有关开关电源设计中遇到的问题经验所谈(共五则范文)
- 格式:docx
- 大小:66.74 KB
- 文档页数:42
电子工程师谈开关电源设计心得随着科技的发展,现代电子产品越来越普及,而开关电源作为重要的组成部分,也越来越受到人们的关注。
作为电子工程师,设计开关电源是我们日常工作中必不可少的任务。
在这篇文章中,我将分享我的一些开关电源设计心得,以及一些常见的问题和解决方法。
1. 确定电源输出功率和负载特性在设计开关电源之前,我们需要了解电源输出功率的要求以及负载的特性。
输出功率应该足够满足负载的需求,同时也不能过高造成电源的浪费。
负载特性会影响到电源的稳定性和效率,因此我们需要了解负载的电流和电压变化情况,以便选择合适的拓扑结构和元件。
2. 选择合适的拓扑结构开关电源的拓扑结构有很多种,比如反激式、前级反激式、升压式、降压式等。
选择合适的拓扑结构是很关键的,它会影响到电源的效率、稳定性和成本。
一般来说,在功率较小的情况下,反激式和前级反激式是比较常见的选择。
在功率较大的情况下,升压式和降压式则更加适用。
3. 选择合适的开关管和电感开关管和电感是开关电源中最重要的两个元件。
开关管的选择要考虑到其导通电阻和反向恢复时间等因素,同时还要考虑其承受电压、功率和温度等方面的限制。
电感的选择要考虑到其电流饱和电感、磁饱和电感、漏感等方面的特性,以便保证电源的效率和稳定性。
4. 噪声的处理开关电源中噪声问题是比较常见的,主要来自于开关管的开关瞬间和电感中的漏感。
我们可以采用一些方法来降低噪声,比如在开关管上加入补偿电容、在电感上加入绕组屏蔽等。
同时也可以采用滤波电路或者使用隔离变压器来降低噪声。
5.保护电路的设计在实际应用中,开关电源还需要考虑到一些保护电路的设计,以避免电路出现异常情况时对负载或者电源本身造成损害。
比如过流保护、过压保护、过温保护等都是比较常见的保护电路。
总之,开关电源的设计是一项包罗万象的工作,需要我们考虑到很多因素,从而制定出一套完整的解决方案。
希望我分享的几点心得能对大家在开关电源设计方面有所启发。
问题一:我们小功率用到最多的反激电源,为什么我们常常选择65K或者100K作为开关频率?有哪些原因制约了?或者哪些情况下我们可以增大开关频率?或者减小开关频率?开关电源为什么常常选择65K或者100K作为开关频率,有的人会说IC厂家都是生产这样的IC,当然这也有原因。
每个电源的开关频率会决定什么?应该从这里去思考原因。
还会有人说频率高了EMC不好过,一般来说是这样,但这不是必然,EMC与频率有关系,但不是必然。
想象我们的电源开关频率提高了,直接带来的影响是什么?当然是MOS开关损耗增大,因为单位时间开关次数增多了。
如果频率减小了会带来什么?开关损耗是减小了,但是我们的储能器件单周期提供的能量就要增多,势必需要的变压器磁性要更大,储能电感要更大了。
选取在65K到100K就是一个比较合适的经验折中,电源就是在折中合理化折中进行。
假如在特殊情形下,输入电压比较低,开关损耗已经很小了,不在乎这点开关损耗吗,那我们就可以提高开关频率,起到减小磁性器件体积的目的。
问题二:LLC中为什么我们常在二区设计开关频率?一区和三区为什么不可以?有哪些因素制约呢?或者如果选取一区和三区作为开关频率会有什么后果呢?LLC的原理是利用感性负载随开关频率的增大而感抗增大,来进行调节输出电压的,也就是PFM调制。
并且MOS管开通损耗ZVS比ZCS小,一区是容性负载区,自然不可取。
那么三区,开关频率大于谐振频率,这个仍是感性负载区,按道理MOS实现ZVS没有问题,确实如此。
但是我们不能忽略副边的输出二极管关断。
也就是原边MOS管关断时,谐振电流并没有减小到和励磁电流相等,实现副边整流二极管软关断。
这也是我们通常也不选择三区的原因。
我们不能只按前人的经验去设计,而要知道只所以这样设计是有其必然的道理的!调节K值控制好轻载到满载开关频率变化范围满足达到二区的条件。
K值越小开关频率变化范围越小,当然效率也会低些,这需要折中考虑!一般K值在3到7也是这个原因。
开关电源心得体会开关电源心得体会开关电源是现代电子设备中常见的一种电源类型,它能够将交流电转换为直流电,并且具有高效能、小体积、轻质、稳定性好等特点,因此广泛应用于电子产品、通信设备、计算机等领域。
在我的学习和实践中,我对开关电源有了更深入的了解,并从中获取了一些心得体会。
首先,在学习开关电源的过程中,我深刻认识到了学习的重要性。
开关电源作为一种复杂的电子器件,需要我们具备扎实的电子基础知识和相关的工程技术。
通过参与学校的课程学习以及与专业教师的交流讨论,我逐渐掌握了开关电源的基本原理和设计方法。
同时,我积极参与实际线路的搭建与调试,通过实践不断提高自己的动手能力和解决问题的能力。
通过不断学习和实践,我深刻认识到只有通过扎实的学习和实践,才能真正掌握开关电源的设计与应用。
其次,在实践过程中,我体会到了坚持不懈的重要性。
开关电源设计与调试是一个反复试错的过程,往往需要不断调整参数和检查电路,才能达到理想的效果。
在实践中,我遇到了许多困难和挫折,但我没有放弃,坚持不懈地尝试和改进。
