调整输出电压使之稳定。
这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。
开关电源设计实例之保护电路实例详解-设计应用开关电源各种保护电路实例详细解剖!输入欠压保护电路一1概述(电路类别、实现主要功能描述):该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。
2电路组成(原理图):输入欠压保护电路二1概述(电路类别、实现主要功能描述):输入欠压保护电路。
当输入电压低于设定欠压值时,关闭输出;当输入电压升高到设定恢复值时,输出自动恢复正常。
2电路组成(原理图):3工作原理分析(主要功能、性能指标及实现原理):输入电压在正常工作范围内时,Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功能。
R21、VT6、R23组成欠压关断、恢复时的回差电路。
当欠压关断时,VT6导通,将R21与R2并联,;恢复时,VT6截止,4电路的优缺点优点:电路形式简单,成本较低。
缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。
5应用的注意事项:VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。
输出过压保护电路一1概述(电路类别、实现主要功能描述):输出过压保护电路。
当有高于正常输出电压范围的外加电压加到输出端或电路本身故障(开环或其他)导致输出电压高于稳压值时,此电路会将输出电压钳位在设定值。
2电路组成(原理图):3工作原理分析(主要功能、性能指标及实现原理):输出过压时,加在VD3上的电压大于其稳压值时,VD3导通,输出电压被钳位,同时通过IC4向原边反馈。
4电路的优缺点优点:电路形式简单,成本较低。
缺点:因稳压管VD3批次间稳压值的差异,导致过压钳位点上下浮动,大批量生产时需经常调试相关参数。
12v直流稳压电源电路设计与电路图分析想要学好电路设计,就要多看多思考,那么你想知道12v直流稳压电源电路设计到底是怎么样的吗?下面就由店铺为你带来12v直流稳压电源电路设计与电路图分析,希望你喜欢。
12v直流稳压电源电路设计图分析12v直流稳压电源电路设计解读典型的12 V直流稳压电源电路如图所示。
图中Tr为电源变压器,它把市电电压变为所需的两组17 V的交流低压。
整流滤波采用全波整流、电容滤波方式。
稳压部分是典型的复合调整管串联稳压电路,图中整流二极管两端并联有O.OIpF的电容器,其作用是减小整流管的峰值电压,且避免出现调制交流声。
电容器C6的作用是增加控制能力,因为假定当输出有-△Uo的变化时,如果不加电容器C6,则这一变化量被Rs,凡和Rw 分压后加在VT2管的基极;而加了电容器C6后,由于电容器两端的电压不能突变,因而其变化量的全部都将加在VT2管的基极,提高了控制能力,进一步稳定了输出电压。
电路设计经验心得传统的武功都分若干层,好像大多是7-9层吧,呵呵。
这电路设计的功力也一样,印象中有dx分过4-9层。
俺这也不免俗,根据自己的经验把它分成了5层。
第1层:初步入门。
做什么都难。
大多时间是借鉴前人或能找到的设计。
仿制的过程中来理解电路的架构类型。
能拿到一个可直接用的电路很兴奋。
经常看些2-3流杂志上的实际例子。
做些笔记什么的。
经常参加各种会议讲座。
设计出来的板子一堆飞线。
总是疑惑为啥电路图或者逻辑设计一样,怎么出来的性能总比不上原设计。
第2层:做了几年后有了感觉。
了解了电路设计需要遵循的一些实际原则。
开始能独立完成一个系统,即使是新的算法或者协议也能实现。
设计一个电路有点随心所欲。
觉得这电路设计也就那么会事,什么东西只要有时间都能做出来。
但细节的考虑不周(细节这个词可能有误导,其实并不像字面那样简单)。
做出的东西长期稳定性和可靠性不见得理想。
第3层:觉得做什么都要慎重。
再简单的东西设计好了,成为批量生产的可靠产品都不容易。
12v电源电路设计及电路图分析12v电源电路设计的操作步骤是什么,电路图又是怎么样的呢?下面由店铺向你推荐12v电源电路设计,希望你满意。
12v电源电路设计说明介绍一种特殊的直流稳压电源,它与其它电源不同之处是,连续可调范围极宽,只需拧动一只调压旋钮便可实现输出电压在正负之间连续而平滑地变化,且稳定度较高。
这种新型电源的适用性极广,可用于直流电动机无级变速与顺逆转向运行、栅极可关断晶闸管GTO器件与双向触发器件的检测试验等特殊场合。
12v电源电路设计图12v电源电路设计分析这种特殊电源的电原理如图1所示。
三端可调稳压集成电路lC和IC'构成电源核心。
lC及其外围元器件组成正输出稳压电源,IC'及其外围元器件组成负输出稳压电源,两者构成正负互作主辅的串联叠加电源电路。
主辅电路完全对称,元器件参数也完全相同。
