光子材料、微结构与微米共30页
- 格式:ppt
- 大小:2.06 MB
- 文档页数:30
光子晶体一、发展背景及历史1.1 微电子的危机今天,人类进入了信息时代,电子信息产业已成为当今全球规模最大、发展最迅猛的产业,从日常生活的电视,电话等家庭用品到工作中的电子计算机,传感器以及各种电子测试设备,无处不渗透着半导体技术的影响,可以说半导体技术正日益成为我们工作和生活中不可缺少的组成部分。
微电子技术是电子信息产业的核心技术之一(另一个是软件技术),是在半导体材料上采用微米级线度加工处理的技术。
现在电子信息技术,尤其是计算机和通讯技术发展的驱动力。
来自于半导体元器件的技术突破,每一代更高性能的集成电路的问世,都会驱动各个信息技术向前跃进。
我们今天处在一个真正的技术革命时代,而微电子技术的突飞猛进是这个革命最基础的组成部分。
微电子技术所遵循的摩尔定律指出:芯片集成度每18-24个月增长一倍,价格不变。
目前主流加工技术是8英寸硅片,0.25微米线宽。
12英寸硅片0.13微米应经批量生产。
当前,半导体技术正向着高速度,高集成化方向发展。
据国际权威机构预测,到2014年,半导体芯片加工技术将达到18英寸硅片0.035微米线宽。
当集成电路线宽达到0.1微米以下时,标志着半导体制造技术及器件、工艺理论随之全面进入纳米领域。
硅基芯片的微细加工技术将可能达到极限。
届时,微电子的基础理论、材料技术和加工技术都将遇到极大的挑战:(1)首先是芯片的发热量随着工作频率的提高而迅速增加从而使芯片无法正常工作;(2)其次是现有的加工设备已经很难再继续减小芯片内部的线宽,因而通过减小线宽的方法来提高心片的工作效率和性能遇到了很大的困难;(3)最后也是最难克服的一点,随着芯片内部结构的减小,其量子效应会非常明显,电子在芯片内部的波动效应就不可以忽略,而电子的波动所造成的量子隧穿效应直接威胁着用“1”和“0”表示“开”和“关”状态的芯片最基本的结构。
导致这一结果的原因在于半导体器件的工作载体是电子,由于电子是一种费米子,具有静止质量,同时,电子之间具有库仑相互作用,当集成度很高时,产生热效应,相互干扰,这即是“电子瓶颈”效应产生的原因。
目录摘要.............................................................. I I Abstract.......................................................... I II 前言.............................................................. I V 第一章光子晶体 (1)1.1 光子晶体简介 (1)1.2 光子晶体的结构 (1)1.3 光子晶体的特性 (2)1.3.1 光子晶体具有周期性结构 (2)1.3.2 光子晶体具有光子禁带 (3)1.3.3 光子晶体能抑制自发辐射 (3)1.3.4 光子晶体具有光子局域 (4)第二章一维光子晶体的能带结构研究 (5)2.1 研究一维光子晶体能带的方法 (5)2.1.1 特征矩阵法 (5)2.1.2 平面波展开法 (6)2.2 一维光子晶体的能带结构研究 (8)第三章一维光子晶体的特征 (11)3.1 光子禁带 (11)3.2 光子局域 (12)第四章一维光子晶体光带隙性能的影响因素探讨 (15)4.1 周期数的影响 (15)4.2 折射率比值的影响 (15)4.3 中心波长的影响 (16)第五章结论 (19)参考文献 (20)致谢 (21)一维光子晶体的能带结构研究摘要在当今世界,科学家们在不断研究大规模集成电路时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。
所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子,即光子晶体。
随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光子的控制。
本论文主要对一维光子晶体的能带、禁带进行深入地研究,这对设计和制备一维光子晶体具有指导意义。
光子晶体姓名:赵凡凡学号:10121938光子晶体研究进展摘要光子晶体是八十年代末提出的新概念和新材料,迄今取得异常迅猛的发展,是一门正在蓬勃发展的有前途的新学科。
光子晶体不仅具有理论价值,更具有非常广阔的应用前景,这个领域已经成为国际学术界的研究热点。
本文回顾光子晶体的发展历史,介绍光子晶体的特性、制作方法、理论研究以及应用前景。
关键词:光子晶体,光子能带,光子带隙,光子局域态,自发辐射,Maxwell方程组我们所处的时代从某种意义上来说是半导体时代。
半导体的出现带来了从日常生活到高科技革命性的影响。
大规模集成电路、计算机、信息高速公路等等这些甚至连小学生都耳熟能详的东西是由半导体带来的。
几乎所有的半导体器件都是围绕如何利用和控制电子的运动,电子在其中起到决定作用。
半导体器件到如今可以说到了登峰造极的地步。
集成的极限在可以看到的将来出现。
这是由电子的特性所决定的。
而光子有着电子所没有的优势:速度快,没有相互作用。
因此,下一代器件扮演主角的将是光子。
光子晶体是1987年才提出的新概念和新材料 [1,2]。
这种材料有一个显著的特点是它可以如人所愿地控制光子的运动 [3-5]。
由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无法想象。
1.2.光子晶体简介3.众所周知,电子在周期势场中传播时,由于电子波会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。