我通过不断总结和分析,找到了问题所在,并采取相应的措施解决。
这种坚持不懈的态度不仅帮助我克服了困难,还培养了我的毅力和耐心,提高了自己的工作效率。
另外,我在开关电源的实践中也深刻意识到了安全意识的重要性。
开关电源工作时会产生高电压、大电流等危险因素,一旦操作不当就可能造成电击、短路等安全事故。
因此,我在操作过程中时刻保持警惕,按照操作规程进行,并且保持仪器设备的良好状态,以确保自己和他人的安全。
同时,我也将这种安全意识扩展到工作中的其他方面,遵守相关的安全操作规程,保证自己和同事的安全。
最后,通过学习和实践,我还认识到了团队合作的重要性。
在实践中,我与同学们一起合作完成了一些开关电源相关的实验和项目。
通过与他们的合作,我学会了与人沟通、协调和分工合作。
每个人都有自己的长处和不足,通过相互交流和合作,我们互相学习,共同进步。
在开关电源中遇到的问题及相应解决办法集合(3)
项目:UC3845双管反激
现象:驱动不稳定,不停的抖动,变压器滋滋叫。
调节环路毫无用处,用示波器察看uc3845振荡脚的锯齿波形,发现锯齿波的频率有抖动。
UC3845是固定频率的,看来有干扰了。
解决办法:把控制电路的地和功率地严格分开,然后的单点连接。
驱动信号稳定,频率固定,变压器不叫了。
但是可恶的是,传导居然变差了。
可能传说中的频率抖动,的确对传导有好处。
分析:layout在电源设计中很重要,特别是地的布局,功率地和信号地分开,并且单点接地。
就是避免高频功率电流流过信号地平面,不然会干扰控制电路。
IC的地和,MOS的地肯定要严格分开,然后单点接。
辅助绕组是给IC供电的,所以辅助绕组的滤波电容的地要独立形成,然后和信号地单点接地。
这样,辅助绕组上的高频电流会被电容吸收而不至于串到信号地上去。
项目:UCC3895电流型控制移相控制全桥,加倍流整流
现象:变压器出现偏磁
解决办法:把次级功率电路的一根PCB功率走线加粗。
该PCB走线连接的是倍流整流电路的某一个电感。
偏磁消失~~~~
分析:倍流整流电路有个特有的问题,就是两个电感上的平均电流会不一致,如果采用电流型控制的话,控制信号会保证变压器初级的正负电流峰值相同,那幺如果变压器次级的正负电流不一致的话,就会导致偏磁出现。
而电感平均电流不一致,是因为两个电感的直流阻抗有差异。
但实际上,。
开关电源设计毕业论文一、内容综述随着科技的飞速发展,开关电源设计已成为现代电子设备不可或缺的一环。
本文将带你走进开关电源设计的世界,一探其奥妙和实用之处。
在这里我们不仅仅是研究技术,更是在寻找实用性和性能之间的平衡。
我们所关心的不仅是理论数据,更是其在现实应用中的表现。
首先我们要了解开关电源设计的基本概念和原理,了解电源在电子设备中的角色和功能后,我们就会知道电源不仅仅是设备运行的能源供应者,更是整个设备稳定性的关键。
开关电源设计就是在这个基础上,通过技术和创新来提升电源的性能和效率。
1. 开关电源的背景和意义开关电源在我们的日常生活中可以说是无处不在,从家庭电器的使用到工业设备的运行,再到数据中心的高效运作,开关电源都是不可或缺的重要角色。
为什么我们会对开关电源的研究这么重视呢?这里面可是有深意的,听我慢慢道来。
2. 开关电源设计的研究现状和发展趋势开关电源设计在现代电子领域可是风头正劲的话题,大家都知道,开关电源是我们生活中电子产品的心脏,它不断地为我们身边的电子设备输送“能量”。
那么现在开关电源设计的研究现状是怎样的呢?随着科技的飞速发展,开关电源设计技术也在不断进步。
虽然传统的开关电源设计已经能满足一些基本需求,但随着人们对电子设备性能要求的提高,新的技术和方法也在不断涌现。
例如智能化、小型化、高效化已成为当下开关电源设计的重要方向。
3. 论文研究的目的、内容和方法首先写这篇论文的目的,就是想通过研究和设计开关电源,解决现实中遇到的一些问题,比如电源效率不高、稳定性不好等等。
毕竟开关电源在我们的日常生活中应用广泛,涉及到很多领域,比如计算机、通信、家电等等。
所以研究开关电源设计,不仅具有理论价值,还有很大的实际意义。
那么我们研究的内容是什么呢?简单来说就是分析开关电源的工作原理,研究其设计过程,然后设计出一个既实用又高效的开关电源。
在这个过程中,我们还要研究不同材料的选用、电路设计、散热方案等等。
2008.No562摘要:开关电源在电子电器产品中的应用是十分广泛的,本文以开关电源在彩色电视机中的应用为蓝本,谈谈开关电源特点和存在的问题,以及目前电子技术中的解决方案,希引起同行的共鸣。
关键词: 开关电源 耗能 稳压电源 频率 脉冲 集成电路 瞬态特性一、开关电源特点传统的耗能式稳压电源,实际上是通过串联或并联于负载电路中的耗能元器件,以改变其能耗大小稳定负载的电压。
当负载电压升高时,耗能电路等效电阻增大,使负载上电压降低;相反,当负载电压降低时则减小电阻耗能,提高负载电压。
因为在稳压范围内,耗能电路工作在线性区,其压降在此范围内正比于输入电压的升高,反比于负载电流的增大或减小,所以又称为线性稳压电源,或者相对于目前的数字电路,也可称其为模拟稳压电源。
耗能式稳压电源的耗能是必须的、不可避免的,因为其稳压过程是通过耗能大小实现的。
