希波克拉底月牙形定理
- 格式:doc
- 大小:55.50 KB
- 文档页数:6
第1页(共22页) 23年秋初二青竹湖湘一外国语学校期末考试数学试卷 一、选择题(每小题3分,共30分)1.(3分)新年伊始,龙年来临,怀着美好的心愿大家都开始用上了龙的图腾与吉祥物,以下龙的设计图案是轴对称图形的是( )
A. B. C. D. 2.(3分)雪花是一种晶体,结构随温度的变化而变化,又名未央花和六出.单个雪花的重量很轻,只有kg0.00003左右,数据0.00003用科学记数法可以表示为( ) A.
−0.3104 B.−0.3105 C.−3105 D.−3104
3.(3分)下列计算正确的是( )
A.=xxx
236 B.=xx()336 C.=xxx623
D.−=−xx(2)833
4.(3分)若分式−−xx3
92的值为0,则x的值是( )
A.−3 B.3 C.3 D.0 5.(3分)下列二次根式中,最简二次根式是( )
A.6 B.a2 C.0.5 D.18
6.(3分)下列各组数中,以它们为边长能构成直角三角形的是( ) A.1,3,3 B.2,3,4 C.6,8,9 D.5,12,13 7.(3分)如果++xax16
2
是一个完全平方式,则a的值是( )
A.4 B.4 C.8 D.8 8.(3分)如图,有一根电线杆在离地面m6处的A点断裂,此时电线杆顶部C点落在离电线杆底部B点m8远的地方,则此电线杆原来长度为( )
A.m10 B.m12 C.m14 D.m16 第2页(共22页)
9.(3分)如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为10,短直角边为6,图2中的阴影部分的面积为S,那么S的值为( )
A.48 B.64 C.96 D.112 10.(3分)如果关于x的方程−=+xxm11
勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理—-揭示的是平面几何图形本身所蕴含的代数关系。
(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和。
从这两种形式来看,有“形的勾股定理"和“数的勾股定理”之分。
(2)定理的作用:①已知直角三角形的两边,求第三边。
②证明三角形中的某些线段的平方关系.③作长为n 的线段.(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。
) 2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。
(2)逆定理的作用:判定一个三角形是否为直角三角形。
(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。
要注意叙述及书写格式。
运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c )②验证22b a +与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形. 若222c b a ≠+,则△ABC 不是直角三角形。
补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形.(4)通过总结归纳,记住一些常用的勾股数.如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。
勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系 (1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。
勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。
(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和. 从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。
(2)定理的作用:①已知直角三角形的两边,求第三边。
②证明三角形中的某些线段的平方关系。
③作长为n 的线段。
(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。
) 2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。
(2)逆定理的作用:判定一个三角形是否为直角三角形。
(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。
要注意叙述及书写格式。
运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c )②验证22b a 与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形。
