二阶张量的模长
- 格式:docx
- 大小:36.21 KB
- 文档页数:1
第二章晶体性质的数学描述研究内容张量的概念二阶张量-重点介绍-推导变换关系 二阶张量示性曲面及主轴化高阶张量及其变换三阶张量四阶张量晶体宏观对称性与晶体张量的关系张量的概念标量物理中常见的一些量,如密度、温度等等很多。
特点:无方向可用一个数值完全表示矢量区别于标量的另一类物理量,既有数值又有方向,如机械力就是矢量。
矢量用黑体字母表示,如F 。
在直角坐标系中用矢量在该坐标系上的分量表示矢量。
例如电场强度矢量E 记为:123[,,]T E E E =E 123E E E ++E=i j k二阶张量张量的概念以电场强度和极化强度矢量为例:123P P P =++P i j k 123E E E ++E=i j k对于各向同性晶体中,同方向则,P E0εχ=P E123[,,]T E E E =E 123[,,]T P P P =P¾如果在各向异性晶体中情况就复杂了,电场强度和它引起的极化强度的方向一般不相同¾这时电场强度的每个分量对极化强度每个方向的分量均有影响,且影响的程度不同,这时我们就不能简单的利用前面的公式()11112130111122133()()()P P E P E P E E E E εχχχ=++=++()22122230211222233()()()P P E P E P E E E E εχχχ=++=++()33132330311322333()()()P P E P E P E E E E εχχχ=++=++张量的概念我们把上述公式表示为矩阵的形式1112131120212223233313233P E P E P E χχχεχχχχχχ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 1、P 的每一个分量与电场强度的三个分量存在线性关系2、坐标系确定后为常数3、各向异性介质的电极化特性需用9各数值才能完整描述----我们接下来会详细介绍ij χ张量的概念-二阶张量111213212223313233χχχχχχχχχ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠我们称这个3×3的矩阵为二阶张量张量的概念-二阶张量推广-如果某个物理性质T ,可以表征另外两个物理量p,q 之间的关联,并具有如下关系111213112212223233313233T T T P q P T T T q P q T T T ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 我们称构成二阶张量ij T 张量的概念-二阶张量张量的习惯写法:引入爱因斯坦求和法则-略去求和符号31(1,2,3)i ij j j p T q i ===∑i ij j p T q =i 为自由下标,j 为求和下标,注意顺序1、下标符号任意选定,但要有区别2、自由下标前后呼应,求和下标成对出现张量的概念-二阶张量张量的概念-二阶张量或者表示为矩阵的形式:P Tq=对于我们晶体光学范畴研究的二阶张量均有:ij ji T T =对称张量T T ′=张量的概念-二阶张量我们可以将二阶张量的下标作如下简化:11-1 22-2 33-323 32-4 13 31-5 12 21-6121112131653212223624431323354356T T T T T T T T T T T T T T T T T T T T T T T T ⎛⎞⎜⎟⎜⎟⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⇒⇒⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎜⎟⎜⎟⎜⎟⎝⎠张量的概念9标量(零阶张量)9矢量(一阶张量)9二阶张量9三阶张量9四阶张量。
二阶张量与四阶张量双点积的结果二阶张量与四阶张量双点积的结果导语:在数学和物理学中,张量是一种用于描述物理量或几何概念的数学工具。
而二阶张量和四阶张量则是最常见的两种形式。
本文将探讨二阶张量与四阶张量之间的双点积运算,以及该运算的结果。
一、什么是二阶张量和四阶张量1. 二阶张量:二阶张量是一种具有两个索引的张量。
它的表达式通常为 Tij,其中i和j是两个索引的取值范围。
二阶张量可以表示为一个二维矩阵,其中每个元素代表了对应位置上的物理量或几何概念的值。
应力张量、应变张量和惯性张量都是二阶张量的实例。
2. 四阶张量:四阶张量是一种具有四个索引的张量。
它的表达式通常为Tijkl,其中i、j、k和l是四个索引的取值范围。
四阶张量可以表示为一个四维矩阵,其中每个元素代表了对应位置上的物理量或几何概念的值。
弹性张量、扭转刚度张量和应力-应变敏感度张量都是四阶张量的实例。
二、二阶张量与四阶张量双点积的定义1. 双点积的定义:双点积是一种张量之间的运算,用于将两个张量相互作用。
对于二阶张量与四阶张量的双点积,其定义如下:Bijkl = Aijmn * Cmnkl其中,Bijkl、Aijmn和Cmnkl分别表示双点积的结果、二阶张量和四阶张量的元素。
2. 双点积的运算规则:二阶张量与四阶张量的双点积运算规则如下:- 对于二阶张量Aijmn的第i和j索引与四阶张量Cmnkl的第m和n 索引,进行求和运算。
- 将运算结果放入双点积的结果张量Bijkl的第i和j索引。
- 对于二阶张量Aijmn的第m和n索引与四阶张量Cmnkl的第k和l 索引,进行求和运算。
- 将运算结果放入双点积的结果张量Bijkl的第k和l索引。
三、二阶张量与四阶张量双点积的结果二阶张量与四阶张量的双点积的结果是一个四阶张量。
它的表达式为Bijkl,其中i、j、k和l是四个索引的取值范围。
该四阶张量的元素代表了二阶张量和四阶张量相互作用后得到的物理量或几何概念的值。
弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。
2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。
一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。
3.体积力:作用在物体每一点的外力。
比如每一点都有的重力。
4.面力:作用在物体表面的外力。
比如水给大坝表面的压力。
5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。
物体表面的任一点的应力和该点的面力是相同的大小和方向。
6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。
直角坐标下的方程形式上简单,其它坐标的复杂些。
7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。
8.位移:分析一点:一点变形前后的位置差值。
变形体研究的位移是该点空间位置的连续函数。
9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。
直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。