正因为如此,这种稳压器稳压范围越宽,输入/输出压差越大,耗能也就越大,这是显而易见的。
220V市电整流后输出300V的直流电,想经此类稳压器输出稳定的5V、12V低压直流电是不可能的事。
耗能型低压输出稳压器必须与工频变压器配套使用,造成稳压器体积、重量增大,同时还增加了额外损耗(变压器的铜损和铁损)。
开关稳压器的出现,彻底改变了稳压器的稳压概念。
顾名思义,开关稳压器是通过开关动作,使连续的直流电变成间断供电的脉冲,再通过储能滤波元件,将不连续的脉冲变成连续的直流电。
只要控制开/关的时间比即可改变输电电压,再通过输出电压的变化控制开/关动作时间,即可使输出电压稳定。
很明显,如果此过程中开/关具有理想特性,应该没有损耗,开关时间比的变化范围可以很大。
因此,开关稳压器直接将300V直流电压输出5V也是可能的,省去了工频变压器,这是开关电源的最大优点之一。
目前的开关电源最高效率已达到95%,功率体积比达到3.2W/cm3,与同输出功率的耗能式稳压器比较,有色金属材料的耗用量降低90%以上.目前开关电源种类极多,性能差距极大,但各有优势和专用领域,所以很难在具体数据上与耗能稳压器进行比较。
开关电源设计开发存在的问题开关电源设计开发存在的问题一、电磁干扰问题:在之前的几篇文章有相关介绍了,在此不重复。
二、效率与功率因数问题:开关电源的特点是轻、小、高效率、高功率密度。
开关电源的外形可以短、薄。
最近有人在研究变压器折叠式绕组,其目的是提高功率密度,实现特定要求,满足各种需要。
开关电源效率较高时,损耗就很低,只有这样的开关电源才具有高功率密度。
高效率是由多种因素决定的,最主要的因素是安全。
只有彻底掌握开关电源的理论知识,具有丰富的工作经验,对开关电源进行精心设计、认真实验,并借助于优化设计和仿真设计,才能制造出优质的、高品位的开关电源。
一般开关电源的滤波电路是由单电容和电感组成的,由此引发出开关电源功率因数低的问题,原因是只有在正弦交流电压的瞬时值高于直流电压时,电网电压才对滤波电容充电,充电时间短,充电电流是尖峰状,偏离了正弦波。
有源功率因数校正器以反激式为基本电路,采用双环控制调节占空比使电路输出电压稳定,使输入电流紧随输入电压变化,功率因数达到或接近1的水平,效果非常明显。
随着开关电源的新技术不断取得进步,现在开关电源已经取得晶闸管整流电源,作为基础电源的48V、24V直流电源给电信通信系统带来了极大的经济效益和社会效益。
电信通信系统容量大,一般为几千安甚至上万安培的电流,而且机房无人值守。
这种大容量电源一般由几十个千瓦级别的开关电源模块并联才能满足要求,而且每个电源模块必须向控制系统提供电压、电流、温度、工作状态(运行、故障、均流)等方面的信息。
不但如此,每个电源模块还必须能够接收控制系统的遥控指令,这就是所说的智能化高可靠性开关电源模块,这些电源模块还必须具有高功率因数。
三、器件原材料问题:目前,市场上常用的电源控制IC集成电路有很多,品种也不上,但IC的集成度不算高,器件的技术参数分散性比较大,同一个工厂生产的IC它的技术参数相差5%至10%。
能否将有源功率调整、脉宽调制、各种保护、监测、控制集于一体,将振荡变压器、二次整流滤波集于一体;能否将铁氧体磁心变压器实现纳米化平面变压器等等。
开关电源心得开关电源心得[优秀5篇]开关电源心得要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的开关电源心得样本能让你事半功倍,下面分享相关方法经验,供你参考借鉴。
开关电源心得篇1开关电源是一种将交流电转换为直流电的电子设备,在现代电子设备中有着广泛的应用。
开关电源的优点包括高效、可靠、小巧轻便、低纹波、低噪声等,因此在电子设备中得到了广泛应用。
开关电源的工作原理是通过开关管等元件的开关动作,将输入交流电转换为直流电,再通过滤波电路将直流电转换为稳定的直流电。
开关电源的核心部分是控制器,它可以根据输入电压和负载状态的变化,自动调整开关管的开关频率和占空比,从而保证输出电压的稳定。
在实际使用中,开关电源需要注意输入电压和负载状态,避免过载和欠载等情况。
同时,开关电源也需要定期维护和清洁,以保证其正常工作。
总的来说,开关电源是一种高效、可靠、小巧轻便的电子设备,具有低纹波、低噪声等优点,因此在电子设备中得到了广泛应用。
在使用开关电源时,需要注意输入电压和负载状态,定期维护和清洁,以保证其正常工作。
开关电源心得篇2开关电源心得分享1.了解开关电源:开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,达到稳压的目的的电源设备。
2.开关电源的优点:首先,开关电源在体积和重量上优于传统线性电源,同时,其能简化电源设计,有效节省成本和零件空间,并且易于模块化。
3.操作方法:正确的操作开关电源,需要注意合理的设计电路,并科学布线。
同时,应根据具体需求,选择合适的电源功率。
4.维修方法:当开关电源发生故障时,应先断开电源,再检查保险丝和插头,判断故障点。
如果不能解决问题,需要寻求专业人员帮助。
