时域瞬态响应性能指标
- 格式:doc
- 大小:50.50 KB
- 文档页数:1
第一章1. 闭环控制系统中的反馈作用()A.依输入信号的大小而存在B.不一定存在C.必然存在D.一定不存在闭环系统一定存在反馈作用。
闭环的作用是(进行偏差控制)负反馈是将输出量引回输入端,与输入信号比较,比较的结果称为偏差。
系统的输出信号对控制作用的影响(闭环有)关于反馈的说法正确的是( D )A.反馈实质上就是信号的并联B.反馈就是输入信号与反馈信号相加C.反馈都是人为加入的D.反馈是输出以不同的方式对系统作用对于系统的抗干扰能力()A.开环强 B. 闭环强 C. 都强 D. 都不强关于闭环控制的不正确说法是()A.输入与输出信号只有顺向传递,没有反向联系B.输入与输出信号既有顺向传递,又有反向联系C.闭环控制精度高,抗干扰性好D.闭环控制引入反馈,参数选择不当不易稳定2.控制系统是由控制器和被控对象组成。
控制系统所要操纵的对象称为被控对象。
3.作为系统开环不振荡。
开环控制系统的控制信号取决于()A.系统的实际输出。
B.系统的实际输出与理想输出之差C.输入与输出之差D.输入4.如果系统的被控量随着输入量的变化而变化,则称为随动系统5.负反馈控制原理是将输出信号引回输入端,与输入信号比较,利用所得的偏差信号进行控制,使偏差减小或消除。
6. 某系统的微分方程为.3()()()()o o o ix t x t x t x t-+=,则它是非线性系统。
系统的动态方程为...2()()()()x t x t x t y t++=,则该系统为非线性系统。
7.以下几个微分方程表示的系统中,属于线性定常系统的是...222 o o o i x x x x ++=某系统的微分方程为...33()2()()()o o o ix t x t x t x t-+=,则它是(D )A.线性定常系统B.线性系统C .非线性时变系统D .非线性系统系统的动态方程为'''()4()3()()x t x t x t y t ++=,则该系统为 线性 系统。
控制系统的瞬态响应及其稳定性分析控制系统的瞬态响应及其稳定性分析是控制理论的重要内容之一、瞬态响应描述了一个控制系统在输入信号改变时的响应情况,稳定性分析则是评估系统响应的稳定性和可靠性。
下面将从瞬态响应和稳定性分析两个方面进行探讨。
一、瞬态响应分析瞬态响应指的是一个控制系统在输入信号发生改变时,系统在一定时间范围内达到稳态的过程。
常见的瞬态响应包括过渡过程和超调量等指标。
1.过渡过程:在一个控制系统中,当输入信号发生改变时,系统输出信号不会立即达到稳定状态,而是经历一个从初值到最终稳定状态的过渡过程。
过渡过程的主要指标有上升时间、峰值时间和调整时间。
-上升时间(Tr):指的是信号从初始值开始,达到其最终稳定值之间的时间间隔。
上升时间越短,系统的响应越快速。
-峰值时间(Tp):指的是信号首次超过最终稳定值所需的时间。
峰值时间越短,响应越快。
-调整时间(Ts):指的是信号从初始值到最终值之间的时间。
调整时间越短,系统的响应越快。
2.超调量:超调量是指在过渡过程中系统输出信号超过最终稳定状态的幅度。
超调量的大小可以直接反映系统的稳定性。
一般来说,超调量越小,系统的稳定性越好。
瞬态响应分析是评估系统性能的重要工具。
通过对瞬态响应的分析,可以了解系统的响应速度、稳定性和鲁棒性,并对系统进行优化和改进。
稳定性分析是评估控制系统稳态响应和稳定性的重要方法。
一个稳定的控制系统应该满足输入信号的变化不会引起系统输出信号的不稳定或震荡。
常见的稳定性分析方法有频域分析法和时域分析法。
1.频域分析法:频域分析主要利用系统的频率特性来分析系统的稳定性。
通过绘制系统的频率响应曲线,可以得到系统的增益和相位特性。