电子波的能量如果落在带隙中,传播是禁止的。
其实,不管任何波,只要受到周期性调制,都有能带结构,也都有可能出现带隙。
能量落在带隙中的波是不能传播的。
电磁波或者光波也不会例外。
不过人们真正清楚其物理含义已经是八十年代末了。
1987年Yabnolovitch [1]在讨论如何抑制自发辐射时提出了光子晶体这一新概念。
几乎同时,John [2]在讨论光子局域时也独立提出。
第36卷 第7期2021年7月 液晶与显示 Chinese Journal of Liquid Crystals and Displays Vol.36 No.7 Jul.2021 收稿日期:2021-01-06;修订日期:2021-01-31. 基金项目:国家自然科学基金(No.62035008,No.61922038)Supported by National Natural Science Foundation of China(No.62035008,No.61922038) *通信联系人,E-mail:huwei@nju.edu.cn文章编号:1007-2780(2021)07-0921-18光取向液晶微结构及其光子元件曹慧敏1,吴赛博1,王靖阁2,胡 伟1*(1.南京大学现代工程与应用科学学院,江苏南京210093;2.菏泽职业学院,山东菏泽274000)摘要:液晶是一类具有自组装和刺激响应特性的软物质,其作为当今主流信息显示技术的依托材料而备受瞩目。
伴随着液晶理论与技术的发展与革新,人们对这类材料的理解不断加深。
近年来,基于光取向技术对液晶微结构的灵活操控,液晶研究逐渐从传统显示领域向更加前沿的液晶光子学领域过渡。
在平面光学元件、结构光场、全光互连、模分复用光通信等领域展现出蓬勃的生机。
本文综述了南京大学液晶与光子技术研究中心在光取向液晶微结构及其光子元件领域的最新进展,具体讨论了多层级液晶畴构筑、光寻址液晶调光技术、光通信与太赫兹液晶元件。
关 键 词:液晶;光取向;软物质;微结构;光子元件中图分类号:O753+.2 文献标识码:A doi:10.37188/CJLCD.2021-0004Photoalignment enabled liquid crystal microstructuresfor optics and photonicsCAO Hui-min1,WU Sai-bo1,WANG Jing-ge2,HU Wei 1*(1.College of Engineering and Applied Sciences,Nanjing University,Nanjing210093,China;2.Heze Vocational College,Heze 274000,China)Abstract:Liquid crystal(LC)is a kind of functional soft matter featured by self-assembly and stimuliresponsiveness.It is widely known as a fundamental material for current mainstream information dis-play industry.With the development and innovation of LC theory and technology,understanding onsuch a material system has been significantly extended.Recently,the manipulation of LC microstruc-tures has been flexibly enabled via aphotoalignment technique,and the research focus has been grad-ually transitioned from traditional displays to advanced LC photonics.It is expected to provide greatopportunities in the fields of planar optics,structured light fields,optical cross connection,and modedivision multiplexing optical communications.This review presents the latest works of the ResearchCenter for Liquid Crystal and Photonics of Nanjing University in the field of photoalignment-enabledLC microstructures and photonic applications.To be specific,LC hierarchical architectures,opticallyaddressed spatial light modulators,and LC telecom/terahertz elements are separately discussed.Key words:liquid crystals;photoalignment;soft matter;microstructures;photonics. All Rights Reserved.1 引 言 液晶(liquid crystal,LC)是介于液体和晶体之间的一种物质状态,同时具有液体的流动性和晶体的各向异性。