若222c b a ≠+,则△ABC 不是直角三角形。
补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形。
(4)通过总结归纳,记住一些常用的勾股数。
如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。
勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数) ② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③ 柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系 (1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。
北师大版八上数学专题一勾股定理(内含答案详解)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八上数学专题一勾股定理(内含答案详解))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八上数学专题一勾股定理(内含答案详解)的全部内容。
BS 八上数学专题一勾股定理一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.182.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.243.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或24.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.26.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.127.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.68.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4B.4.5C.4.8D.59.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.310.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,711.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m13.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm14.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm二.填空题(共6小题)15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.16.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.17.如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB的距离是.18.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0。
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB 的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB 的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍 ,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。
以下资料引自: 张景中、彭翕成所著《绕来绕去的向量法》和《仁者无敌面积法》。
面积解释 如图9,以△ABC的三边为边长向外作三个正方形,90ACB,CNIH交AB于K。据说欧几里德就是利用此图形证明勾股定理的。易证EABCAH(最好是将CAH看作是EAB旋转而成),进而可得ACDEAHNKSS;同理BFCGKNIBSS,所以直角三角形斜边上的正方形面积等于两直角边上两正方形面积之和。 此处还有一个副产品:ACDEAHNKSS等价于2*ACAKAB,无需用到相似,轻松可得射影定理。
图9 图10 假若不是直角三角形呢?如图10,△ABC的三高的延长线将三个正方形分为6个矩形,
而且两两相等,cosBFMJBLPESSacB,cosMGCJCHNKSSabC,
cosKNIALADPSSbcA,则2222coscoscos2cosbcbcAacBabCbcAa,
轻松可得余弦定理。
