第三章二阶系统响应与时域性能指标解析
- 格式:docx
- 大小:37.24 KB
- 文档页数:2
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
第3章 系统的时间响应分析在建立系统的数学模型(微分方程或传递函数)之后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,时间响应分析是重要的方法之一。
第3.1节 时间响应及其组成一、时间响应的概念所谓时间响应指系统在外加激励作用下,其输出量随时间变化的函数关系。
或者说 在输入作用下,系统的输出(响应)在时域的表现形式;在数学上,就是系统的动力学方程在一定初始条件下的解。
自变量为时间t ,因变量为输出()[()]o x t y t二、时间响应的组成分析:第一、二项是由微分方程的初始条件(即系统的初始状态)引起的自由振动,即自由响应。
ω。
应该说第三项的自第三项是由作用力引起的自由振动即自由响应,其振动频率均为nω与作用力频率ω无关,由响应并不完全自由。
因为它的幅值受到F的影响,当然,它的频率n自由即在此。
第四项是由作用力引起的强迫振动即强迫响应,其振动频率即为作用力频率ω。
因此系统的时间响应可从两方面分类:按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即在“无输入时的系统初态”为零而仅由输入引起的响应)Array所以我们的研究对象是:零状态响应。
另外还有两个需了解的概念:瞬态响应和稳态响应。
瞬态响应:系统在外加激励作用后,从初始状态到最终状态的响应过程称为瞬态响应。
反映了系统的快、稳特性。
稳态响应:时间趋于无穷大时,系统的输出状态为稳态响应。
反映系统的准确性。
三、系统方程的特征根影响系统自由响应的收敛性和振荡第3.2节 典型的输入信号由于系统的输入具有多样性,所以在分析和设计系统时,需要规定一些典型的输入信号,然后比较各系统对典型信号的时间响应。
不同系统或参数不同的同一系统对同一典型信号的时间响应不同,反映出各种系统动态特性的差异,从而可以定出相应的性能指标,对系统的性能予以评定。
尽管在实际中,输入信号很少是典型信号,但由于系统对典型信号的时间响应和对任意信号的时间响应之间存在一定的关系统,所以知道系统对典型信号的响应就可求出对任意输入的响应。
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。
二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。
了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。
二阶系统的传递函数可以表示为
$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。
首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。
阶跃响应是系统对阶跃信号输入的响应。
通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。
1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。
通过阶跃响应曲线可以直观地看出系统的峰值超调量。
2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。
在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。
一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。
3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。
在阶跃响应曲线中,峰值时间可以直接读取。
4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。
在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。
二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。
当$\zeta$小于1时,系统的阶跃响应曲线会出现振荡现象,即过冲现象。
当$\zeta$接近于1时,系统的阶跃响应曲线会有较小的峰值超调和相对较快的调节时间。
当$\zeta$大于1时,系统的阶跃响应曲线会有无过冲的特点,但调节时间较长。
除了阶跃响应外,二阶系统的频率响应也是重要的性能指标。
通过对传递函数的分析,我们可以得出以下结论:
1. 自然频率$\omega_n$:自然频率直接决定了系统的动态特性。
通常情况下,自然频率越大,系统的响应速度越快。
2. 阻尼比$\zeta$:阻尼比直接决定了系统的阻尼特性。
当
$\zeta$小于1时,系统存在振荡现象;当$\zeta$接近于1时,系统响应较快但存在一定的过冲;当$\zeta$大于1时,系统的响应较平稳。
通过对二阶系统响应和时域性能指标的分析,我们可以更好地理解和设计控制系统。
在实际应用中,根据具体的需求和应用场景,可以调整二阶系统的自然频率和阻尼比,以达到所需的控制效果。