10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。
直角坐标下的方程形式上简单,其它坐标的复杂些。
11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。
12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。
13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。
第二章:二阶张量1. ij T ij ji i j j i i j T T T ;=⊗=⊗=⊗T g g T g g g g ij i j ij i j T ; T =⋅⋅=⋅⋅g T g g T g2. T =T.u u.TT ij ij ij ij j i j i i j j i ( = T T u ;T T u )⋅⊗==⊗⋅=u.T u g g g T.u g g u g 3.i .j det()T =T行列式不等于零的二阶张量定义为正则二阶张量 正则二阶张量存在逆张量:1-⋅T T =G 4.主不变量①1)()()ζ⋅⋅⨯⋅⋅⨯⋅⨯⋅=⋅⨯T u (v w)+u (T v w)+u (v T w )u (v w)(1.()::i i Tr T ζ====T T G G T)()()i j k ijk S u v w ⋅⋅⨯⋅⋅⨯⋅⨯⋅=T u (v w)+u (T v w)+u (v T w )(m m mijk .i mjk .j imk .k ijm S T T T εεε=++由于mik imkmmmiik .i mik.i imk.k iimS T T T εεεεε=-⇓=++=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时i j k m ijk .i .j .k ijk not sum ijk .m ijk S (T T T )T εε=++=②2)[)][()(]()[()]()ξ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u (T v w +u T v T w)+T u (v T w u v w (2......122123323113.1.2.1.2.2..3.2..3.3.1.3.1112233.1.2.2..3.3.1223311.1.2.2..3.3.111()22ij l mi j i l lm i j i j l j T T T T T T T T T T T T T T T T T T T T T T T T TTTTT T ζδ==-=-+-+-=++注意:ij ijklm lmkδδ=是张量的分量张量T 行列式中各阶主子式之和)[)][()(]()[()]i j k ijk S u v w ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=T u (T v w +u T v T w)+T u (v T w ( 其中......()m n m n n mijk i j mnk j k imn k i mjn S T T T T T T εεε=++..........()0m n m n n m iik i i mnk i k imn k i min m n i i mnk m n i i nmk iik S T T T T T T T T T T S εεεεε=++===-=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时 (122123323113).1.2.1.2.2..3.2..3.3.1.3.12()()i j j i j k k j k i i k ijk i j i j j k j k k i k i ijk not sumijkijkijkS T T T T T T T T T T T T T T T T T T T T T T T T εεζε=-+-+-=-+-+-=③()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w...()[()()]()()()i j k l m nl m n ijkl m n lmn T T T u v w det u v w det εε⋅⋅⋅⨯⋅===⋅⨯T u T v T w T T u v w ④()()det()()T T -⋅⨯⋅=⨯T v T w T v w()[()()]det()()[()()]det()()T⋅⋅⋅⨯⋅=⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w u T T v T w T u v w由于上式对任意矢量u 都成立[()()]det()()()()det()()T T-⋅⋅⨯⋅=⨯⋅⨯⋅=⨯T T v T w T v w T v T w T T v w⑤主不变量与矩之间的关系*1*2..*3...()()()ii i kk i i j kj k i Tr T Tr T T Tr T T T ζζζ===⋅==⋅⋅=T T T T T T2212112212ij k li j j i kl .i .j .i .j .i .j *T T (T T T T )[()]ζδζζ==-=-3.....................*3***13121611()()661(()23)6ijk l m nlmn i j ki j k j k i k i j j i k i k j k j i i j k i j k i j k i j k i j k i j k e e T T T T T T T T T T T T T T T T T T T T T ζζζζζ==++-++=+- 二阶张量标准形 1. 特征值、特征向量 λ⋅=T v v ()λ-⋅=T G v 01111232221233331230.........T T T T T T T T T λλλ--=-特征方程 321230λζλζλζ-+-= 特征根是不变量2. 实对称二阶张量标准形 1. 特征根是实根*************; ; ()0 () λλλλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒=⋅-=⇒=N v N v v v N v v v v N v v v v v N v v 0v v2. 特征向量互相正交1112222112112212121212 ; ; ()00λλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒⋅=N v v N v v v N v v v v N v v v v v v v 3. 不存在约当链如果λ是n 重根,但不存在相应的特征向量12,v v ,使1122 ; λλ⋅=⋅=T v v T v v则一定存在约当链11221λλ⋅=⋅=+T v v T v v v然而对对称张量112212112121211110λλλλ⋅=⋅=+⇓⋅⋅=⋅⋅⋅=⋅+⋅⇓⋅=N v v N v v v v N v v v v N v v v v v v v这是不可能的。