稳定性条件为系统的增益在截止频率处不为负值,即系统的增益曲线应该位于0dB线以上。
2.时域分析法:时域分析主要关注系统的时间响应曲线。
稳定性条件为系统在有限时间内达到并保持在稳定状态。
稳定性分析是评估控制系统性能的关键环节,它不仅可以帮助设计者理解系统的稳定性和鲁棒性,还可以为系统的优化和改进提供指导。
第三章时域瞬态响应分析3.1 典型输入信号和性能指标3.2 一阶系统的瞬态响应3.3 二阶系统的瞬态响应3.4 高阶系统的瞬态响应时域分析法:根据系统在一定的输入信号作用下其输出随时间变化的关系,分析系统稳定性、瞬态性能和稳态性能的方法。
一、瞬态响应和稳态响应1.瞬态响应:系统在输入信号作用下,输出量从初始状态过渡到稳定状态的响应过程。
决定于:①系统结构参数;②输入信号的形式;③初始状态。
2. 稳态响应:信号输入后,时间趋向于无穷大时系统的输出状态。
x o(ωn t)x i(ωn t)=1(t)ωn t3. 时域响应分析中,往往选择典型输入信号①数学处理简单,给定典型信号下的性能指标,便于分析和综合系统。
②典型输入下的响应往往作为分析复杂输入时系统性能的基础;③便于进行系统辨识,确定未知环节的传递函数。
任一时间函数信号输入时系统的响应①任一时间函数信号x i (t )可分解为一系列脉冲信号【x i (τk )Δτ】的叠加。
②线性系统对x i (t )输入的响应x o (t )等于这一系列脉冲信号各个单独作用下系统响应【x i (τk )Δτ g (t -τk )】的叠加。
()()()()()()()1o i i i 0lim d *n tk k n k x t x g t x g t x t g t ττττττ-→∞==∆⋅-=-=∑⎰结论:任一时间函数信号输入下,系统的输出响应x o (t )为输入信号x i (t )与脉冲响应函数g (t )的卷积,即:x o (t ) =x i (t ) *g (t )。
()i x t ()o x t ()()i k k x g t τττ∆⋅-()()()1o i 0n k k k x t x g t τττ-==∆⋅-∑()i k x τx i (t )x o (t )=x i (t ) *g (t )5. 正弦信号()i sin 000a t t x t t ω>⎧=⎨<⎩ 系统分析时,典型输入信号的选择:视系统具体工作状况而定。
时域瞬态响应性能指标包括:
(1)上升时间 (Rise
Time ) :响应曲线从零时刻到首次到达稳态值的时间,即响应曲线从零时刻上升到达稳态值所需的时间。
如系统无超调,理论上到达稳态值时间需无穷大,则上升时间定义为响应曲线从稳态值的10%上升到稳态值的90%所需的时间。
(2)峰值时间 (Peak Time ) :响应曲线从零时刻到达峰值的时间,即响应曲线从零上升到第一个峰值点所需的时间。
(3)最大超调量 (Maximum Overshoot ) :单位阶跃输入时,响应曲线的最大峰值与稳态值之差。
通常用百分数表示。
(4)调整时间 (Settling Time ) :响应曲线达到并一直保持在允许误差范围内的最短时间。
(5)延迟时间 (Delay
Time ) :响应曲线从零上升稳态值50%所需的时间。
(6)振荡次数 :在调整时间响应曲线振荡的次数。
上升时间、峰值时间、调整时间、延迟时间反映系统的快速性,而最大超调量 、振荡次数反映系统的相对稳定性。
欠阻尼:
1.上升时间
2.峰值时间
3.最大超调量
4.调整时间
5.上升时间
r t p t p M s t d t )(11)(12βπζωβπω--=-=n d r t 21ζωπωπ-==n d p t 221)1(ζζπζωπζω----==e e M n n p n s t ζωζ2
1ln 05.0ln ---=n d t ωζ7.01+=。