时域性能指标
- 格式:ppt
- 大小:625.00 KB
- 文档页数:5
时域瞬态响应性能指标包括:
(1)上升时间 (Rise
Time ) :响应曲线从零时刻到首次到达稳态值的时间,即响应曲线从零时刻上升到达稳态值所需的时间。
如系统无超调,理论上到达稳态值时间需无穷大,则上升时间定义为响应曲线从稳态值的10%上升到稳态值的90%所需的时间。
(2)峰值时间 (Peak Time ) :响应曲线从零时刻到达峰值的时间,即响应曲线从零上升到第一个峰值点所需的时间。
(3)最大超调量 (Maximum Overshoot ) :单位阶跃输入时,响应曲线的最大峰值与稳态值之差。
通常用百分数表示。
(4)调整时间 (Settling Time ) :响应曲线达到并一直保持在允许误差范围内的最短时间。
(5)延迟时间 (Delay
Time ) :响应曲线从零上升稳态值50%所需的时间。
(6)振荡次数 :在调整时间响应曲线振荡的次数。
上升时间、峰值时间、调整时间、延迟时间反映系统的快速性,而最大超调量 、振荡次数反映系统的相对稳定性。
欠阻尼:
1.上升时间
2.峰值时间
3.最大超调量
4.调整时间
5.上升时间
r t p t p M s t d t )(11)(12βπζωβπω--=-=n d r t 21ζωπωπ-==n d p t 221)1(ζζπζωπζω----==e e M n n p n s t ζωζ2
1ln 05.0ln ---=n d t ωζ7.01+=。
控制系统的时域指标时域指标是用来描述控制系统在时间上的性能指标,它们反映了控制系统对输入信号的响应和输出信号的稳定性以及动态特性。
常见的时域指标包括超调量、调节时间、稳态误差等。
一、超调量超调量是指控制系统输出信号最大值与稳态值之间的差值,通常用百分比来表示。
超调量的大小直接影响系统的稳定性和动态特性。
当超调量过大时,系统可能会出现震荡或不稳定的现象;而当超调量较小时,系统的响应速度较快且稳定性较好。
超调量的计算公式为:超调量(%) = (峰值值 - 稳态值) / 稳态值 * 100%其中,峰值值是系统输出信号的最大值,稳态值是系统输出信号的稳定值。
二、调节时间调节时间是指控制系统从初始状态到达稳态所需的时间。
它反映了系统的响应速度和稳定性。
调节时间越短,系统的响应速度越快,但可能会牺牲一定的稳定性;调节时间越长,系统的响应速度越慢,但稳定性较好。
调节时间的计算方法有多种,常用的方法是以系统输出信号达到稳态值的时间为准。
一种常见的计算方法是以系统输出信号超过稳态值的5%或10%为界,分别计算系统达到这两个阈值所需的时间,较小的那个时间即为调节时间。
三、稳态误差稳态误差是指控制系统在稳态下输出信号与期望值之间的差异。
稳态误差的大小反映了系统对输入信号的追踪能力和精度。
稳态误差越小,系统的追踪能力和精度越高。
稳态误差的计算方法因系统类型而异。
对于零阶系统,稳态误差等于期望值与稳态值之差;对于一阶系统,稳态误差等于期望值与稳态值之差的一阶导数;对于二阶系统,稳态误差等于期望值与稳态值之差的二阶导数。
除了超调量、调节时间和稳态误差,还有其他一些常见的时域指标,如上升时间、峰值时间等。
这些指标都可以从不同的角度反映控制系统的性能和特性。
时域指标在控制系统设计、调试和优化中起着重要的作用。
通过对时域指标的分析和计算,可以评估控制系统的性能,并对系统进行调整和改进。
同时,时域指标还可以用来比较不同控制方案的优劣,选择最合适的控制策略。
控制系统时域与频域性能指标的联系经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。
时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。
这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。
如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。
频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。
此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加.在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。
系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。