5.调试方法:调试开关电源时,需要检查其输出电压和电流是否符合标准,如果不符合,应调整相关参数,并检查是否存在短路或异常发热等问题。
6.注意事项:在操作开关电源时,需要注意静电和电磁干扰等问题,同时,避免在带电情况下进行操作,以防止损坏电源。
开关电源设计心得体会开关电源设计心得体会一、电路组成及工作原理1、电路组成根据要求,本次设计控制电路形式为反激式,单端反激式电路比正激式开关电源少用一个大储能滤波电感以及一个续流二极管,因此其体积小,且成本低。
此电源设计要采用的是反激式的开关管连接方式,并且开关电源的触发方式是它激式。
电源开关频率的选择决定了变换器如开关损耗、门极驱动损耗、输出整流管的损耗会越来越突出,对磁性材料的选择和参数设计的要求也会越苛刻。
另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性、运行特性以及系统的调试会比较困难。
在本电的特性。
开关频率越高,变压器、电感器的体积越小,电路的动态响应也越好。
但随着频率的提高,诸源中,选定工作频率为100 。
2、工作原理一、开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
二、与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。
脉冲的占空比由开关电源的控制器来调节。
一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。
通过增加变压器的二次绕组数就可以增加输出的电压组数。
最后这些交流波形经过整流滤波后就得到直流输出电压。
如图1.1所示。
三、控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。
也就是说控制器的`功能块、电压参考和误差放大器,可以设计成与线性调节器相同。
他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
四、开关电源有两种主要的工作方式:正激式变换和升压式变换。
开关电源常见故障的分析及维修(论文)开关电源常见故障的分析及维修(论文)摘要:本文主要是针对脉冲宽度调制(PWM)式开关电源常见故障进行分析和维修的。
这类开关电源因其节能,环保,性价比高等优点,很快占领了市场,被广泛的应用于我们的生活中和各行各业中。
但这种开关电源的线路复杂,维修不便,给我们的日常生活和生产带来诸多不便。
因此本文就从这些角度出发,通过分析故障产生的原因以及如何排除故障,进行详细的阐述,希望对我们的日常生活和生产有所帮助。
关键词:开关电源高频变压器 UC3842 PWM前言目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的“线性电源”,很快被人们所接受。
这类开关电源主要是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
本文就针对此类开关电源进行详细的阐述其原理,常见故障分析以及维修方法。
开关电源的概述及工作原理1.1开关电源的概述开关电源是一种电源转换电路,一般是将交流电(AC)转换成不同电压的直流电(DC),且电压非常平稳。
因开关电源中的开关管(IGBT)总是工作在“开”和“关”的工作状态,所以叫开关电源。
它与传统的线性电源相比无论是在工作程式上还是在各方面的性能上都有了质的飞跃。
传统的线性电源工作程式一般可归纳为:变压器降压,二极管桥式整流,大容量电解电容滤波,稳压电路或专用稳压IC稳压。
而开关电源则不同,它的工作程式一般可归纳为:高压大电流二极管桥式整流,大容量电解电容滤波,中间控制高频变换环节,整流,滤波,稳压及反馈环节,保护环节等。
开关电源维修通用六篇开关电源是现代电子设备的重要组成部分,广泛应用于计算机、通信、科研、医疗、工业自动化等领域。
本文将按照故障分类,介绍开关电源维修的六个通用方法。
1. 故障现象:开关电源不能启动当开关电源不能启动时,可能是电源负载过大,电压输入异常,内部元器件损坏等原因所导致。
我们可以采用以下方法进行检修:1) 检查负载电流是否超过额定值,如过载应立即停电并更换高功率电源。
2) 检查输入电压是否正常,若不正常应及时更换或修复输入线路。
3) 检查输出电路是否短路或开路,按照电路分析结果更换元器件。
2. 故障现象:开关电源输出电压不稳定当开关电源输出电压不稳定时,可能是反馈电路故障、输出电感电阻增大等原因所导致。
我们可以采用以下方法进行检修:1) 检查反馈电路元件是否正常,如有异常需更换。
2) 检查输出电感电阻是否增大,如电阻值偏大需更换。
3) 检查开关管是否正常,如有损坏需更换或修复。
3. 故障现象:开关电源输出电压为零当开关电源输出电压为零时,可能是输出端短路,保护电路故障等原因所导致。
我们可以采用以下方法进行检修:1) 检查输出端是否短路,如有短路需消除短路障碍物。
2) 检查保护电路是否正常,如有异常需检查并更换保护元件。
3) 检查开关管是否正常,如有损坏需更换或修复。
