多元函数偏微分
- 格式:ppt
- 大小:1.10 MB
- 文档页数:19
多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
多元函数微分学知识点多元函数微分学是微积分的重要内容,它研究的是在多变量条件下函数的导数和微分的性质。
在实际应用中,多元函数微分学为我们解决各种问题时提供了有效的数学工具。
本文将介绍一些多元函数微分学的基本知识点,包括偏导数、全微分和梯度。
多元函数微分学的第一个知识点是偏导数。
在一元函数中,导数表示函数在某一点上的变化率。
而在多元函数中,我们需要引入偏导数的概念。
偏导数表示函数在某一点上沿着一个坐标轴的变化率。
对于一个两个自变量的函数f(x, y),偏导数可以用∂f/∂x和∂f/∂y表示。
它们分别表示函数沿x轴和y轴的变化率。
偏导数可以帮助我们理解函数的局部变化情况,并在解决最优化问题时提供重要的线索。
第二个知识点是全微分。
全微分是多元函数微分学中的一个重要概念,它表示函数在某一点上的微小变化量。
全微分可以用df表示,其中df = ∂f/∂x*dx + ∂f/∂y*dy。
全微分可以帮助我们推导函数的逼近值和误差,从而得出函数在某一点的性质和特点。
例如,在工程学中,通过对一个物理过程的全微分分析,我们可以推导出近似解,并估计误差。
最后一个知识点是梯度。
梯度是多元函数微分学中的一个重要工具,它表示函数在某一点的最大变化方向。
对于一个函数f(x, y),梯度可以用∇f = (∂f/∂x, ∂f/∂y)表示。
梯度的方向是函数变化最快的方向,它的模长表示函数的变化速率。
通过研究梯度,我们可以找到函数的极大值、极小值和鞍点,并解决最优化问题。
多元函数微分学是高级数学中的一个重要分支,它在各个学科领域都有广泛的应用。
在物理学中,我们可以通过多元函数微分学的方法推导出物理方程,并解决各种动力学问题。
在经济学中,多元函数微分学可以帮助我们分析供求关系,推导出边际效应,并解决最优决策问题。
在金融学中,多元函数微分学可以帮助我们研究金融风险和资产定价。
综上所述,多元函数微分学是微积分的重要内容之一,它研究的是多变量条件下函数的导数和微分的性质。
多元函数微分总结引言微分是微积分的重要概念之一,用于研究函数在给定点的变化率。
在单变量函数中,我们可以通过导数来求得函数在某一点的斜率。
然而,在多元函数中,我们需要使用多元微分来描述函数在给定点的变化情况。
本文将总结多元函数微分的基本概念、性质和计算方法。
多元函数的微分定义对于一个具有多个自变量的函数f(x1,x2,...,x n),其微分可以表示为:$$df = \\frac{\\partial f}{\\partial x_1}dx_1 + \\frac{\\partial f}{\\partialx_2}dx_2 + ... + \\frac{\\partial f}{\\partial x_n}dx_n$$其中,dx1,dx2,...,dx n是自变量的微小变化量,$\\frac{\\partial f}{\\partial x_1}, \\frac{\\partial f}{\\partial x_2}, ..., \\frac{\\partial f}{\\partial x_n}$ 是对应的偏导数。
多元函数微分的几何意义多元函数微分可以理解为函数在某一点处的线性近似。
具体而言,对于函数f(x1,x2),在点(x1,x2)处微分为 $df = \\frac{\\partial f}{\\partial x_1}dx_1 +\\frac{\\partial f}{\\partial x_2}dx_2$。
我们可以将微分视为一个切平面,该平面与函数曲面相切于给定点,且与切平面平行的向量与函数的变化率相等。
多元函数微分的性质多元函数微分具有以下几个重要性质:1. 线性性质对于两个函数f(x1,x2)和g(x1,x2),以及常数c,有:$$d(cf + g) = c \\cdot df + dg$$2. 链式法则对于复合函数f(g(x1,x2),ℎ(x1,x2)),其微分可以表示为:$$df = \\frac{\\partial f}{\\partial g} \\cdot dg + \\frac{\\partial f}{\\partial h} \\cdot dh$$其中,$\\frac{\\partial f}{\\partial g}$ 和 $\\frac{\\partial f}{\\partial h}$ 分别为函数f对于g和ℎ的偏导数。
多元函数微分学一:全微分函数在处可微的充分条件:(,)z f x y =00(,)x y ''22(,)(,)()()x y z f x y x f x y y x y ∆-∆-∆∆+∆22()()0x y ∆+∆→当时是无穷小量222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩例1:函数在[(0,0)(0,0)]()x y z f x f y o ρ∆-∆+∆=(0,0)处是否可微?0(0,0)(0,0)lim x y z f x f yρρ→∆-∆-∆22222201[()()]sin ()()lim ()()x y x y x y ρ→∆+∆∆+∆=∆+∆0=即函数f (x , y )在原点(0,0)可微.sin 2yz y x e μ=++例2:计算的全微分11,cos ,22yz yz u u y u ze ye x y z∂∂∂==+=∂∂∂解:1(cos )22yz yz y du dx ze dy ye dz =+++所求全微分:二:复合函数求偏导1、偏导数求法(1) 求关于x的偏导数,把z=f (x , y) 中的y看成常数,对x仍用一元函数求导法求偏导.(2) 求关于y的偏导数,把z=f (x , y) 中的x看成常数,对y仍用一元函数求导法求偏导.