线性同轴双联电位器Wl和W'l可调正、负电源的输出电压。
Wl 与W'l的连接形式保证了它们的电阻值Rwi与Rw,1始终保持互补关系,即Rwi+Rw,i=w,从而保证了正、负电源的输出电压绝对值也始终保持互补关系。
输出电压Uo和电容C4、C4’两端电压UAC、UCA'的关系如下:当UAC>UCA'时,Uo>o;当UAC=UCA,时,Uo=0;当UAC<UCA' 时,Uo<o。
可见,调整同轴双联电位器w1-w1',即可实现Uo从负到正的连续变化。
由于上下两部分电路完全对称,故输出电压UO=UREF(Rw1-Rw1')/Rl,其中UREF=UAB=UB'A',一它是三端稳压集成电路的基准电压。
Dl、D2系保护二极管,正常情况下均处于反偏状态,不起作用。
当输入电压因故突然下降(如C2失效击穿或输入端开路)时,输出电容C4会通过IC的小电流结对输入端放电,此时Dl能有效地将IC的输出与输入两端箝位限幅于0.7V左右,起到保护IC的作用。
开关电源典型设计实例精选
开关电源是一种常见的电源设计,它能够将输入电压转换为稳定的输出电压,常用于各种电子设备中。
以下是一些典型的开关电源设计实例:
1. Buck转换器,Buck转换器是一种常见的开关电源设计,它能够将高电压降低为稳定的较低电压。
这种设计常用于需要较低输出电压的应用,例如移动设备充电器和电源适配器。
2. Boost转换器,Boost转换器则是将输入电压升高为稳定的输出电压,常用于需要较高输出电压的场合,比如LED驱动器和太阳能电池充电器。
3. Buck-Boost转换器,Buck-Boost转换器能够实现输入电压的升压和降压,因此在需要输出电压高低变化范围较大的场合下应用广泛,比如电动汽车充电器和太阳能储能系统。
4. Flyback转换器,Flyback转换器是一种常见的离线开关电源设计,适用于输出功率较低的应用,例如家用电子设备和通信设备。
5. LLC谐振转换器,LLC谐振转换器结构简单,具有高效率和低电磁干扰等优点,适用于中高功率的电源设计,例如工业设备和服务器电源。
以上是一些典型的开关电源设计实例,每种设计都有其适用的场合和特点,工程师在实际设计中需要根据具体要求选择合适的设计方案。
希望以上信息能够对你有所帮助。
电路1简单电感量测量装置在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。
该电路以谐振方法测量感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理a)所示。
(电路原理如图1图1简单电感测量装置电路图该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频值,测量精度极高。
率信号,可间接测量待测电感LX的BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。
测量被测电感L XB两点中,然后调节电位器VR1使电路谐振,在MC1648的3时,只需将L X接到图中A、值。
脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出LXπ所以L X=1/4π2f02Cf0=1/2电路谐振频率:LxCC是电位器VR1调定的变容二极管式中谐振频率f0即为MC1648的3脚输出频率值,的电容值,可见要计算L X的值还需先知道C值。
为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
)为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频在µH。
校准时,将RF线圈L0接7(b)所示,该标准线圈电感量为0.44电感线圈L0。
如图6—量图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。
附表给出了实测取样对应关系。
附表Hz)98766253433834振荡频率(二、元器件选择集成电路IC可选择Motoroia公司的VCO(压控振荡器)芯片。
VR1选择多圈高精度电位器。
其它元器件按电路图所示选择即可。
摘要开关电源是应用于广泛领域的一种电力电子装置。
它具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点,在小功率范围内基本取代了线性电源,并迅速想大功率范围推进,在很大程度上取代了晶闸管相控整流电源。
可以说,开关电源技术是目前中小功率直流电能变换装置的主流技术。
本文首先描述了开关电源的发展,对目前出现的几种典型的开关电源技术作了归纳总结和分析比较,在此基础上指出了开关电源技术的发展状况和开关电源产品的发展趋势。
并且对开关电源的发展史、应用范围、主电路的选择、控制方法作了简要的介绍。
