力学中的数学方法-张量-2
- 格式:pdf
- 大小:888.56 KB
- 文档页数:33
连续介质力学中变形梯度张量客观性表述的分歧两点张量论文导读::客观性是连续介质力学。
因此将其称为两点张量。
并明确指出变形梯度是客观性张量。
考虑到功共轭也存在相似的问题。
论文关键词:客观性,一点张量,两点张量,变形梯度,功共轭1简介客观性是连续介质力学,特别是连续固体介质力学中重要的一个概念,它强调了本构关系与刚体转动无关。
所谓客观性,也称为标架不变性、标架无差异,是指材料的本构关系不因观察者不同而发生形式上的变化,这就要求构建本构关系的应力应变张量在时空变换时遵守一定的准则以保证本构方程的标架不变性,即要求应力应变张量具有客观性。
变形梯度是一个联系初始构型与当前构型的两点张量,在连续介质力学中具有核心地位、是定义各类应变张量的基础,同时两点张量,基于变形梯度张量也可实现各类应力张量之间的转换。
由于在构建本构关系时直接应用的是应变(应力)及与其共轭的应力(应变),必须鉴别各类应力应变量的客观性,因此现有文献与教材对各类应力应变讨论较多,且对基于一点的应力应变张量的客观性的具有统一的观点[1-4]。
但对于变形梯度等两点张量的客观性的表述存在分歧,如匡震邦[3]与Belytschko等[4]对Euler-Lagrange两点张量的客观性给出了定义,并明确指出变形梯度是客观性张量,而黄克智[2]与Bock等[5]则认为变形梯度张量不是客观张量。
这种表述上的分歧在于张量客观性的定义不同,那么到底该如何理解张量的客观性?为此本文从变形梯度张量的定义及张量分类开始,然后介绍客观性的几种定义,并基于连续介质力学中张量的逆及功共轭角度分析了几种定义的差别论文参考文献格2变形梯度张量及张量的类型这里仅以欧式空间为例,考虑变形体在固定参考构形内质点的位置向量以表示,时刻当前构形的同一物质点的位置向量以表示,则变形体的运动可通过如下映射描述[6](1)对于同一物质点,不随时间变化,称为物质坐标或Lagrange坐标,而是同一物质点在的空间位置,称为空间坐标或者Euler坐标。
数学中的张量分析方法在数学中,张量分析是一种用于描述多维空间中变量关系的数学工具。
它在许多领域中被广泛应用,包括物理学、工程学、计算机科学和经济学等。
本文将介绍张量的基本概念和常见的应用方法。
一、张量的定义和性质1. 张量的定义张量是一个多维数组,可以表示为多个分量的组合。
在欧几里德空间中,一阶张量是向量,二阶张量是矩阵。
高阶张量可以看做是多个矩阵的组合。
2. 张量的性质张量具有坐标系无关性,即其分量在不同坐标系下具有相同的转换法则。
这使得张量在描述物理量时具有普适性和通用性。
二、张量的运算法则1. 张量的加法和减法张量的加法和减法都是对应分量相加或相减。
要求参与运算的张量具有相同的维度。
2. 张量的数乘张量的数乘是将每个分量都乘以一个标量。
数乘并不改变张量的维度。
3. 张量的张量积张量的张量积是两个张量的分量进行乘积并按照一定规则相加得到的新张量。
它在向量叉乘、矩阵乘法等问题中有广泛应用。
4. 张量的缩并运算张量的缩并是对张量的某些分量进行求和,并将结果保留在一个新的张量中。
它常用于求解线性方程组、协方差矩阵等问题。
三、张量的应用举例1. 物理学中的应用张量在物理学中有广泛的应用,如流体力学中的应力张量、电动力学中的麦克斯韦张量等。
它们描述了物质在空间中的运动和相互作用。
2. 工程学中的应用张量在工程学中用于描述物体的形变、应力分布等。
它在结构力学、弹性力学、热传导等领域中有着重要的作用。
3. 计算机科学中的应用张量在图像处理、模式识别、机器学习等领域中被广泛应用。
例如,卷积神经网络中的卷积操作就可以用张量运算进行描述。
4. 经济学中的应用张量在经济学中用于描述多个经济变量之间的关系。
它可以用来分析供求关系、生产函数等经济现象。
结语:张量分析作为一种重要的数学工具,为我们研究和解决各种问题提供了强有力的帮助。
通过对张量的定义、性质和运算法则的了解,我们可以更好地理解和应用张量,进而推动科学的发展和进步。