4. 故障现象:开关电源开关频繁断电当开关电源开关频繁断电时,可能是过流保护触发、开关管温度过高导致自保护、电源输出电压异常等原因所导致。
我们可以采用以下方法进行检修:1) 检查过流保护元件是否正常,如过流保护元件损坏需更换。
2) 检查开关管是否发热异常,如发热需检查散热器和风扇的是否正常工作。
3) 检查输出电压是否异常,如异常需检查输出电路并更换故障元件。
5. 故障现象:开关电源噪音大开关电源噪音大可能是输出电容值不合适、开关频率过高、电源变压器有振铃等原因所导致。
我们可以采用以下方法进行检修:1) 检查输出电容是否合适,如果超出范围则更换电容。
电源开发总结与反思范文摘要:一、引言二、电源开发过程中的问题及反思1.技术难题2.团队协作与沟通3.项目进度管理4.资源分配与利用三、电源开发的经验与收获1.技术创新与突破2.团队建设与成长3.项目管理与执行力提升4.供应链管理与成本控制四、未来展望与建议1.市场趋势与技术发展方向2.产品创新与竞争力提升3.团队协作与沟通优化4.项目管理与风险防范五、结语正文:一、引言随着科技的飞速发展,电子产品日益普及,电源开发成为了电子行业竞争的关键环节。
本文将对电源开发项目进行总结与反思,以期为今后的工作提供借鉴和改进的方向。
二、电源开发过程中的问题及反思1.技术难题在电源开发过程中,我们遇到了不少技术难题,如电路设计、元器件选型、电磁兼容等。
为解决这些问题,我们加强了与行业专家的交流与合作,积极参加相关技术研讨会,不断学习新知识,提高自身技术水平。
2.团队协作与沟通项目团队间的协作与沟通对项目成功至关重要。
在项目实施过程中,我们采取定期召开项目会议、设立项目进度汇报制度等方式,确保团队成员之间的信息传递畅通。
同时,我们注重培养团队成员的团队精神,鼓励相互支持、共同进步。
3.项目进度管理项目进度管理是保证项目按计划推进的关键。
在项目实施过程中,我们采用项目进度计划软件,对各阶段任务进行细化,确保项目进度受控。
同时,我们对可能出现的风险进行评估,并制定相应的应对措施。
4.资源分配与利用合理分配和利用资源对项目成功至关重要。
我们根据项目需求,对人力资源、物资资源、时间资源等进行合理分配,确保各项任务有序推进。
同时,我们积极寻求合作伙伴,充分利用外部资源,提高项目实施效果。
三、电源开发的经验与收获1.技术创新与突破在项目实施过程中,我们不断进行技术创新,成功解决了多项技术难题,使产品性能得到提升。
同时,我们关注行业发展动态,紧跟市场步伐,确保产品具有竞争力。
2.团队建设与成长项目的成功实施离不开团队的共同努力。
开关电源设计范文开关电源是一种广泛应用于电子产品中的电源设计,它具有高效率、小尺寸、轻重量和稳定性好等优点,因此得到了广泛的应用。
开关电源的设计需要考虑到很多因素,例如输入输出电压、功率需求、负载能力、效率、稳定性等等。
下面我将详细介绍开关电源的设计过程。
首先是确定输入输出电压。
输入电压通常是交流电压,而输出电压则需要根据应用的需要确定。
在确定输出电压时,需要考虑到负载的需要和电子部件的要求。
接下来是确定功率需求。
功率需求是指电源需要提供的电能,它可以通过负载电流和输出电压来计算得到。
根据功率需求的大小,可以选择适合的开关电源方案。
然后是确定负载能力。
负载能力是指开关电源能够提供的最大负载电流。
在设计时必须确保开关电源能够满足负载的需求,以保证正常工作。
接着是考虑电源的效率。
效率是指开关电源的输出功率与输入功率之间的比值。
高效率可以减少能源的浪费,提高系统的稳定性。
最后是确保电源的稳定性。
稳定性是指开关电源输出电压在负载变化或环境变化时的稳定性。
开关电源的稳定性可以通过控制电流的反馈回路来实现。
在进行开关电源设计时,还需要考虑到如过流保护、过电压保护、过温保护等安全措施,以保证电源的稳定性和可靠性。
在具体设计过程中,还需要选择适合的开关元件,例如开关管、二极管、电感等。
同时还需要选择合适的控制电路,以实现开关动作和电流的控制。
在完成设计后,还需要进行电路模拟和实验验证。
通过模拟可以评估电路的性能和稳定性。
实验验证可以验证电路设计的正确性,并进行优化和改进。
综上所述,开关电源设计是一个复杂且细致的工作,需要考虑到很多因素。
通过合理的选择和设计,可以得到高效率、稳定性好的开关电源。
开关电源的设计过程需要经验和技术的累积,但同时也是一个有挑战和创新的过程。
在开关电源应用中,可能会遇到以下一些常见的问题:
1.噪音:开关电源工作时会产生高频噪音。
如果噪音干扰其他设备或导致电磁干扰问题,
可以采取隔离措施、使用滤波器或选择低噪音开关电源来解决。
2.温度过高:如果开关电源长时间工作温度过高,可能存在散热不良、负载过大或环境温
度过高等问题。
应确保适当的散热和通风,并检查负载是否超出额定范围。
3.电压波动:当负载变化较大时,开关电源输出的电压可能会有波动。
这可能导致被供电
设备异常工作或损坏。
合适的稳压电路和反馈机制可以帮助稳定输出电压。
4.开启和关闭过程中的尖峰电流:开关电源在启动或关闭时,可能会产生较大的尖峰电流,
对输入电源和其他设备造成压力。
合适的软启动和过流保护措施可以缓解这个问题。