(3)求分界点、不连续点处的偏导数要用定义求.2:链式法则的几种情况:1:),(,),(,),(,)x y x y x y z f u f v f w x u x v x w xz f u f v f w y u y v y w yμυωμμυυωω===∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂中间变量多于两个的情况:设z=f(,,''2:),(,)(),()x y z f u u z f u u f u f u x u x x y u y yμμμ=∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂中间变量只有一个的情况:设z=f(3:,),(),(),v x v v x z x z f u f v x u x u xμμμ==∂∂∂∂∂=+∂∂∂∂∂自变量只有一个的情况:设z=f(则是的一元复合函数,它对x 的导数称为全导数,有(,,),(,),(,),,z f x y t x x s t y y s t z f x f y z f x f y f s x s y s t x t y t t===∂∂∂∂∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂4:设则例3:).1())),(,(,()(,)1,1(,)1,1(,1)1,1(,),(2ϕϕ'=='='=求,可微x x f x f x f x b f a f f y x f y x解⋅='))),(,(,(2)(x x f x f x f x ϕ⋅'+'))),(,(,())),(,(,({21x x f x f x f x x f x f x f ⋅'+')),(,()),(,([21x x f x f x x f x f ))]},(),((21x x f x x f '+')]}([{12)1(b a b a b a +++⋅⋅='ϕ)(232b ab ab a +++=解:3个方程, 4个变量的方程组,)(),(),(x z z x y y x u u ===确定3个1元函数:方程组两边对x 求导=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +x y g y d d ⋅+x z g z d d ⋅+0=xz h z d d ⋅+0=⎪⎩⎪⎨⎧===.0),(,0),,(),,()(z x h z y x g y x f u x u 由方程组设函数例4:,0,0,≠∂∂≠∂∂zh y g 且所确定.d d x u 求=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +)1(x y g y d d ⋅+x z g z d d ⋅+0=)2(x z h z d d ⋅+0=)3(代入可得:d d y x y z x x y y zf g f g h u f x g g h ⋅⋅⋅=-+⋅三:高阶偏导定理 如果函数),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续,那末在该区域内这两个二阶混合偏导数必相等.215()(),y z z f xy xf f y x x y ∂=+∂∂例:有连续二阶偏导数,求'()'()'()z y y y f xy f f x x x x ∂=+-∂解:2()z z x y y x ∂∂∂=∂∂∂∂11''()''()'()''()y y y y xf xy f f f x x x x x x=+--22222222(0,0)(0,0)22(),06:(,),|,|0,0xy x y x y f f f x y x y x y y x x y ⎧-+>∂∂⎪=+⎨∂∂∂∂⎪+=⎩例求22232222222222()(3)2(),0()0,0x y x y y x y x y x y f x y x x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩解:2(0,)(0,0)(0,0)0|||lim 1y y f f f x x x y y →∂∂-∂∂∂==-∂∂22322222222222()(3)2(),0()0,0x y x xy xy x y x y f x y y x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩(,0)(0,0)2(0,0)0|||lim 1x y f f f y y y x x→∂∂-∂∂∂==∂∂注:对不连续的函数求导,用定义法四:隐函数求导1:一个方程的情况:1.1 显化法:(一元隐函数)把一元隐函数化为显函数后,再利用显函数求导的方法,来求该一元隐函数的导数,即(,)0F x y =()y y x ='()xdy dy x y dx dx==2'ln()0,(x y x xy y x+-=例7:设求一元隐函数)22ln()x y y x xy xy e x x -=--⇒-=21x e y x x -⇒=-利用显函数求导方法,有:22222'211(12)(12)11()()x x x e x y x x y x x x x -----==--1.2公式法: .x yF dy dx F =-1.3对数求导法:80,,x zz z z y x y ∂∂-=∂∂例:设求(多元隐函数)ln ln x zz y x z z y ==解:原方程可化为,方程两边同时取对数得:2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2:方程组的情况:2.1直接对方程两边求偏导,再解关于偏导数的方程sin ,,cos uu x e u v u u x y y e u v ⎧=+∂∂⎪⎨∂∂=-⎪⎩例9:设求1sin cos 0s cos (sin )u u x u u v e v u v x x xu u v e v u v x x x∂∂∂=++∂∂∂∂∂∂=---∂∂∂两个方程两边关于求偏导,得:(1)(2)(1)sin (2)cos v v v x ∂⨯-⨯∂,消去得22sin (sin cos )(sin cos )uu u v e v v v v x x ∂∂=-++∂∂sin 1sin cos u u u v x e v e v∂=∂+-同理可求:cos 1sin cos u u u v y e v e v∂-=∂+-Thanks for your listening!。