2. Kronecker 符号一、Kronecker 符号定义为:⎩⎨⎧≠==ji ,0j i ,1j i δ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001333231232221131211δδδδδδδδδ其中i ,j 为自由指标,取遍1,2,3;因此,可确定一单位矩阵:j i δδij δ 的性质二、若ji j i δ=⋅e e 321,,e e e 是相互垂直的单位矢量,则3332211i i =⋅+⋅+⋅=⋅e e e e e e e e 3332211i i =++=δδδδii i i δ=⋅e e 例题1:三、例题注意:3i i =δi i δ是一个数值,即例题2:ki A A →kk k k i i k A A A ==δδ思路:把要被替换的指标i 变成哑标,哑标能用任意字母,因此可用变换后的字母k 表示i j ii δδ与不同ji δ的作用:1)换指标;2)选择求和。
例题3:ji j k T T →特别地,j i j k k i δδδ=mi m j j k k i ,δδδδ=ji j i i i j k k i T T T ==δδ四、符号的应用ijδ3. 置换符号(Permutatisn Symbol)1312231123===e e e 1132213321−===e e e 0232121111==== e e e 13⎪⎩⎪⎨⎧−=,0,1,1kj i e i, j, k, 为1,2,3的偶置换(123,231,312)i, j, k, 为1,2,3的奇置换(213,132,321)i, j, k, 的任意两个指标相同13易知:ij k j k i k i j j i k i k j k j i e e e e e e −=−=−===二、k j i e 符号的应用1).三阶行列式321,,e e e 若是右手卡氏直角坐标系的单位基矢量k ?e 2)、右手卡氏直角坐标系的单位基矢量叉乘3)i jk ke =e i j ×=ee例题: 证明a × b = ε ijk ai b j e ke1 a × b = a1 b1e2 a2 b2e3 a3 b3= a2b3e1 − a3b2 e1 + a3b1e2 − a1b3e2 + a1b2 e3 − a2b1e3= ε 231a2b3e1 + ε 321a3b2 e1 + ε 312 a3b1e2 + ε132 a1b3e2 +ε123 a1b2 e3 + ε 213 a2b1e3= ε ijk ai b j ek11三、 常见的恒等式δi l ei j k el m n = δ j l δk lδi1 δi 2 δi 3 δ j3 δk 3δi m δ jm δk mδi n δ jn δk n1) 证明ei j k = ( ei × e j )iek = δ j1 δ j 2 δk 1 δk 2el mn = ( el × em )ien = δm1 δm 2 δn1 δn 2 δl1 δl 2δl 3δl1δm1 δm 2 δm3δn1 δn 2 δn 312δm3 = δl 2 δl 3 δn 32) 证明ei j k el m k = δi l δ j m − δi m δ j lδil δi m δjm δk m δi k δjk δkkei j k el mk = δ jl δk l= δk l = δi mδi m δjm δil δ jlδi k δjk −− δk m δilδil δ jl +3δi k δ jk δil δ jl+3δil δ jl =δim δ jm δil δ jl δim δ jm13δim δ jmδim δ jmδjmδ jl由ei j k el m k = δi l δ j m − δi m δ j lei j k el j k = 2δil3)4)ei j k ei j k =6144. 纳布拉算子∂ ei = ( ▽= ∂xi),i ei = ∂ ,i ()ei15§1.3 张量的代数运算 数乘 加法 点积 缩并 叉积 点叉积 张量积 转置 求逆 对称与反对称161. 张量的记法 绝对记法(一个字母):T、A 分量记法: 矩阵表示:T = Tijkl ......eie je k ...⎡T11 T12 T13 ⎤ ⎢ ⎥ T = ⎢T21 T22 T23 ⎥ ⎢ ⎣T31 T32 T33 ⎥ ⎦172. 张量的特征定义在坐标变换时,满足如下变换关系的量为张量T = α T ⎧ ' ' ' ' ' α ' α ' ijkl ii j j k k ⎪ i jkl ⎨ Tijkl = α ii ' α jj ' α kk ' α ll ' Ti ' j 'k 'l ' ⎪ ⎩例:由第一节 应力张量e i′ = Li′je jT = Ti' j ' ei' e j ' = Ti' j ' Li' j e j L j 'k e k = T jk e j e kT jk = Li' j L j 'k Ti' j '因此, T 为二阶张量。
