耐热钢的成分
- 格式:doc
- 大小:12.02 KB
- 文档页数:1
图14原方案缸盖顶面温度场5结论本文通过CFD及有限元热机耦合相结合的方法,找到一种有效降低气缸体两缸之间温度的设计方案,为后续改进设计提供了帮助。
同时获得了气缸体、气缸盖的温度场,可以提供给计算气缸体、气缸盖等零部件的强度提供边界。
参考文献:[1]白曙,姜树李,陈煜,董非.柴油机冷却系统的数值模拟[J].机械设计与制造,2010(6).[2]喆叶伊苏,辛.车用柴油机冷却水套的CFD分析与优化[J].柴油机,2009(1).[3]楼狄明,高杨,谭丕强,于伟峥.非道路用柴油机缸体冷却水流场试验与CFD分析[J].车用发动机,2008(z1).内燃机与配件牌号热处理工艺螺栓抗拉强度/MPa硬度/HV ML06Cr15Ni25Ti2MoAlVB ML04Cr11Nb ML41CrMoV ML21CrMoV 14Cr17Ni2NiCr20TiAl 固溶温度:970~990℃水冷或空冷;时效温度:710~730℃空冷或缓冷退火温度:730~750℃空冷或缓冷淬火温度:880~910℃油冷;回火温度:670~710℃淬火温度:900~930℃油冷;回火温度:680~720℃淬火温度:960~1000℃水或油冷;回火温度:650~700℃固溶温度:1050~1090℃空冷或水冷;时效温度:830~860℃+690~720℃二次时效、空冷950~1150≤485850~1000700~850861~10341000~1300287~367180~285272~320225~272253~304320~417表3耐热钢紧固件技术要求及热处理工艺牌号典型的热处理制度螺栓抗拉强度Rm/MPa螺栓屈服强度R P0.2/MPa 断后伸长率A/%断面收缩率Z/%ML06Cr15Ni25Ti2MoAlVB (GH2132)ML04Cr11Nb ML41CrMoV ML21CrMoV 14Cr17Ni2(1Cr17Ni2)NiCr20TiAl (GH4080A )+AT+P+A +QT +QT +QT +AT+P900~1150≤485850~1000700~850861~10341000~1300600270700550690≥600152014160.25d 12/604560//表2耐热钢紧固件室温性能基本数据注:①14Cr17Ni2相当于JIS G 4303SUS431,NiCr20TiAl 相当于ASTM B637UNS 07080。
不锈钢合金06cr18ni11ti的化学成分按什么标准不锈钢合金06Cr18Ni11Ti的化学成分按照国家标准《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》进行控制。
该标准规定了不锈钢和耐热钢的牌号及化学成分,并对其进行了分类和标记。
根据该标准,06Cr18Ni11Ti属于国标含钛型奥氏体耐热钢,其具体的化学成分范围如下:
碳(C):≤0.08%
硅(Si):≤1.00%
锰(Mn):≤2.00%
磷(P):≤0.035%
硫(S):≤0.030%
铬(Cr):17.00%~19.00%
镍(Ni):9.00%~12.00%
钛(Ti):=5C%~0.70%
需要注意的是,在冶炼和加工过程中,不锈钢合金可能会受到各种因素的影响,导致其化学成分略有波动。
因此,在实际应用中,需要根据具体的要求和情况进行调整和控制,以确保其性能和质量符合要求。
除了化学成分外,不锈钢合金的性能还受到其他因素的影响,如热处理、加工工艺、表面处理等。
因此,在选择和使用不锈钢合金时,需要根据具体的要求和情况进行综合考虑,以获得最佳的性能和使用效果。
总之,不锈钢合金06Cr18Ni11Ti的化学成分按照国家标准《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》进行控制,其性能和质量需要综合考虑多种因素。
在实际应用中,需要根据具体的要求和情况进行选择和设计,以确保其能够满足使用要求。
耐热钢铸件耐热钢耐热钢铸件工业使用耐热钢总论耐热钢是指在高温下工作的钢材。
耐热钢铸件的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。
由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。
这里所谈的温度是个相对的概念。
最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。
直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。
随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。
现在,耐热钢铸件的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。
为了适应各种工作条件不断发展的要求,耐热钢铸件也在不断地发展。
