第2章二阶张量
- 格式:pdf
- 大小:426.14 KB
- 文档页数:19
第二章:二阶张量1. ij T ij ji i j j i i j T T T ;=⊗=⊗=⊗T g g T g g g g ij i j ij i j T ; T =⋅⋅=⋅⋅g T g g T g2. T =T.u u.TT ij ij ij ij j i j i i j j i ( = T T u ;T T u )⋅⊗==⊗⋅=u.T u g g g T.u g g u g 3.i .j det()T =T行列式不等于零的二阶张量定义为正则二阶张量 正则二阶张量存在逆张量:1-⋅T T =G 4.主不变量①1)()()ζ⋅⋅⨯⋅⋅⨯⋅⨯⋅=⋅⨯T u (v w)+u (T v w)+u (v T w )u (v w)(1.()::i i Tr T ζ====T T G G T)()()i j k ijk S u v w ⋅⋅⨯⋅⋅⨯⋅⨯⋅=T u (v w)+u (T v w)+u (v T w )(m m mijk .i mjk .j imk .k ijm S T T T εεε=++由于mik imkmmmiik .i mik.i imk.k iimS T T T εεεεε=-⇓=++=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时i j k m ijk .i .j .k ijk not sum ijk .m ijk S (T T T )T εε=++=②2)[)][()(]()[()]()ξ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u (T v w +u T v T w)+T u (v T w u v w (2......122123323113.1.2.1.2.2..3.2..3.3.1.3.1112233.1.2.2..3.3.1223311.1.2.2..3.3.111()22ij l mi j i l lm i j i j l j T T T T T T T T T T T T T T T T T T T T T T T T TTTTT T ζδ==-=-+-+-=++注意:ij ijklm lmkδδ=是张量的分量张量T 行列式中各阶主子式之和)[)][()(]()[()]i j k ijk S u v w ⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=T u (T v w +u T v T w)+T u (v T w ( 其中......()m n m n n mijk i j mnk j k imn k i mjn S T T T T T T εεε=++..........()0m n m n n m iik i i mnk i k imn k i min m n i i mnk m n i i nmk iik S T T T T T T T T T T S εεεεε=++===-=当i,j,k 当中有两个相等时,0iik S = 当i j k ≠≠时 (122123323113).1.2.1.2.2..3.2..3.3.1.3.12()()i j j i j k k j k i i k ijk i j i j j k j k k i k i ijk not sumijkijkijkS T T T T T T T T T T T T T T T T T T T T T T T T εεζε=-+-+-=-+-+-=③()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w...()[()()]()()()i j k l m nl m n ijkl m n lmn T T T u v w det u v w det εε⋅⋅⋅⨯⋅===⋅⨯T u T v T w T T u v w ④()()det()()T T -⋅⨯⋅=⨯T v T w T v w()[()()]det()()[()()]det()()T⋅⋅⋅⨯⋅=⋅⨯⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w u T T v T w T u v w由于上式对任意矢量u 都成立[()()]det()()()()det()()T T-⋅⋅⨯⋅=⨯⋅⨯⋅=⨯T T v T w T v w T v T w T T v w⑤主不变量与矩之间的关系*1*2..*3...()()()ii i kk i i j kj k i Tr T Tr T T Tr T T T ζζζ===⋅==⋅⋅=T T T T T T2212112212ij k li j j i kl .i .j .i .j .i .j *T T (T T T T )[()]ζδζζ==-=-3.....................*3***13121611()()661(()23)6ijk l m nlmn i j ki j k j k i k i j j i k i k j k j i i j k i j k i j k i j k i j k i j k e e T T T T T T T T T T T T T T T T T T T T T ζζζζζ==++-++=+- 二阶张量标准形 1. 特征值、特征向量 λ⋅=T v v ()λ-⋅=T G v 01111232221233331230.........T T T T T T T T T λλλ--=-特征方程 321230λζλζλζ-+-= 特征根是不变量2. 实对称二阶张量标准形 1. 特征根是实根*************; ; ()0 () λλλλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒=⋅-=⇒=N v N v v v N v v v v N v v v v v N v v 0v v2. 特征向量互相正交1112222112112212121212 ; ; ()00λλλλλλ⋅=⋅=⋅⋅=⋅⋅⋅=⋅-⋅=⇒⋅=N v v N v v v N v v v v N v v v v v v v 3. 不存在约当链如果λ是n 重根,但不存在相应的特征向量12,v v ,使1122 ; λλ⋅=⋅=T v v T v v则一定存在约当链11221λλ⋅=⋅=+T v v T v v v然而对对称张量112212112121211110λλλλ⋅=⋅=+⇓⋅⋅=⋅⋅⋅=⋅+⋅⇓⋅=N v v N v v v v N v v v v N v v v v v v v这是不可能的。