例1:证明余弦定理。 勾股定理只是对于直角三角形成立,很有必要将之推广到一般三角形的情形,这样在使用的时候才方便。在第一章中已经介绍了面积法证明余弦定理了,下面再介绍三种面积证法。 证明勾股定理主要用到平移,而证明余弦定理则可能需要用旋转。 余弦定理证明1:如图1,将△ABC绕点B旋转一个较小角度得到△DBE,则
ABCDBE;由面积关系得AECDABDDBCCBEABESSSSS,即 1*sin2ACDE
1111*sin*sin()*sin*sin()2222ABDBDBCBBCBEBABEBB,
即2221111sinsin(sincoscossin)sin2222bcacBBa 1(sincoscossin)2acBB,化简得2b222coscacBa。
图1 图2 如果认为证法1较麻烦,也还有简单的证法。
余弦定理证明2:只要注意到cosBIHCFHGESSabC,
勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。
(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.②直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。
(2)定理的作用:①已知直角三角形的两边,求第三边。
②证明三角形中的某些线段的平方关系。
,2……的无理数线段的几③作长为n的线段。
(利用勾股定理探究长度为,3何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。
)2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。
(2)逆定理的作用:判定一个三角形是否为直角三角形。
(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。
要注意叙述及书写格式。
运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c)②验证22b a +与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形。
若222c b a ≠+,则△ABC 不是直角三角形。
补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形。
(4)通过总结归纳,记住一些常用的勾股数。
如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。
勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数) ② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系 (1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。
教学方案课题古希腊三大几何问题的解决学院:数学学院班级: 2010级师范3班姓名:学号:古希腊三大几何问题的解决教案以下是附加文档,不需要的朋友下载后删除,谢谢班主任工作总结专题8篇第一篇:班主任工作总结小学班主任特别是一年级的班主任,是一个复合性角色。
当孩子们需要关心爱护时,班主任应该是一位慈母,给予他们细心的体贴和温暖;当孩子们有了缺点,班主任又该是一位严师,严肃地指出他的不足,并帮助他改正。
于是,我认为班主任工作是一项既艰巨而又辛苦的工作。
说其艰巨,是指学生的成长,发展以至能否成为合格人才,班主任起着关键性的作用,说其辛苦,是指每天除了对学生的学习负责以外,还要关心他们的身体、纪律、卫生、安全以及心理健康等情况。
尽管这样,下面我就谈几点做法和体会。
一、常规习惯,常抓不懈学生良好的行为习惯的养成不是一节课、一两天说说就行的,它必须贯穿在整个管理过程中。
于是我制定出详细的班规,要求学生对照执行,使学生做到有规可循,有章可依。
由于低年级学生自觉性和自控力都比较差,避免不了会出现这样或那样的错误,因此这就需要班主任做耐心细致的思想工作、不能操之过急。
于是,我经常利用班会对学生中出现的问题进行晓之以理、动之以情、导之以行的及时教育,给他们讲明道理及危害性,从而使学生做到自觉遵守纪律。
二、细处关爱,亲近学生爱,是教师职业道德的核心,一个班主任要做好本职工作,首先要做到爱学生。
“感人心者,莫先乎情。
”工作中,我努力做到于细微处见真情,真诚的关心孩子,热心的帮助孩子。
我深信,爱是一种传递,当教师真诚的付出爱时,收获的必定是孩子更多的爱!感受孩子们的心灵之语,便是我最快乐的一件事!”三、具体要求,指导到位心理学研究表明,儿童对事物的认知是整体性的,能熟知轮廓,但不注重细节。
我认为,首先要蹲下来,以孩子的视角观察事物,用孩子能听懂的话和他们交流。
其次,要注重细节教育,把该做的事指导到位,因为他们很想按照老师的要求去做,很想把事情做好。
第一章希波克拉底的求新月形面积定理(公元前约440年)论证数学的诞生我们对人类远古时代数学发展的认识,在很大程度上依靠推测,是根据零星的考古资料建偶:学者的猜测拼凑而成的。