从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。
现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。
1)珠光体型低合金热强钢该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。
2)马氏体型热强钢该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。
Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。
但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。
3)阀门钢阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。
耐热钢焊接焊条选用及说明在高温下工作的钢叫做耐热钢,耐热钢应具备高温化学稳定性和高温强度,耐热钢按显微组织可分为珠光体耐热钢、铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢四类;珠光体耐热钢通常热强钢,另有专篇,不再叙述,这里只讲铁素体耐热钢、马氏体耐热钢和奥氏体耐热钢。
一般来说,钢中含Cr达到5%,在600℃下具备了抗氧化能力,当Cr达到12%时,抗氧化能力可达800℃,当Cr达到20%时,抗氧化能力可达950℃,当Cr达到25%时,在1050℃高温下耐热钢表面不起氧化皮,高温化学稳定性非常强;铬金属是耐热钢中最主要的合金元素,所以耐热钢含铬量大都在12%以上。
相对而言,铁素体耐热钢和马氏体耐热钢高温强度低且塑韧性不好,耐热性能不如奥氏体耐热钢,奥氏体耐热钢与奥氏体不锈钢相比,含碳量高一些,有些钢种既是不锈钢又是耐热钢。
本文依据GB/T 4238-2015《耐热钢钢板与钢带》和GB/T 983-2012《不锈钢焊条》标准,选出14种代表性耐热钢材料及其适用的12种焊条,基本涵盖适用温度范围,其余耐热钢焊接时焊条选择也可以参照使用。
一、焊条选用原则1、耐热性对等焊缝与母材都在同一个温度下服役,若焊缝耐热性差就会影响整体功能,若焊缝耐热性过剩则会造成浪费,只有两者对等才是最适宜的。
2、化学成分相近为确保焊缝金属与母材具备相同的耐热性,焊条熔敷金属化学成份与母材应尽量相近;同时两者化学成份相近使得它们膨胀系数相近,避免了因膨胀系数不同在焊接接头处产生内应力。
3、保证抗裂性对抗裂性差的耐热钢可以用化学成分差异化来选择焊条,防止冷裂纹,确保施工可焊性。
如马氏体耐热钢、沉淀硬化耐热钢。
二、焊条选用一览表见表1。
表1:焊条选用表耐热钢牌号 最高使用温度℃应用举例 焊条型号焊条牌号(对应或适用)07Cr18Ni11Ti 900 通用构件 E347-17 A13212Cr18Ni9Si3 900 汽车排气净化装置E349-17 A08216Cr23Ni13 900 退火炉罩 E309-17 A302 20Cr25Ni20 1035 坩埚、燃烧室 E310-17 A402 06Cr19Ni13Mo3 900 热交换器部件 E317-17 A242 12Cr16Ni35 1035 石油裂解装置 E330MoMnWNb-17 A602 16Cr20Ni14Si2 1050 冶金电炉部件 E309Nb-17 A312 022Cr11NbTi 800 汽车排气管 E410-17 G202 10Cr17 900 喷油嘴 E430Nb-17 G302 16Cr25N 1082 燃烧室 E309-17 A302 12Cr13 800 高温螺栓 E410-17 G202 22Cr12NiMoWV 800 汽轮机叶片 E409Nb-17 G217 06Cr17Ni7AlTi 500 容器 E16-8-2-17 A512 06Cr15Ni25Ti2MoAlVB700 汽轮机轴 E16-25MoN-17 A502三、焊条化学成份及力学性能:见表2及表3。
耐热钢总论1.耐热钢是指在高温下工作的钢材。
耐热钢的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。
由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。
这里所谈的温度是个相对的概念。
最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。
直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。
随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。
现在,耐热钢的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。
为了适应各种工作条件不断发展的要求,耐热钢也在不断地发展。