在设计中主要采用了脉宽调制(PWM)、全桥整流、自锁保护等技术,应用了控制芯片UC3842做为PWM控制芯片,对变压器次级线圈采用堆叠式绕法,改进光耦反馈电路的选择,使电路能达到所需基本要求同时,力求稳定、高效。
关键字:开关电源,拓扑结构,变压器,正激式AbstractThe switch power supply is a kind of electric power electronics which applies in the extensive realm to be used.It has an electric power conversion's efficiency high, the physical volume is small, the weight is light, the control accuracy is high with fast etc. advantage, within the scope of small power replaced line power supply, and in high-power scope propulsion quickly, to a large extent,it replaced the thyristor phase - controlled rectifying power supply.We can say, the switch power supply technique is the essential technique which wins small electric power transformation of the power direct current to equip currently.This text described the development of switch power supply first, to a few kinds which appear currently typical model of the switch power supply technique made to induce summary and analysis comparison, pointing out the development trend of the technical development condition of the switch power supply and switch power supply product on this foundation.And introduce the switch power supply’s phylogeny,application, main electric circuit of power supply and controled a method. The design adopted PWM, the whole bridgeses commutated, lock protection etc. technique, applied control the chip UC3842 to be used as PWM control chip, the transformer adoprt adopt pile circle, improve the choice of the electric circuit, make the electric circuit be able to attain need basic request in the meantime, try hard for stability, efficiently.Key words:Switch power supply,topology,transform,Forward目录摘要 (I)Abstract ............................................................................................................................................ I I 目录 .. (III)1 绪论 (1)1.1 引言 (1)1.2 开关电源的发展历史 (1)1.2.1 国外发展历史 (1)1.2.2 国内发展状况 (2)1.3 目前需要克服的困难 (2)1.4 开关电源的发展趋势 (3)1.5 本文的设计要求 (4)2 开关电源的工作原理 (6)2.1 开关电源的基本构成 (6)2.2 开关电源常用的拓扑结构分析 (6)2.2.1 降压型 (6)2.2.2 升压型 (7)2.2.3 升降压型 (8)2.2.4 反激式 (9)2.2.5 正激式 (11)2.2.6 推挽式 (12)2.3 拓扑结构的确定 (13)3. 