183. 数乘α 设T为一个张量(如二阶张量), 为一标量,它们的乘积记为T = αT则 T 仍为张量。
19以二阶张量为例 根据张量的坐标变换特征,有α′ = αTi′j′ = α i′iα j′jTi jTi′j′ = α ′α i′iα j′jTi j = α i′iα j′j α Ti j = α i′iα j′j Ti j可见, T 为二阶张量。
204. 加法设T 、S 均为两个同阶张量(如二阶张量),将它们的和用下式表示:ji j i j i )(e e S T S T +=+若a 为一矢量,则aS a T a S T ⋅±⋅=⋅±)(T 、S 和的分量为:ijij ij )(S T ±=±S T 其矩阵形式为:][][][S T S T ±=±5. 点积1)矢量a、b的点积:ii j i j i j i j i j j i i )()()(b a b a b a b a ==⋅=⋅=⋅δe e e e b a 换指标2)张量T, S (设为二阶)的点积:)()(n m n m j i j i e e e e S T S T ⋅=⋅ni m j n m j i n m j i n m j i )(e e e e e e δS T S T =⋅=ni n m m i e e S T =一般地,任意个二阶张量依次点积,结果仍为二阶张量,即ji j q pq n m m i e e V U S R V U S R ⋅=⋅⋅⋅⋅3)双重点积(前后):若A 为二阶张量,B 为三阶张量,则i j i j kmn k m n :():()A B =A B e e e e e 结果为一阶张量。
i j kmn i k j m n ()()A B =⋅⋅e e e e e i j kmn ik jm n ij ijn n A B A B δδ==e e4)双重点积(内外):若A 为二阶张量,B 为三阶张量,则i j i j kmn k m n ()()A B ⋅⋅=⋅⋅A B e e e e e 结果为一阶张量。
商法则:若一个量与任意一个量的点乘积为张量,则该量必为张量。
i j kmn im jk n ij jim nA B A B δδ==e e i j kmn i m j k n ()()A B =⋅⋅e e e e e6. 叉积1)两个矢量a ,b 的叉积:kj i k j i j i j i j j i i )()(e e e e e b a b a e b a b a =×=×=×kk j i j i e e e e =×2)两个任意张量的叉积:B A ,ts r j i rst j i t s r rst j i j i )()()(e e e e e e e e e e B A ×=×=×B A B A ts k i kst i t s k i k r j rst j i e e e e e e e e C e B A ==kr j rst j i kst i e B A C =7. 张量积(并乘)设分别为m 和n 阶张量,它们的并积为,则B A ,C )...)(...(n m 1m n m 1m m 1m 1i i i i i i i i ++++==e e e e B A C B A nm 1n m 1i i i i ...++=e e C nm 1m m 1n m 1i i i i i i +++= B A C 可见,其结果张量是m+n 阶的。
C注意:有时候会把点乘写成ABB A =•这时并乘要加并乘符号BA ⊗=⊗=B AC nm 1n m 1i i i i ...++⊗e e C n m 1i i ...+⊗e e 称为基张量8. 缩并如对积张量中任意两个基矢量进行点乘,便可得到比原来低二阶的张量,称为张量的缩并。
(匡震邦书)盖秉政书例题9. 转置j i ji Tj i ij T A A e e e e A ==)(10. 求逆j i ij A e e A 11−−=9. 对称与反对称A) 对称张量若张量满足如下的关系式:这样的张量称为二阶对称张量。
B)反对称张量jiij A A =jiij A A −=若张量满足以下关系式:则称为二阶反对称张量。