5.效率问题:开关电源的转换效率是其性能的重要指标。
低效率会导致能量损耗和发热增
加。
选择高效率的开关电源设计可以减少能源消耗和热量产生。
6.输入电源质量:开关电源对输入电源的稳定性要求较高,如果输入电源存在波动、干扰
或不稳定情况,可能会影响开关电源的工作和输出质量。
使用稳定的电源供应,并考虑使用滤波器来减少电磁干扰。
7.电源保护:开关电源通常需要具备过流保护、过压保护、过热保护等功能,以保护设备
和电源本身免受异常情况的影响。
如果在开关电源应用中遇到问题,建议检查电源和相关电路是否符合设计要求,确保适当的散热和通风条件,并根据具体问题采取相应的解决措施。
如有必要,咨询专业人士或联系电源供应商以获取更多支持。
对开关电源技术发展过程中存在的主要问题探讨20世纪60年代,开关电源的问世,使其逐步取代了线性稳压电源和SCR相控电源。
40多年来,开关电源技术有了飞迅发展和变化,经历了功率半导体器件、高频化和软开关技术、开关电源系统的集成技术三个发展阶段。
自20世纪80年代开始,高频化和软开关技术的开发研究.使功率变换器性能更好、重量更轻、尺寸更小。
高频化和软开关技术是过去20年国际电力电子界研究的热点之一。
20世纪90年代中期,集成电力电子系统和集成电力电子模块(IPEN)技术开始发展,它是当今国际电力电子界亟待解决的新问题之一。
一、功率半导体器件性能1998年,lnfineon公司推出冷MOS管,它采用“超级结”(Super-Junction)结构,故又称超结功率MOSFET。
工作电压600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体器件。
IGBT刚出现时,电压、电流额定值只有600V、25A。
很长一段时间内,耐压水平限于1200V-1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz,40kHz,基于穿通(Pr)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关)。
IGBT的技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。
随着工艺和结构形式的不同,IGBT在20年历史发展进程中,有以下几种类型:穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。
碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体器件。
在开关电源中遇到的问题及相应解决办法集合(1)
项目1:某实验室一台电源坏了,拆开一看,UC3875控制的全桥,需要修理。
现象:初步检查,功率管坏了,由于没有同型号的管子,把所有的管子换成同功率等级的管子。
上电之后,输入电压较低的时候,一切正常。
当输入电压较高的时候,驱动混乱,频率抖动。
解决办法:把功率管的驱动电阻增大,该现象消失,一切正常,电源修好。
分析:新的管子寄生参数和旧管不同,在同样的驱动电路下,开关速度会比较快,导致干扰比较大,在高压的时候,干扰大到影响控制电路的工作。
1、元件焊接要仔细,不能发生虚焊,虚焊非常要命,而且不容易看出来。
方向不能焊反,尤其是二极管的方向。
如果方向反了,会直接导致滤波电解电容加了反压,很危险。
2、如果调试中需要飞线,而且是来回信号线,要把去线和回线绞在一起。
因为如果去线和回线,形成包围面积的话,就相当于一个天线,很容易串入干扰。
3、母线供电不仅要有大的滤波电容,而且要有高频滤波电容。
输出时候的滤波也是一样。
项目2:UC3845双管正激
现象:两个管子关断之后,DS所承受的电压非常悬殊,并非理论上的各自一半。
猜测是MOS的参数不一致导致,把上下管焊下来,交换位置,结果,还是一样。
看来和MOS无关。
解决办法:调节两管驱动,尽量同时关断,情况略有改善,但还是无法平。
3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
3842各脚功能:1. 误差放大输出(输出补偿)3.4伏2. 误差放大器反相输入端(电压反馈)2.4伏3. 电流感应放大器同相输入端(电流检测)0.1伏4. 内接振荡器外接rc(定时)元件1.9伏5. 接地0伏6. 驱动信号输出端 2伏7. 电源供电端、欠压保护端17伏8. 5伏基准电压输出5伏1.2开关电源的工作原理220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。
再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
有关开关电源设计中遇到的问题经验所谈(共五则范文)第一篇:有关开关电源设计中遇到的问题经验所谈借鉴下NXP的这个TEA1832图纸做个说明。
分析里面的电路参数设计与优化并做到认证至量产。
在所有的元器件中尽量选择公司仓库里面的元件,和量大的元件,方便后续降成本拿价格。
贴片电阻采用0603的5%,0805的5%,1%,贴片电容容值越大价格越高,设计时需考虑。