基于UC3842的开关电源的设计与实现 (14)3.1 开关电源电路的设计 (14)3.1.1 开关电源电路的总体简介 (14)3.1.2 基于UC3842的基本结构 (14)3.1.3 各部分功能简介 (14)3.2 UC3842芯片简介 (15)3.2.1 UC3842的特点 (15)3.2.2内部结构和引脚图 (16)3.2.3 引脚功能 (16)3.2.4 芯片工作原理 (17)3.3 各部分回路设计 (18)3.3.1 主回路的设计 (18)3.3.2 控制保护回路的设计 (21)3.3.3 反馈电路的设计 (23)3.4 外围主要器件的选取 (23)4. 开关电源变压器的设计 (28)4.1 与变压器相关的一些基本概念 (28)4.2 变压器用料介绍 (30)4.3 高频变压器的设计 (32)4.4 变压器的绕制方法 (35)结论 (38)致谢 (39)参考文献 (40)附录总原理图 (41)1 绪论1.1 引言电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入 90 年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
电工实习经验分享电路设计与分析的实际应用案例解析电工实习经验分享:电路设计与分析的实际应用案例解析作为一名电工专业的学生,通过实习项目的参与,我有幸学习并参与了电路设计与分析的实际应用。
在这篇文章中,我将分享我在实习过程中遇到的一些案例,以及对这些案例的分析和解决方案。
案例一:短路导致的电路故障在一次实习中,我遇到了一个电路故障,表现为电路短路,导致整个电路无法正常工作。
首先,我检查了电路连接是否良好,发现并没有松动的地方。
于是我利用万用表对电路的各个部分进行了连线测试,最终找到了短路的位置。
原来,该电路中的一条电线在布线过程中出现了损伤,导致与其他线路短路。
我随后更换了这条电线,问题得到了解决。
通过这个案例,我深刻体会到了电路设计与分析的重要性。
在实际工作中,我们必须仔细检查和测试每一条线路,确保其完好无损。
短路问题可能会带来严重的后果,因此对电路的设计和分析必须要慎之又慎。
案例二:电路电流过载导致设备损坏在另一次实习中,我遇到了一个常见的问题,即电路电流过载导致设备损坏。
起初,电路的负载过大,电流超过了所能承受的范围,导致设备无法正常工作。
为了解决这个问题,我通过计算和测量电流,确定了电路承受的最大电流,并对电路进行了升级改造。
我使用更大功率的元件来替换原有的元件,确保电路能够承受更大的负载。
通过这个改造,电路的性能得到了提升,设备也能正常运行。
这个案例让我认识到,电路设计时必须合理评估和考虑电流的负载情况。
过载问题会导致设备受损,甚至会引发火灾等安全事故。
因此,在电路设计阶段,我们必须充分考虑电流的承受能力,并在实际应用中及时监测和调整。
总结通过以上两个案例的分析和解决方案,我们可以看到电路设计与分析在实际应用中的重要性。
良好的电路设计能够确保电路的正常工作,避免各种故障和危险。
而对电路的分析和解决方案的制定,则需要我们对电路原理和电子元器件有深入的理解和掌握。
在实习过程中,我收获了很多关于电路设计与分析的经验和知识。
开关电源电路设计实例分析(设计流程)1. 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33 为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm2)B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40 为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
设计流程简介3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
电源电路设计分析实例(经典分析)众所皆知,电源电路设计,乃是在整体电路设计中最基础的必备功夫,因此,在接下来的文章中,将会针对实体电源电路设计的案例做基本的探讨。
电源device电路※输出电压可变的基准电源电路(特征:使用专用IC基准电源电路)图1是分流基准(shunt regulator)IC构成的基准电源电路,本电路可以利用外置电阻Vr1与R3的设定,使输出电压在+2.5V-5V范围内变化,输出电压Vout可利用下式求得:----------------------(1)Vref:内部的基准电压。
图中的TL431是TI的编号,NEC的编号是μPC1093,新日本无线电的编号是NJM2380,日立的编号是HA17431,东芝的编号是TA76431。