一、系统的时域性能指标延迟时间t d阶跃响应第一次达到终值h(∞)的50%所需的时间上升时间tr阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,也可定义为从0到第一次达到终值所需的时间峰值时间tp阶跃响应越过终值h (∞)达到第一个峰值所需的时间调节时间ts阶跃响应到达并保持在终值h (∞)的±5%误差带内所需的最短时间超调量%σ 峰值h(tp)超出终值h (∞)的百分比,即%σ=()()()∞∞-h h h t p ⨯100%二、系统频率特性的性能指标采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标.1、零频振幅比M(0):即ω为0时闭环幅频特性值。
它反映了系统 的稳态精度, M(0)越接近于1,系统的精度越高.M(0)≠1时,表明系统有稳态误差。
2、谐振峰值Mr :为幅频特性曲线的A(ω)的最大值。
5.7 频域性能指标和时域性能指标的关系频率响应法是通过系统的开环频率特性和闭环频率特性的一些特征量间接地表征系统的瞬(暂)态响应的性能,因而这些特征量又被称为频域性能指标。
常用的频域性能指标有幅值裕度、相位裕度、谐振峰值、谐振频率和频带宽度等。
虽然这些指标没有时域性能指标那样直观,但在二阶系统中,它们与时域性能指标有着确定的对应关系,对于高阶系统,也有近似的关系。
5.7.1频域指标和二阶系统的过渡过程指标设二阶单位反馈系统的方框图如图5-80所示。
图 5-80 二阶单位反馈系统的方框图此系统的闭环传递函数为2222)()(nn n s s s X s Y ωξωω++= 其中ξ为阻尼比,n ω为无阻尼自然振荡频率。
令s j =ω代入上式,可得系统的闭环频率响应为:ja n nM j j X j Y e 2)1(1)()(22=+-=ωωξωωωω式中 M nn =-+1122222()()ωωξωω2212a r c t a n nn ωωωωξα--= 根据式(5-67)可知,当00707≤≤ξ.时,在谐振频率ωr 处,M 出现峰值ωωξr n =-122M r =-1212ξξ二阶系统的闭环频率特性如图5-81所示。
图 5-81 图5-80所示系统的闭环频率特性对于二阶系统,在012≤<ξ时,频率特性的谐振峰值M r 可以反映系统的阻尼系数ξ,而其谐振频率ωr 可以反映给定ξ对应的自然频率ωn ,从而也能反映响应速度。
这样就可把二阶系统闭环频率特性的M r 和ωr 当作性能指标用。
系统的频带宽度(带宽)由图5-81可见,当ωω>r 时,闭环频率特性的幅值M 单调下降。
当闭环频率特性的幅值下降到707.021==M 时,或者说,当闭环频率特性的分贝值下降到零频率时分贝值以下3分贝时,对应的频率ωb 称为截止频率,又称带宽频率。
此时有b j M j M ωωω>-<3)0(lg 20)(lg 20对于0)0(lg 20=j M ,有b j M ωωω>-<3)(lg 20系统对频率高于ωb 的输入衰减很大,只允许频率低于ωb 的输入通过。
自动控制原理时域指标自动控制原理是研究如何设计和优化自动控制系统的学科。
在自动控制系统设计中,需要对系统在时域上的行为进行分析和评估。
时域是指系统随时间变化的过程,在自动控制中通常关注系统的稳定性、动态响应和误差性能等指标。
自动控制系统的时域指标主要包括系统的稳定性、阶跃响应、过渡过程、超调量和稳态误差等。
首先,系统的稳定性是指系统在输入信号与外部干扰的作用下,输出信号是否趋向于稳定的状态。
稳定性是一个基本的要求,对于开环控制系统来说,需要系统的传递函数的所有极点的实部都小于0;对于闭环控制系统来说,需要系统的传递函数的所有极点的实部都小于零,且没有极点位于虚轴上。
其次,阶跃响应是指系统对于单位阶跃输入信号的响应。
通过分析系统的阶跃响应,可以得到系统的动态性能指标,如上升时间、峰值时间、峰值过冲和调节时间等。
上升时间是指系统从初始状态到达稳态所需的时间;峰值时间是指系统输出达到峰值的时间;峰值过冲是指系统输出超过稳态值的最大幅度;调节时间是指系统从初始状态到达稳态的时间。
过渡过程是指系统由一个状态转移到另一个状态的过程,可以通过系统的阶跃响应曲线来观察。
过渡过程中,一般通过衡量系统的快速性、稳定性和平稳性来评估系统的性能。
超调量是指系统在过渡过程中,输出信号超过稳态值的最大幅度。
超调量的大小反映了系统的稳定性和响应速度之间的平衡关系。
稳态误差是指系统在稳态下,输出信号与期望信号的差值。
稳态误差用于评估系统对不同输入信号的跟踪能力和稳定性。
在实际的自动控制系统设计中,需要根据具体的应用要求,对不同的时域指标进行权衡和优化。
通过选择合适的控制器参数和调节算法,可以提高系统的稳定性、动态响应和误差性能。
同时,通过对系统的时域指标进行分析和优化,可以满足不同控制任务的要求,提高自动控制系统的性能和效果。
控制系统的时域指标
控制系统的时域指标是用于描述控制系统性能的指标,包括稳态误差、过渡过程和动态性能等。
1. 稳态误差:稳态误差是指系统在稳定状态下与期望输出之间的差异。