从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。
现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。
1)珠光体型低合金热强钢该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。
2)马氏体型热强钢该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。
Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。
但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。
3)阀门钢阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。
耐热铸钢和热强铸钢标准对照表:
标准内容:
5.3.3 耐热铸钢和热强铸钢*
(1)德国DIN标准耐热铸钢[DIN 17465—1993]
a.耐热铸钢的钢号与化学成分,见表5-64。
表5-64 耐热铸钢的钢号与化学成分(质量分数)(%)
b.耐热铸钢的室温力学性能,见表5-56。
表5-56 耐热铸钢的室温力学性能
c.耐热铸钢的高温力学性能,见表5-66。
表5-66 耐热铸钢的高温力学性能
(2)德国DIN标准铁素体热强铸钢[DIN 17245—1987]
a.铁素体热强铸钢的钢号与化学成分,见表5-67。
表5-67 铁素体热强铸钢的钢号与化学成分(质量分数)(%)
b.铁素体热强铸钢的力学性能,见表5-68。
表5-68 铁素体热强铸钢的力学性能。
20878-2007(代替GB / t4229-1984)不锈钢和耐热钢牌号11化学成分范围本标准规定了不锈钢和耐热钢的标准牌号和化学成分(见表1.9.1,表5 ),并以附录的形式列出一些品牌的物理参数,特征和用途以及与国外标准等级的比较表。
本标准规定的化学成分等级和限值适用于轧制不锈钢和耐热钢(包括钢锭和半成品)产品标准的制定。
术语和定义本标准采用以下术语和定义。
2.1不锈钢,以不锈钢和耐腐蚀为主要特征的不锈钢,铬含量至少为10.5%,最大碳含量不超过1.2%。
2.1.1奥氏体级不锈钢奥氏体级不锈钢的基体主要由面心立方奥氏体结构(y相)组成,该结构是非磁性的,并且通过冷加工得到强化。
2.1.2奥氏体铁素体(双相)级不锈钢奥氏体铁素体(双相)级不锈钢的基体同时具有奥氏体和铁素体相(较少相的含量通常超过15%),可以通过冷加工进行强化。
2.1.3铁素体不锈钢基体铁素体不锈钢基体主要由具有体心立方晶体结构的铁素体(a相)组成,具有磁性,不能通过热处理硬化,但可以通过冷加工略微强化。
2.1.4马氏体不锈钢的基体是马氏体和磁性的,其机械性能可以通过热处理进行调节。
2.1.5沉淀硬化级不锈钢,其基体为奥氏体或马氏体,可以通过沉淀硬化处理(也称为时效硬化)进行硬化(强化)。
2.2耐热钢一种在高温下具有良好化学稳定性或高强度的钢。
3.1含碳量不小于0.03%时,建议取两位小数;当碳含量不超过0.030%时,建议取小数点后三位。
对于奥氏体钢和除Cr Ni Mn等级以外的其他等级,建议分别使用2%和1%(最大值),但不包括高硫或硒含量的易切削钢或需要提高氮固溶性的等级。
3.3出于技术原因,建议奥氏体不锈钢的磷含量≤0.045%,其他等级的磷含量≤0.040%。
43.4除非由于特殊技术原因指定了下限值,否则建议所有等级的钢使用≤0.030%,但不包括易切削钢的等级。
53.5对于扁平硅产品和管材,建议使用≤0.75%;对于长条带和锻件,建议使用≤1.00%;对于同时生产的产品,建议使用≤1.00%。
国内、外铬钼耐热钢钢号、化学成分和力学性能
表A.1给出了国内、外常用铬钼耐热钢钢号对照;表A.2给出了国内、外常用铬钼耐热钢的化学成分和力学性能;表A.3给出了常用铬钼耐热钢钢管的化学成分和常温力学性能;表A.4给出了常用铬钼耐热钢钢板的化学成分和力学性能;表A.5给出了常用铬钼耐热钢锻件的化学成分和常温力学性能;表A.6给出了国外铬钼耐热钢板的化学成分和力学性能。
SH/T 3520-
2004
表A.2 国内、外铬钼耐热钢管化学成分和力学性能对照(续)
12
SH/T 3520-2004
11
部分铬钼钢焊接材料的选用
表B.1给出了常用铬钼耐热钢焊接材料的选用;表B.2给出了异种钢焊接材料的选用及推荐的管道焊后热处理温度。
- 1 -
耐热钢的成分
耐热钢的成分
耐热钢是一种特殊的钢,也称耐高温钢,因其具有更高的耐热性
和耐腐蚀性而得名。其延展性、强度和耐腐蚀性更是这种钢材在使用
中的优势。
耐热钢的主要成分是铁和碳等。
一般来说,耐热钢含有的碳含量为0.20%~2.0%,但其他合金
元素(例如:含铬、钼、钛、锰、镍等)也会影响最后的耐热性。
耐热钢的含碳量越高,硬度越高,但这也会使耐热钢的冷硬性和
抗锈蚀能力下降。
因此,在耐热钢的选择时,要考虑各种因素,例如:用途、温度、
抗腐蚀性等,从而选择最适合的耐热钢。