※输出电压可变的高精度基准电源电路(特征:高精度、电压可变)类似REF-02C属于高精度、输出电压不可变的基准电源IC,因此设计上必需追加图2的OP增幅IC,利用该IC的gain使输出电压变成可变,它的电压变化范围为+5-+10V。
※利用单电源制作正负电压同时站立的电源电路(特征:正负电压同时站立)虽然电池device的电源单元,通常是由电池构成单电源电路,不过某些情况要求电源电路具备负电源电压。
图3的电源电路可输出由单电源送出的稳定化正、负电源,一般这类型的电源电路是以正电压当作基准再产生负电压,因此负电压的站立较缓慢,不过图3的电源电路正、负电压却可以同时站立,图4中的TPS60403 IC可使输入的电压极性反转。
※40V最大输出电压的Serial Regulator(特征:可以输出三端子Regulator IC无法提供的高电压)虽然三端子Regulator IC的输出电压大约是24V,不过若超过该电压时电路设计上必需与IC以disk lead等组件整合。
图5的Serial Regulator最大可以输出+40V 的电压,图中D2 Zener二极管的输出电压被设定成一半左右,再用R7 VR1 R8 将输出电压分压,使该电压能与VZ2 的电压一致藉此才能决定定数。
必需注意的是R7 R8 若太大的话,会引发输出电压噪声上升与波动等问题;反R7 R8之若太小的话,会有发热耗损电力之虞,因此一般以R7 R8 2-5K 比较合适。
※输出电压为40-80的Serial Regulator(特征:利用disk lead组件输出高电压)图6是可以输出电压为40-80 的Serial Regulator,由于本电路的输出电压非常高,因此无法使用OP增幅IC。
图中的VCEO是利用120V的2SC2240-GR构成误差增幅器。
此外本电路还追加TR5 与Cascode增幅器,藉此改善误差增幅器的频率特性。
2SK373-Y是VDS="100V的FET",它可以构成高耐压的定电流电源。
除了FET之外还可以使用最大使用电压为100V ,定格电力为300MW ,石冢电子的定电流二极管E-202。
※输出电压为150V的高电压Serial Regulator(特征:设有输出短路保护电路)如图7所示本Serial Regulator的base的共通增幅电路与OP增幅器输出端连接,因此可以输出高电压。
如果输出发生短路的话,TR3 的保护电路就会动作,TR3将流入120MA 限制在范围内,此时输入电压会施加至TR2的drain与source之间,所以会有20W 左右的损失。
※输出电压为400V 的高电压Serial Regulator(特征:设有输出短路保护电路)如图8所示误差增幅器的基准电位与输出电位连接,形成浮动增幅型Serial Regulator。
虽然电源变压器(transistor)必需使用误差增幅器专用的绕线,不过误差增幅器是由OP 增幅器构成,因此非常适用于高电压Regulator。
此外为避免输出短路时的大电力损失,因此保护电路具备倒V型特性。
※TO-220封装的非绝缘型Step Down Converter(特征:无封装面积变大之虞,可将线性电源变成switching电源)三端子Regulator的损失若超过3W 时,冷却片的面积会变得非常大,因此必需改用非线性而且效率极高较不易发热的switching type DC-DC Converter,不过实际上由于DC-DC Converter使用的组件数量非常多,因此有可能造成封装面积过大等问题。
如图9所示若使用与三端子Regulator同级的T0-220封装控制IC,就能获得输入电压为8-24V ,输出5V,电流为3.5A 的Step Down Converter。
这种Converter最大特征是结构简单动作稳定,而且使用组件的数量非常少,因此不需刻意变更印刷电路板的pattern,或是担心封装面积变大等困扰,虽然价格稍为偏高不过Serial Regulator几乎网罗所有的规格。
本电路是由外置的二极管(diode)、电容、线圈,以及设定电压的电阻所构成,只有电容比较特殊必需使用switching电源专用低阻抗(impedance)type。
PQ1CG系列的产品几乎函盖拥所有电压、电流规格,从2.5V 低输出电压到5A以下机型一应具全而且都已经商品化。
表1是TO-220封装非绝缘型Step Down Converter IC的规格一览,表中的PQ1CG3032FZ第五根脚兼具soft start与ON/OFF功能,因此使用上非常方便。
:VODJ输出电压调整端子;feedback:输出归返(return)端子VC;:位相补偿用端子ON/OFF:standby端子;:输入端子VIN;:输出端子VOUT;NS:国家半导体。