显然,随着公元前15000至10000年间农业的发明人类不得不应付两个最基本的数学概念(至少是以初步形式):量和空间。
量的概念或“数”的概念是在人们数羊或分配粮食时产生的,经过历代学者几百年的推敲和发展,量的概念逐渐形成了算术,后来又发展成代数。
同样,最初的农夫也需要认识空间关系,特别是就田地和牧场的面积而言,随着历史的发展,这种对空间的认识就逐渐形成了几何学。
自从人类文明之初,数学的两大分支——算术和几何,就以一种原始的形式共存。
然而,这种共存并非永远和谐。
数学史上一个持续的特征就是在算术与几何之间始终存在着紧张关系。
有时,一方超过了另一方,有时,另一方又比这一方在逻辑上更占优势而一个新发现,一种新观点,都可能会扭转局面。
也许,有人会感到奇怪,数学竟然像美术、音乐或文学一样,在其漫长而辉煌的历史进程中,同样存在着激烈的竞争。
我们在古埃及文明中,发现了数学发展的明显迹象。
古埃及人研究的重点是数学的应用方面,以数学作为工具,促进贸易、农业和日益复杂的日常生活其他方面的发展。
根据考古记载,在公元前2000年以前,埃及人已建立了原始数系,并具备了某些有关三角形和棱锥体等的几何概念。
例如,据传说,古埃及建筑师用一种非常巧妙的方法确定直角他们把12段同样长的绳子相互连成环状(如图1.1所示),把从B到C之间的五段绳子拉成直线,然后在A点将绳子拉紧,于是就形成了直角BAC。
他们将这种构形放在地上,让工人们按照这个构形在金字塔、庙宇或其他建筑的拐角处建成标准的直角。
这种构图表明,古埃及人已对直角三角形的毕达哥拉斯垂上夜系有所认识。
他们似乎懂得,边长为3、4和5的三角形肯定会含有直角。
当然,32+42=9+16=25=52,我们从中可以看到在所有数学关系中最重要的关系之一——勾股关系的早期曙光(见图1.2)。
从技术角度说,古埃及人的这种认识还不是勾股定理本身。
勾股定理申明,“如果△BA 是直角三角形,则a2=b2+c2”。
而古埃及人的认识则是勾股定理的逆定理,“如果a2= b2+c2,则△BAC是直角三角形”。
也就是说,关于命题“如果P,则Q”,对其相关命题“如果Q,则P”,我们称之为逆命题。
我们将会看到,一个完全正确的命题,其逆命题可能是错误的,但著名的勾股定理则不然,不论正命题,还是逆命题,都是正确的。
实际上,这些就是我们将在下一章讨论的“伟大定理”。
虽然古埃及人对3-4-5直角三角形的几何性质有所认识,但他们是否具有更广义的理解,例如,对于同样含有直角的5-12-13三角形或65-72-97三角形(因为在这两个三角形中,都是 a2=b2+c2),则还是个疑问。
更重要的是,没有迹象表明,古埃及人是如何证明这些关系的。
也许,他们掌握某些逻辑论证,以支持他们对3-4-5三角形的观察;也许,他们仅仅是靠反复试验。
但无论如何,在埃及的文字记载中都没有发现通过严密的逻辑推理,证明一般数学规律的迹象。
下面的古埃及数学例子也许可以给人以启发:这是他们发现截棱四棱锥体积的方法——即一个用平行于底面的平面截去顶部的四棱锥体(见图1.3)。
这种几何体如今叫做正四棱台。
发现这种棱台体积的方法在公元前1850年的所谓“莫斯科纸莎草书”中有所记载:“如果你被告知:一个饫庾短澹怪备呶?,下底边长为4,上底边长为2。
则你取4 的平方,得结果为16。
你将4加倍,得结果 8。
你取2的平方,得结果4。
你将16、8和4相加,得28。
你取6的三分之一,得结果2。
你取28的2倍得56。
看,是56。
你会发现答案是正确的。
”这段描述十分精彩,确实得出了棱台体积的正确答案。
但是,请注意,它的计算方法却不是普遍适用的。
这种方法没有导出一个一般公式,以适用于其他尺寸的棱台。
古埃及人为计算不同尺寸棱台的体积,或许不得不比照这个例子重新演算一番,而这个计算过程又让人感到有点儿混乱不清。
我们现代的计算公式就简单明了得多:公式中,a为正方形下底边长,b为正方形上底边长,h是棱台的高。
更令人遗憾的是,没有任何资料证明古埃及人的方法为什么会得出正确的答案,他们仅仅留下了简单的一句话“你会发现答案是正确的”。
从一个特殊例子引出包罗万象的结论,很可能是危险的,而历史学家注意到,在法老统治下的埃及这种独裁社会,必然会产生这种武断的数学方法。
在古埃及社会,民众无条件地服从他们的君主。
由此推断,当时,如果提出一种官方的数学方法,并断言“你会发现答案是正确的”,则埃及臣民是不会要求对这种方法为什么正确作出更详尽的解释的。
在法老统治的土地上,民众只能惟命是听,让你怎么做就怎么做,不论是建筑巨大的庙宇,还是解答数学题,一概如此。
那些敢于怀疑现体制者必然不得善终。
另一处伟大的古代文明(或者更准确地说,另几处文明)在美索不达米亚蓬勃发展,并产生了比古埃及先进得多的数学。
例如,巴比伦人已能解出带有明显代数特征的复杂数学题。
现存称为“普林顿”的楔形文字泥版书322部(写作年代大约在公元前1900至160 0年之间)表明,巴比伦人已明确理解了毕达哥拉斯勾股定理,其理解深度远远超过了古埃及人。
他们懂得5-12-13三角形或65-72-97三角形(或更多)都是直角三角形。
除此以外,他们还为他们的数系创造了一种复杂的进位系统。
当然,我们都习惯于十进位数系。