常用的稳态误差指标包括静态误差和稳态偏差。
- 静态误差:当输入信号为常数时,输出信号与期望输出之间的差异。
常用的静态误差指标包括零误差、常数误差和百分比误差等。
- 稳态偏差:当输入信号为非常数时,输出信号与期望输出之间的差异。
常用的稳态偏差指标包括稳态偏差、超调量和调整时间等。
2. 过渡过程:过渡过程是指系统从稳态到另一个稳态过程中的动态响应过程。
常用的过渡过程指标包括上升时间、峰值时间、峰值幅值和调整时间等。
- 上升时间:系统从稳态到达期望输出的时间。
- 峰值时间:系统响应过程中达到峰值的时间。
- 峰值幅值:系统响应过程中达到的最大幅值。
- 调整时间:系统从稳态到达期望输出并在一定范围内稳定的时间。
3. 动态性能:动态性能是指系统对输入信号的响应速度和稳定性。
常用的动态性能指标包括过渡过程的时间常数、系统阻尼比和系统超调量等。
- 时间常数:系统响应曲线趋于稳定的时间。
- 系统阻尼比:描述系统过渡过程中振荡的特性,用于衡量系统的稳定性。
- 系统超调量:系统过渡过程中输出信号与期望输出之间的最大差异。
这些时域指标可以用来评估和改进控制系统的性能,帮助工程师优化控制系统的设计和参数设置。
第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。
二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。
了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。
二阶系统的传递函数可以表示为$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。
首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。
阶跃响应是系统对阶跃信号输入的响应。
通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。
1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。
通过阶跃响应曲线可以直观地看出系统的峰值超调量。
2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。
在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。
一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。
3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。
在阶跃响应曲线中,峰值时间可以直接读取。
4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。
在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。
二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。
第三章二阶系统响应与时域性能指标第三章介绍了二阶系统的响应和时域性能指标。
二阶系统是指具有两个阶数的系统,常见的二阶系统包括二阶低通滤波器和二阶弹簧质量振动系统等。
了解二阶系统的响应和性能指标对于工程实践和控制系统设计非常重要。
首先,我们先介绍了二阶系统的自由响应和强迫响应。
自由响应是指系统在没有外部输入的情况下的响应,主要由系统的初始条件决定。
强迫响应是指系统在受到外部输入信号刺激后的响应,主要由刺激信号的频率和幅值决定。
在讨论自由响应时,我们介绍了二阶系统的特征方程和特征根。
特征方程是描述系统特征的方程,由系统的传递函数决定。
特征根是特征方程的根,决定了系统的稳定性和响应特性。
特征根可以分为实根和共轭复根两种,分别对应系统的欠阻尼和过阻尼响应。
接着,我们讨论了二阶系统的时域性能指标。
其中包括超调量、峰值时间、调节时间和稳态误差等。
超调量反映了系统响应的振荡程度,峰值时间是达到响应峰值所需要的时间,调节时间是达到稳态的时间。
稳态误差则表征了系统输出与目标值之间的差异。
最后,我们通过实例来说明了如何使用MATLAB来计算和绘制二阶系统的时域性能指标。
MATLAB是一种非常方便的工具,可以极大地简化计算和绘图的过程。
通过使用MATLAB,我们可以更加直观地了解二阶系统的响应特性和时域性能。
总之,了解二阶系统的响应和时域性能指标对于工程实践和控制系统设计非常重要。
通过本章的学习,我们可以更好地理解和分析二阶系统的响应特性,为系统设计和调试提供有力支持。
同时,通过使用MATLAB等工具,我们可以更加方便地进行计算和绘图,提高工作效率和准确性。