1、输入端,FUSE选择需要考虑到I2T参数。
保险丝的分类,快断,慢断,电流,电压值,保险丝的认证是否齐全。
保险丝前的安规距离2.5mm以上。
设计时尽量放到3mm以上。
需考虑打雷击时,保险丝I2T是否有余量,会不会打挂掉。
2、这个图中可以增加个压敏电阻,一般采用14D471,也有采用561的,直径越大抗浪涌电流越大,也有增强版的10S471,14S471等,一般14D471打1KV,2KV雷击够用了,增加雷击电压就要换成MOV+GDT了。
有必要时,压敏电阻外面包个热缩套管。
3、NTC,这个图中可以增加个NTC,有的客户有限制冷启动浪涌电流不超过60A,30A,NTC的另一个目的还可以在雷击时扛部分电压,减下MOSFET的压力。
选型时注意NTC的电压,电流,温度等参数。
4、共模电感,传导与辐射很重要的一个滤波元件,共模电感有环形的高导材料5K,7K,0K,12K,15K,常用绕法有分槽绕,并绕,蝶形绕法等,还有UU型,分4个槽的ET型。
这个如果能共用老机种的最好,成本考虑,传导辐射测试完成后才能定型。
5、X电容的选择,这个需要与共模电感配合测试传导与辐射才能定容值,一般情况为功率越大X电容越大。
6、如果做认证时有输入L,N的放电时间要求,需要在X电容下放2并2串的电阻给电容放电。
7、桥堆的选择一般需要考虑桥堆能过得浪涌电流,耐压和散热,防止雷击时挂掉。
8、VCC的启动电阻,注意启动电阻的功耗,主要是耐压值,1206的一般耐压200V,0805一般耐压150V,能多留余量比较好。
9、输入滤波电解电容,一般看成本的考虑,输出保持时间的10mS,按照电解电容容值的最小情况80%容值设计,不同厂家和不同的设计经验有点出入,有一点要注意普通的电解电容和扛雷击的电解电容,电解电容的纹波电流关系到电容寿命,这个看品牌和具体的系列了。
10、输入电解电容上有并联一个小瓷片电容,这个平时体现不出来用处,在做传导抗扰度时有效果。
11、RCD吸收部分,R的取值对应MOSFET上的尖峰电压值,如果采用贴片电阻需注意电压降额与功耗。
C一般取102/103 1KV的高压瓷片,整改辐射时也有可能会改为薄膜电容效果好。
D一般用FR107,FR207,整改辐射时也有改为1N4007的情况或者其他的慢管,或者在D上套磁珠(K5A,K5C等材质)。
小功率电源,RC可以采用TVS管替代,如P6KE160等。
12、MOSFET的选择,起机和短路情况需要注意SOA。
高温时的电流降额,低温时的电压降额。
一般600V 2-12A足够用与100W以内的反激,根据成本来权衡选型。
整改辐射时很多方法没有效果的时候,换个MOSFET就过了的情况经常有。
13、MOSFET的驱动电阻一般采用10R+20R,阻值大小对应开关速度,效率,温升。
这个参数需要整改辐射时调整。
14、MOSFET的GATE到SOURCE端需要增加一个10K-100K的电阻放电。
15、MOSFET的SOURCE到GND之间有个Isense电阻,功率尽量选大,尽量采用绕线无感电阻。
功率小,或者有感电阻短路时有遇到过炸机现象。
16、Isense电阻到IC的Isense增加1个RC,取值1K,331,调试时可能有作用,如果采用这个TEA1832电路为参考,增加一个C并联到GND。
17、不同的IC外围引脚参考设计手册即可,根据自己的经验在IC 引脚处放滤波电容。
18、更改前:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。
还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。
变压器一定要验算delta B值,delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)有兴趣验证这个公式可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右。
变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。
18、更改后:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。
还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。
变压器一定要验算delta B值,防止高温时磁芯饱和。
delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)。
(参考TDG公司的磁芯特性(100℃)饱和磁通密度390mT,剩磁55mT,所以ΔB值一般取330mT以内,出现异常情况不饱和,一般取值小于300mT以内。
我之前做反激变压器取值都是小于0.3的)附,学习zhangyiping的经验(所以一般的磁通密度选择1500高斯,变压器小的可以选大一些,变压器大的要选小一些,频彔高的减小频彔低的可以大一些吧。
)变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。