表1 T0-220封装的DC-DC Converter控制IC的规格※寻址Step Down Converter(特征:IC容易取得价格低廉)图10使用历史相当长久的Step Down Converter控制IC,它的输入电压为8-16V ,输出电压为5V 600MA。
本Converter最大特点是价格低廉容易取得。
图中的MC34063(On Semiconductor Co)动作频率被设为45KHZ ,因此线圈与电容器的外形可能会变大,不过只要印刷pattern设计得宜的话,上述问题对动作上尚不致构成困扰。
必须注意的是类似新日本无线的NJM2360与NJM2374A,虽然是特性相同的IC,不过结构上却不相同,只有国家半导体的LM2574N-ADJ与Sunken的SAI01是寻址Step Down Converter用IC。
※On Board电源用Step Down Converter(特征:封装面积小,操作简易的DC-DC Converter)图11是利用寻址控制IC构成封装面积很小的Step Down Converter,它的输入电压为6-16V ,输出电压为5V 450MA。
图中的MAX738 IC为8pin的DIP封装,输入端的积层陶瓷电容C2 必需贴近IC的lead 否则无法顺利动作。
本IC的动作频率为160-170KHZ 左右,因此周边的被动组件可以使用lead type。
电容的等价串联阻抗必需使用低于0.5欧的type;线圈的inductance为100UH 或是33UH。
※效率95%的超小型Step Down Converter(特征:由5*5MM 的控制IC构成)如图12所示超小型Step Down Converter,是由外型尺寸为5*5MM 的IC与数个外置组件构成,本电路内建两个power MOSFET属于同步整流type,它可以利用FBSEL端子的设定,使输出电压VOUT 作1.5 1.8 2.5V 三种切换。
※可输出5-10V 低噪讯DC-DC Converter(特征:适用于电池device等模拟电路电源)电池device的单电源,经常被要求必需能够提供OP增幅器的数个模拟电路正、电源,由于电流值相当低因此使用的组件数量相对很少。
图13是输入电压为5V ,输出电压为10V 的DC-DC Converter,图中的MAX865是8 pin的μMAX封装内建CMOS charge pump 的控制IC,它只要四个外置电容就可以1.5-6V输入电源,制作两倍的正负电压,由于本电路未使用线圈,所以峰值电位(spike)的噪讯(noise)非常低。
charge pump的电容C1 C2 必需使用低等价串联阻抗,耐压超过16V 以上的电容组件,因为加大容量时可以降低波动(ripple)电压提高效率。
根据规格书(datasheet)的记载MAX865内部的输出阻抗,分别是正电压端为90欧,负输出为160欧(输入为5V 时)。
若流入5MA的负载电流时,正电压端会产生0.45V 的电压下降,负电压端则产生0.8V 的电压下降,要求无电压变动的电路可以采用MAX865并联连接,或是改用MAX743 type。
此外V- 电路的负载电流较大时,基于保护电路等考虑,可以将shot key barrier二极管连接于V- 端子与GND 端子(第4 pin)之间。
※可输出+5-- --5V 的DC-DC Converter(特征:可辅助正电源系统得负电源需求)小型量测设备经常会有负电源需求,如果不需大电流容量时,可以使用charge pump的极性反转Converter。
图14的DC-DC Converter可以使5V 的极性反转,同时输入–5V 50MA的电力,图中的MAX860是8 pin表面封装type控制IC;表2是表面封装type控制IC的规格一览。
上述Converter的动作频率可设定成6K 50K 130K 三种形式,无小型化要求时可将VC端子与输出端连接设定成130K ,同时使用低容量的小型电容。
图14的设定值为50KHZ ,输入电压范围为1.5-5V ,输出阻抗为12,最大负载电流为50。
如果希望利用负载降低电压时,可将MAX860并联连接。
表2 极性反转型Step Down Converter控制IC的规格※可使电池电压上升的Step Up Converter(特征:电池能量100%发挥)使用二次电池驱动的可携式电子产品,要求即使电池电压下降亦能长时间动作,因此出现可将5V 的电池电压Step Up,输出200MA 的Converter(图15)。
如表3所示具备上述功能的IC种类非常多,由于这类IC大多具有shut down端子(pin),因此可用logic level 控制输出的ON/OFF。
此外即使shut down输出与输入也不会连通线圈,使得输入电压(电池电压)直接被输出。
要求大电流的场合(case)建议改用流入线圈的峰值电流极小,而且又是固定频率的PWM type MAX1700 IC。