显然,十进位制是从人类有十个手指引申出来的。
所以,似乎有点儿奇怪的是,巴比伦人选择了60进位制。
当然,没有人会认为这些古巴比伦人长有60个手指,但他们选定的60进位制却仍然用于我们今天的时间(一分钟60秒)和角度测量(在一个圆中,6×6 0°=360°)。
然而,美索不达米亚人的所有成就也同样只是“知其然”,而回避了更为重要的“其所以然”的问题。
看来,论证数学(一种重点放在证明判定关系上的理论演绎体系)的出现还在别一时间和别一地点。
论证数学诞生的时间是公元前1000年,诞生地点是小亚细亚半岛的爱琴海岸和希腊。
那里出现了最伟大的历史文明,其非凡的成就对西方文化进程产生了永久性的影响。
随着希腊国内和跨越地中海贸易的勃兴,希腊人逐渐成为一个流徙不定,热中冒险的民族,他们比较精明和富裕,在思想和行动上都比以往看到的西方世界更具独立性。
这些充满好奇心,且思想自由的商人对权威是不会言听计从的。
实际上,随着希腊民主的发展,公民自己就已成为权威(但必须强调指出,公民的定义在古希腊是非常狭隘的)。
在这些人看来,对任何问题都可以自由争论,都应该加以分析,对任何观点都不能被动地、无条件地服从和接受。
到公元前400年时,这一卓越文明已经能以其丰富的(或许可以说是无与伦比的)智力遗产而自豪。
史诗诗人荷马,历史学家希罗多德和修昔底德,剧作家埃斯库罗斯、索福克勒斯和欧里庇得斯,政治家伯里克利和哲学家索克拉蒂斯——所有这些人都在公元前四世纪初叶留下了自己的足迹。
在现代社会,名望会很快衰落。
因而,现代人可能惊讶,这些古希腊人的名声何以在经历了2000多年之后依然保持其辉煌。
直至今日,我们仍然钦佩他们以深邃的理性烛照自然与人类状况的勇气。
其理性虽然不乏迷信与无知,但古希腊思想家确实取得了极大的成功。
即使他们的结论并非永远正确,但这些希腊人仍旧感到,他们的道路将引导自身从野蛮的过去走向梦想不到的未来。
人们在描述这一特别的历史阶段时,常常使用“觉醒”一词,这是十分贴切的。
人类的确已从千百万年的沉睡中醒来,以大自然最强大的武器——人类思维,勇敢地面对着这一陌生而神秘的世界数学当然也是如此。
公元前约600年,在小亚细亚西海岸的小镇米利都,生活着一位伟人,即古代“七贤”之一——泰勒斯(公元前约640—546年)。
米利都的泰勒斯是第一个在“知其然”的同时提出“其所以然”的学者,并被公认为论证数学之父。
因此,泰勒斯是最早的著名数学家。
关于他的生平,我们掌握的确切资料很少。
他实际上是作为一个半神话式人物从历史的薄雾中显现的,归于他名下的那些发现是否属实,人们仅仅是猜测而已。
传记作家普卢塔克(公元46-120年)回顾了700年前的史迹,他写道:“……当时,泰勒斯独自将纯粹基于实践的哲学上升到理性的高度。
”泰勒斯作为著名的数学家和天文学家,以某种方式预言了公元前585年发生的日蚀,他像所有古板的科学家一样,常常心不在焉或长时间的出神——据传说,有一次,他一边散步,一边仰望星空,竟然掉进了一口深井中。
泰勒斯虽然被公认为论证数学之“父”,但实际上,他却从未结过婚。
当同代人梭伦向他追问原因时,他竟开了一个刻薄的玩笑。
泰勒斯让人带给梭伦一个消息说你的儿子死了。
据普卢塔克记载,梭伦当“……捶胸顿足,痛不欲生,像人们遭遇不幸时惯常所做的那样。
但泰勒斯拉着他的手,笑了笑说:‘梭伦,就是这些事情让我不想结婚,也不想生儿育女,这实在太难了;不过,你不必太过伤心,因为这都是假的。
’显然,泰勒斯不是那种心地善良之辈。
从农夫的故事中,我们也可以得到同样的印象。
一个农夫常常要将沉重的盐袋驮在驴背上,赶着驴去集市卖盐。
聪明的驴子很快就学会了在涉过一条小河时打滚,把许多盐溶化在水里,大大减轻盐袋的重量。
农夫非常生气,就去请教泰勒斯。
泰勒斯建议农夫在下次赶集时,给驴驮一袋海绵。
当然,泰勒斯对人或动物的不友善,并不妨碍他在数学领域赢得很高的声望。
正是泰勒斯曾极力主张,对几何陈述,不能仅凭直觉上的貌似合理就予以接受,相反,必须要经过严密的逻辑证明。
这是他留给数学界的一笔相当可观的遗产。
确切地说,泰勒斯的定理究竟是什么呢?传统上认为,泰勒斯第一个证明了下列几何性质:■对顶角相等。
■三角形的内角和等于两个直角之和。
■等腰三角形的两个底角相等。
■半圆上的圆周角是直角。
虽然我们没有任何有关泰勒斯对上述命题证明的历史记载,但我们可以推断它们的本来面目,例如上述的最后一个命题。
下列证明方法选自欧几里得的《原本》第三篇第31命题,但它简单明了,完全可以看作是泰勒斯自己最初的证明。
定理半圆上的圆周角是直角。
证明以O为圆心,以BC为直径作半圆,选半圆上任意一点A作圆周角BAC (图1.4)。
我们必须证明∠BAC是直角。
连接OA,形成△AOB。
由于OB和OA都是半圆的半径,长度相等,所以△AOB是等腰三角形。
因此,根据泰勒斯先前所证明的定理,∠ABO与∠BAO相等(或用现代术语,迭合);我们称这两个角为α。
同样,在△AOC中,OA与 OC相等,因此,∠OAC=∠OCA;我们称这两个角为β。
而在大三角形BAC中,我们看到, 2个直角=∠ABC+∠ACB+∠BAC =α+β+(α+β)=2α+2β=2(α+β)这正是我们要证明的。