附注:有兴趣验证这个公式的话,可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右(25℃时,饱和磁通密度510mT)。
借鉴TDG的磁芯基本特征图。
19、输出二极管效率要求高时,可以采用超低压降的肖特基二极管,成本要求高时可以用超快恢复二极管。
20、输出二极管并联的RC 用于抑制电压尖峰,同时也对辐射有抑制。
21、光耦与431的配合,光耦的二极管两端可以增加一个1K-3K 左右的电阻,Vout串联到光耦的电阻取值一般在100欧姆-1K之间。
431上的C与RC用于调整环路稳定,动态响应等。
22、Vout的检测电阻需要有1mA左右的电流,电流太小输出误差大,电流太大,影响待机功耗。
23、输出电容选择,输出电容的纹波电流大约等于输出电流,在选择电容时纹波电流放大1.2倍以上考虑。
24、2个输出电容之间可以增加一个小电感,有助于抑制辐射干扰,有了小电感后,第一个输出电容的纹波电流就会比第二个输出电容的纹波电流大很多,所以很多电路里面第一个电容容量大,第二个电容容量较小。
25、输出Vout端可以增加一个共模电感与104电容并联,有助于传导与辐射,还能降低纹波峰峰值。
26、需要做恒流的情况可以采用专业芯片,AP4310或者TSM103等类似芯片做,用431+358都行,注意VCC的电压范围,环路调节也差不多。
27、有多路输出负载情况的话,电源的主反馈电路一定要有固定输出,或者假负载,否则会因为耦合,burst模式等问题导致其他路输出电压不稳定。
28、初级次级的大地之间有接个Y电容,一般容量小于或等于222,则漏电流小于0.25mA,不同的产品认证对漏电流是有要求的,需注意。
算下来这么多,电子元器件基本能定型了,整个初略的BOM可以评审并参考报价了。
BOM中元器件可以多放几个品牌方便核成本。
如客户有特殊要求,可以在电路里面增加功能电路实现。
如不能实现,寻找新的IC来完成,相等功率和频率下,IC的更改对外围器件影响不大。
如客户温度范围的要求比较高,对应元器件的选项需要参考元器件使用温度和降额使用。
原理图定型后就可以开始画PCB了。
1、PCB对应的SCH网络要对应,方便后续更新,花不了多少时间的。
2、PCB的元器件封装,标准库里面的按实际情况需要更改,贴片元件焊盘加大;插件元件的孔径比元件管脚大0.3mm,焊盘直径大于孔0.8mm以上,焊盘大些方便焊接,元器件过波峰焊也容易上锡,PCB厂家做出来也不容易破孔。
还有很多细节的东西多了解些对生产是很大的功劳啊。
3、安规的要求在PCB上的体现,保险丝的安规输入到输出距离3mm以上,保险丝带型号需要印在PCB上。
PCB的板材也有不同的安规要求,对应需要做的认证与供应商沟通能否满足要求。
相应的认证编号需印到PCB上。
初级到次级的距离8mm以上,Y电容注意选择Y1还是Y2的,跨距也要求8mm以上,变压器的初级与次级,用挡墙或者次级用三层绝缘线飞线等方法做爬电距离。
4、桥堆前L,N走线距离2.5mm以上,桥堆后高压+,-距离2.5mm以上。
走线为大电流回路先走,面积越小越好。
信号线远离大电流走线,避免干扰,IC信号检测部分的滤波电容靠近IC,信号地与功率地分开走,星形接地,或者单点接地,最后汇总到大电容的“-”引脚,避免调试时信号受干扰,或者抗扰度出状况。
5、IC方向,贴片元器件的方向,尽量放到整排整列,方便过波峰焊上锡,提高产线效率,避免阴影效应,连锡,虚焊等问题出现。
6、打AI的元器件需要根据相应的规则放置元器件,之前看过一个日本的PCB,焊盘做成水滴状,AI元件的引脚刚好在水滴状的焊盘上,很漂亮。
7、PCB上的走线对辐射影响比较大,可以参考相关书籍。
还有1种情况,PCB当单面板布线,弄完后,在顶层敷整块铜皮接大电容地,抑制传导和辐射很有效果。
8、布线时,还需要考虑雷击,ESD时或其他干扰的电流路径,会不会影响IC。
PCB与元器件回来就可以开始制样做功能调试了。
1、万用表先测试主电流回路上的二极管,MOSFET,有没有短路,有没有装反,变压器的感量与漏感是否都有测试,变压器同名端有没有绕错。
2、开始上电,我的习惯是先上100V的低压,PWM没有输出。
用示波器看VCC,PWM脚,VCC上升到启动电压,PWM没有输出。
检查各引脚的保护功能是否被触发,或者参数不对。
找不到问题,查看IC的上电时序图,或者IC的datasheet里面IC启动的条件。
示波器使用时需注意,3芯插头的地线要拔掉,不拔掉的话最好采用隔离探头挂波形,要不怎么炸机的都不知道。
用2个以上的探头时,2根探头的COM端接同1个点,避免影响电路,或者夹错位置烧东西。
3、IC启动问题解决了,PWM有输出,发现启动时变压器啸叫。
挂MOSFET的电流波形,或者看Isense脚底波形是否是三角波,有可能是饱和波形,有可能是方波。
需重新核算ΔB,还有种情况,VCC绕组与主绕组绕错位置。
也有输出短路的情况,还有RCD吸收部分的问题,甚至还碰到过TVS坏了短路的情况。
4、输出有了,但是输出电压不对,或者高了,或者低了。
这个需要判断是初级到问题,还是次级的问题。